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Abstract

A theory of generalized gradients is presented for a class of Lipschitz vector-valued mappings
from a Banach space to a locally convex order complete vector lattice. Necessary optimality
conditions are obtained for nonconvex programming problems on Banach spaces with vector-
valued operator constraints and/or an arbitrary set constraint. Sufficient optimality conditions
are also obtained under mild convexity assumptions.
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1. Introduction and summary

The desire to optimize increasingly sophisticated models of complex man-
made and naturally occurring systems has motivated considerable interest
over the past quarter century in the area of research now frequently referred
to as "nonsmooth analysis and optimization." Briefly put, this area's primary
goal is to include broader classes of mappings in a suitably generalized theory
of differentiation that is conducive to the analysis of optimization problems.
Initial results by Rockafellar [34-38], Moreau [27] and McLinden [26] dealt
with convex functions; Valadier [51], Ioffe-Levin [23], Zowe [54-55], Kutate-
ladze [25], Rubinov [44], Borwein [1] and Papageorgiou [28] made important
generalizations to convex mappings into ordered vector spaces. Clarke [3-7]
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introduced a generalized gradient for lower semicontinuous and locally Lip-
schitz functions whose analytical virtues were recognized from the outset. A
partial list of other significant contributions to the nonconvex case includes
the works of Halkin [11], Hiriart-Urruty [14], Ioffe [19-22], Kusraev [24],
Papageorgiou [29], Penot [30], Rockafellar [39-41], Thibault [46-50], Warga
[53] and many others. For excellent summaries of the theory, motivation,
and application of generalized gradients and extensive references we refer
the reader to Clarke [7], Hiriart-Urruty [15] and Rockafellar [42].

In this paper we study a mapping f:X ^ V that has a Lipschitz-type prop-
erty at x e X, where AT is a Banach space and V is a locally convex ordered
topological vector space that is an order complete vector lattice with a nor-
mal positive cone. We provide results for a generalized directional derivative
f°(x;y) and generalized gradient df{x) and derive optimality conditions for
programming problems with vector-valued operator constraints and/or an ar-
bitrary set constraint. Our assumptions differ from those in previous works
that have dealt with vector-valued mappings. For example, Kusraev [24] uses
the absolute value operator in his definition of Lipschitz mapping, whereas
we assume that the difference quotient X~l[f(x + Xy) - f(x)] has its values
in an order interval of V for all positive sufficiently small X, for all JC in a
neighborhood of Jc and y in a neighborhood of 6 € X. In Section 2 we show
that this property is less stringent than the Lipschitz definition employed by
Kusraev. In [46] and [47] Thibault studies compactly Lipschitzian mappings,
while in [49] he takes an approach based on a theorem of Sweetser.

The paper is organized as follows. Section 2 contains the main results
concerning directional derivatives, generalized gradients and optimality con-
ditions; only a few simple proofs are given in this section. Section 3 provides
proofs and examples while Section 4 includes a summary and brief comments
concerning future research.

2. Main results

In this section we present the main results concerning directional deriva-
tives, generalized gradients and optimality conditions. Proofs of some results
are included in this section; the remaining proofs are given in Section 3.

2.1. DIRECTIONAL DERIVATIVES AND GENERALIZED GRADIENTS. Let U be

an open subset of a Banach space X and let V be a locally convex ordered
topological vector space, that is, V is a Hausdorff locally convex topological
vector space and an ordered vector space with a convex positive cone V+ =
{v: v > 0} that is closed. We also assume V is an order complete vector lattice
(ocvl) with a normal positive cone; that is, V is an ocvl with a neighborhood
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basis W of the origin 9 such that, for W e W, W = (W + V+) n(W- V+).
Equivalently, the normality of V+ implies the existence of a neighborhood
basis of the origin consisting of sets W such that if x,z e W, then any y
satisfying x < y < z is also in W. A consequence of the normality of V+ that
will be used in the sequel is that if {**}*£*> {yk}keK and {z^keK a r e n e t s m

V satisfying JC* < yk < zk for all k e K, and if limfceA: xk = lim^e* zk = 9,
then \imk€Kyk - 9 [31, page 62, Corollary 1.3].

DEFINITION 1. The mapping / : X -• V is order Lipschitz on U if there
exist a neighborhood W of 9 e X, e > 0, and m < M in V such that
k-'[/(A: + Ay) - / (*)] e [m, Af] for all A e (0,e], x € U, and y e FT. The
mapping / is order Lipschitz at x e X if there exists a neighborhood Nofx
such that / is order Lipschitz on N, and locally order Lipschitz on U if / is
order Lipschitz at x for every x~ GU.

Kusraev [24] employs a definition of a Lipschitz mapping using the abso-
lute value operator | • |: V —> V, where \v\ = v+ + v~ with v+ = swp(v, 6) and
v~ = sup(-v, 6): f: X -> V is locally Lipschitz if, for any xeX, there exists
a neighborhood iV of 3c and A: e V+ such that |/(JC') - f(x")\ < k\\x' - x"\\
for all x',x" €. N. If V = R, this definition reduces to the definition
of a real-valued locally Lipschitz function. If / is locally Lipschitz us-
ing the absolute value operator, choose a neighborhood No of x, a neigh-
borhood W = {y e X:\\y\\ < d}, 5 > 0, of 9 e X, and e > 0 such
that x + Xy e N for all x e No, y e W and A e (0,e]. Then for all
x <EN0,y eW and A(0,e] we have \f(x + Ay) - /(JC) | < fc||Ay|| = Afc||y||,
which implies -dk < -k\\y\\ < X~l[f{x + ky) - f(x)] < k\\y\\ < 6k; thus
^" ' [ /C* + ty) - fix)] e [m,M], where m = -dk and M = 5k. Hence, if /
is locally Lipschitz using the absolute value operator, then / is locally order
Lipschitz as defined in Definition 1.

An order Lipschitz mapping need not be continuous, as the following ex-
ample shows.

EXAMPLE 1. Let (c) be the space of all convergent sequences of real num-
bers with norm \\x\\ao = sup{|jtn|} and let W be an open bounded neighbor-
hood of 9 e (c) relative to the topology T((c),ll), that is, the weak topology
on (c). Since ix is the dual of (c), I1 is norm-determining for (c), hence by
W is bounded relative to the norm topology. In particualr, W is absorbed
by B = {x: \\x\\ < 1}, thus there exists Ao > 0 3 XW c B for all |A| < Ao. Let
WQ = XQW; then Wo is order bounded since fi = {x: \\x\\ < 1} coincides with
[-e,e] in (c), where e = (en), en = 1 for all n. Therefore, since / : (c) —• (c)
given by f{x) = \x\ is sublinear, for any x e (c) and y € Wo we have

A"'[/(x + Ay) - / (*)] < / (y) = \y\ e [-*,*],
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which shows that f{x) = \x\ is order Lipschitz on (c). However, f(x) is
not continuous since the dual of (c) is not the sequence space <f> = {x =
(xn): xn = 0 for all but a finite number of choices of n} [31, page 135]. We
note that if E is a normed lattice, then the lattice operations are weakly
continuous if and only if E is finite dimensional; also, if o(E,E') denotes
the topology of uniform convergence on all order intervals in E', then if E
is a locally convex vector lattice, o(E, E') is the coarsest translation invariant
topology on E finer than the weak topology T(E, E') and for which the lattice
operations are continuous [45, page 254].

When defining a directional derivative our preference is to allow consid-
eration of any "direction" y & X, not just those in the neighborhood W in
Definition 1. Thus, we note that W is radial, that is, for each y € X there
exists a scalar ay > 0 such that ay e W for all |a| <ay [31, page 192].

DEFINITION 2. If / : X -* V is order Lipschitz at x, the generalized direc-
tional derivative of f at x~ in the direction y e X, denoted f°(x;y), is given
by

r(x;y) = inf sup *"'[/(* + W - /(*)]
N€M(x) X£N

e>0 0<>l<«

where M(x) is a neighborhood base of x in X.
If V is a Daniell space, that is, if every decreasing net {Wj)j&j that is

bounded below converges (in which case lim^gy Wj = inf,-e/ Wj) [23], then
we can write

PROPOSITION 1. The mapping y —* fo(x;y) is a sublinear mapping from X
to V that satisfies f°(x;y) < M for all y € W and f°(x; -y) = {-f)°(x;y)
for every y € X.

We shall now examine several situations in which the generalized direc-
tional derivative is a continuous mapping. For f:X —y V, we define the
epigraph of / , denoted epi / , by

epif={(x,v)<=XxV\v>f(x)}.

PROPOSITION 2. If intepi/°(x; •) is nonempty, then /°(3c; •) is a continuous
mapping from X to V.

The assumption that intepi/°(3c;-) is nonempty implies that int^V is
nonempty, so this assumption is rather stringent.
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The interior pseudo-tangent cone of epi / at (x, f(x)), denoted

hPif(x,f(x)),

is the (open) set of points (y, v) e Xx V for which there exists a neighborhood
E of (x,f(x)), a neighborhood F of (y,v), and a real number e > 0 such
that E n epi / + (0,e)F c epi / [48]. In the language of Rockafellar [41],
/epi f(x, f(x)) is the set of points (y,v) e XxV with respect to which epi / is
epi-Lipschitzian at (x,f(x)), that is, there exists a neighborhood G of (y,v),
a neighborhood / of (x,f(x)), and A > 0 such that

(2.1) (x',w') + t(y',v')eepif

for all (x',w') e e p i / n / , t e (0,X) and (/ ,v') e G. Each vector (/,«')
satisfying (2.1) is said to be in the hypertangent cone of epi f at (x,/(x)),
denoted Hepif(x,f(x)). Note that

/epi/(*>/(*)) ^ Hepif(X,f(x)) C Tepi/(X,/(X)),

where T^Pi/(x,/(]c)) is the (Clarke) tangent cone, if S is a nonempty subset
of Y, a locally convex Hausdorff topological vector space, then y e Y is in
the tangent cone of 5 at I 6 clS, denoted T(S;x) or 7s(x), if for every
net (Xj)jej in clS converging to x and every net (tj)j^j of positive real
numbers converging to zero there exists a net (yj)jej converging to y such
that Xj + tjyj e S for each j e J [41]. If 7 is a Banach space we can replace
nets with sequences in the above definition and obtain the formulation given
by Hiriart-Urruty [14]. T(S;JC) is always a closed convex cone.

If Iepif(x,f{x)) jt 0, then since Tepi/(x,/(x)) is convex and

int Tepi/(x, /(*)) C Iepif(x, f(x)) [41],

we have 7epi/(x,/(3c)) = int/fepi/(3c,/(5c)). In addition, note that the defini-
tion of f°(x;-) implies f°(x;y) = inf{v G V\(y,v) e Hepif(x,f(x))}, and if
V is Daniell, Hepif(x,f(x)) D {(y,v) eXx V\f°(x;y) ev- intF+} since

inf sup X-l[f(x + Xy)-f(x)]

c>0 0<>l<£

sup X-l[f{x + Xy)-f(x)]ev-intV+.
_

N€)J(x)
Hence, the interior of Hepif(x, f(x)) is the same as the interior of epi/°(x; •).

To summarize, if Iepif(x,f(x)) ^ 0, then

Iepif(x,f(x)) = int 77epi/(*,/(*)),

and if V is Daniell, then intHepif(x,f(x)) = int epi/° (3c; •). We have estab-
lished the following corollary to Proposition 2.
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COROLLARY 1. //7epiy(x, f(x)) is nonempty and V is Daniell, then / ° (x; •)
is a continuous mapping from X to V.

REMARKS. 1. A sufficient condition that / e p i /(x,/(x)) be nonempty is
that the mapping / : X -* V be locally Lipschitz at x with the absolute value
operator | • |: V —• V and that int V+ ^ 0 . In fact, if there exists k G V+ and
N € M(x) such that

\f(x") - / (JC' ) | < k\\x" - x'||, Vx', x" e N,

then there exist a real number e > 0 and v G int V+ such that f(x' + ty') <
f(x') + tv for all x' e x+eS, y' G eB and ^ e [0,e], where 5 = {x e X\ \\x\\ <
1}. Hence f{x' + ty') < z + w when (x',z) e [(Jc + e5)xiVi]nepi/ , f G [0,e],
and (y'.u;) G (eB) x iV2, where AT, G JV(/(3C)) and Â 2 - t; + int V+ G M(2v).

2. The Lipschitz property of / : X —• F at x with the absolute value
operator implies the continuity of / ° (x; •) in a more direct manner. Indeed,
the Lipschitz property implies \f°(x;y\ < k\\y\\ for any y e X; thus -A:||y|| <
f°(x;y) < k\\y\\ and, since V+ is normal, limy_e f°(x;y) = 8. Hence f°(x; •)
is a sublinear mapping continuous at the origin and thus continuous on X by
[47, Lemma 2.4].

The continuity of the generalized directional derivative f°(x;-) leads to
several results concerning the generalized gradient. Hence, we make the fol-
lowing definition.

DEFINITION 3. The mapping / : X -* V is regular at x if / is order Lipschitz
at x and if /°(x; •) is a continuous mapping from X to V.

Denote by L(X, V) the vector space of continuous linear mappings from
X to V; LS(X, V) denotes this space endowed with the topology of pointwise
convergence.

DEFINITION 4. Let / : X —* V be order Lipschitz at x. The generalized
gradient of f at x, denoted df(x), is the set of al T G L(X, V) satisfying
T(y) < f°(x;y), for all yeX.

PROPOSITION 3. The generalized gradient df{x) of f at x is convex and
satisfies -df(x) = d{-f){x).

PROOF. The convexity of df(x) follows directly from the definition;

-df(x) = d(-f)(x)

is a consequence of Proposition 1 which states that /°(x; -y) = (-f)°(x,y)
for all yeX.
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PROPOSITION 4. If the mapping f: X —> V is regular at 3c, then the gener-
alized gradient df(x~) is the set of all linear mappings T: X —> V such that
T(y)<f°(x,y)forallyeX.

THEOREM 1. If the mapping f: X —> V is regular at 3c, then the general-
ized gradient df(x) is a nonempty, closed, convex, equicontinuous subset of
LS(X,V) with f°(x;y) = max{T(y)\T e df(x)}. If, in addition, the order
intervals in V are compact, then df(x) is compact in LS(X, V).

REMARK. Note that since df(x) is equicontinuous, it is bounded in
LS(X, V) [45, page 83].

2.2. OPTIMALITY CONDITIONS. In this section we give necessary and
sufficient optimality conditions for nondifferentiable mathematical program-
ming problems with real-valued objective functions and constraints consist-
ing of either an arbitrary set or an arbitrary set and a vector-valued oper-
ator. While the results are related to those obtained in Kusraev [24] and
Thibault [46], where the objective functions are vector-valued, our assump-
tions and proof techniques are somewhat different. Specifically, Kusraev's
vector-valued mappings are Lipschitz with the absolute value operator while
Thibault's mappings are "compactly Lipschitzian" [47, Definition 1.1]. In
addition, our proof of the Kuhn-Tucker necessary conditions (Theorem 2),
which recalls a paper of Guignard [10], does not explicitly use the assump-
tion that the range space of the constraint operator is an ordered space. This
raises the possibility of substituting for the generalized gradient of the con-
straint operator g at 3c any closed convex subset rs(3c), say, of LS(X, V) that
satisfies the conditions we require of the generalized gradient. This approach
could generate various closed convex-valued multifunctions as in IofFe [20]
(where such multifunctions are called fans) and lead to necessary conditions
which have as special cases the necessary conditions of Clarke [5], Hiriart-
Urruty [12, 14] and Ioffe [19]. Indeed, Ioffe [22] has successfully merged this
approach with the above-mentioned fans to develop more general necessary
conditions.

Let A" be a Banach space, S a nonempty subset of X and / an extended
real-valued function on X which, unless stated otherwise, is assumed to be
finite and Lipschitz at 3c e S, that is, there exists a neighborhood N of x
and a constant K > 0 such that \f(x) - f(y)\ < K\\x - y\\ for all x,y € N.
Consider the problem

minimize f(x), subject to x € S;

3c is a local minimum of / on 5 if / is finite at 3c and if there exists a
neighborhood iV of 3c such that f(x) > /(3c) for every x € S n iV; 3c is a
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minimum of / on 5 if / is finite at x and f(x) > / (x ) for every x e S. If
C is a nonempty subset of Y, a locally convex Hausdorff topological vector
space, a vector y e Y is an adherent displacement for C at x e clC if
there exist a net (tj)jej of positive real numbers converging to zero and a
net (yj)jej converging to y such that x + tjy, e C for all j . Following
Rockafellar [42, page 14], we denote the set of adherent displacements for
C at x by K{C;~x) and refer to K(C;~x) as the contingent cone of C at x.
If Y is a Banach space then, just as for the tangent cone T(C;~x) defined
previously, we can replace nets with sequences and obtain the formulation
given by Hiriart-Urruty [14]. AX<S;x) is a closed cone with vertex 6 and
satisfies T(S;x) c K(S;x). The closure of coK(S;x), the convex hull of
K(S;x), is denoted P(S;x). The polar cone of a nonempty set A of X is
given by A0 = {x* € X*\x*{x) < 0 Vx € A}, where X* denotes the topologial
dual of X. If A is empty, A0 = X*. If A* is a nonempty set of X*, the prepolar
of /4* is °(^*) = {x € X\x*(x) < 0 Vx* € ^ * } . If A* is empty, °(^*) = X.
A°(°(A*)) is a weak*-closed (weakly closed) convex cone in X*{X).

We begin our study of optimality conditions with two results, needed in the
sequel, that are special cases of necessary conditions given by Hiriart-Urruty.

PROPOSITION 5 [14, Theorem 6]. Ifx is a local minimum off on S, then

(2.2) r(x;d)>0 VdeK(S;x).

Necessary conditions are also often expressed in terms of the polar cones
of subsets of the adherent displacement set.

PROPOSITION 6 [14, Theorem 8]. Let x be a local minimum of f on S and
M a convex cone contained in K(S;x); then

(2.3) 0 e df(x) + A/0.

REMARKS 1. Condition (2.3) is sharpest when K(S;lc) is convex, in which
case (2.3) becomes

(2.4) Oedf(x) + [K(S;x)]°.

If, in addition, / is continuously differentiable at x, then df(x) — {V/(x)}
[5, Proposition 4] and (2.4) reduces to 0 e V/(x) + [K(S;x)]°, that is,
V/(x) € -[K(S;x)]° which, since [K(s;x)]° = [P(S;x)]°, is the well-known
optimality condition in differentiable programming given by Guignard [10]
and Varaiya [52].

2. To establish the optimality condition in differentiable programming
noted in remark 1, it is not necesary to assume that K(S; x) is convex. The
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convexity requirement is needed in the nondifferentiable case since f°(x;d)
> 0 for all d e K(S;x) cannot be extended to clco K(S,x) = P(S;x). Thus,
for nondifferentiable objective functions, relation (2.4) does not hold without
the convexity of K(S;x~). To illustrate this fact we include an example due to
Hiriart-Urruty [12, page 80]. Let X = E2, f:E2 ->• R is given by f(xux2) =
1 -exp(*2 -\x\\), S = {(xi,X2) € E2:x2- \xt| < 0}; 3c = (0,0) is a minimum
o f / o n 5, [K(S;x)r = {(0,0)}, and df(x) = co{( l , - l ) , ( - l , - l )} .

A statement of sufficient conditions requires the following preliminaries.
A locally Lipschitz function / : X —> R on a Banach space X is locally pseudo-
convex at XQ (see [15, page 75]) if there exists a neighborhood N of x0 such
that

Vx € N, P(xo;x - x0) > 0 =* f(x) > f(x0).

If this property holds for all XQ € X, then / is locally pseudoconvex. If the
relation holds globally, that is, if N = X, f is pseudoconvex. A subset Ac X
is pseudoconvex at x0 e clA if x - x0 e P(A;xo) for all x e A, and strictly
pseudoconvex at XQ if x - XQ e K(A; JC0) for all x e A.

PROPOSITION 7. Suppose f is pseudoconvex on S and S is pseudoconvex
atxeS; then 0 e df(x) + [P(S;x)]° is a sufficient condition for x to be a
minimum off on S.

REMARKS. 1. If / is also continuously differentiable, the sufficient condi-
tion becomes V/pf) e -[P(5; Jc)]°, which is the sufficient condition given by
Guignard [10, Theorem 1].

2. A "local minimum" analogue of the above result follows directly if /
is locally pseudoconvex at 3c and if S is locally pseudoconvex at 3c, where
the latter means that there exists a neighborhood Nof~x such that x - x €
P(S;x) for all x e S n N. Hiriart-Urruty [15, Theorem 15] states that 0 e
df(x) + [K(S;x)]° (note that [K(S;x)]° = [P(S;x)]°) is a sufficient condition
for 3c to be a local minimum of / under the assumptions that / be locally
pseudoconvex at 3c and that S be locally strictly pseudoconvex at 3c; this latter
condition is termed "condition L" by Hiriart-Urruty.

3. A more desirable sufficient condition is possible in Proposition 7, but it
is acquired at the expense of strengthening the assumption on S by using the
(Clarke) tangent cone 7(5; 3c). If / is pseudoconvex on 5 (as in Proposition
7) and if x - 3c e T(5;3c) for all x e S, then 0 € df(x) + [T(S;3c)]° is a
sufficient condition for 3c to be a minimum of / on S. If S is locally convex
at 3c, that is, there is a neighborhood JV of 3c such that S n N is convex,
then T(S;3c) = K(S;x) = P{S;x) [14, page 83] and the sufficient condition
immediately above is equivalent to the sufficient condition in Proposition 7.
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To state the problem with an explicit operator constraint, let V be a lo-
cally convex ordered topological vector space that is an order complete vec-
tor lattice with a normal positive cone. A and B are nonempty subsets in
X and V, respectively, and g:X —> V is order Lipschitz at ~x e S where
S = {x 6 A\g(x) € B). Let

J = {xe X\T(x) e P(B;g(x)) for each T e dg(x)}

and
H* = {h€ X'\h € (idg(x),!ie [P(B;g(x))]°},

where fidg{x) = {fio T\T € dg(x)}. Note that / is a closed convex cone and
H* is a cone.

THEOREM 2 (KUHN-TUCKER CONDITIONS). Suppose H* is closed and G
is a closed convex cone in X such that Gn J = clM for a convex cone M
contained in K(S;x), where K(S;x) is the contingent cone for S at x e S;
suppose also that G° + J° is closed. If~x is a local minimum off over S, then
there exists n e [P(B;g(x))]°, where [P(B; g(x))]° is the polar cone of the
closure of the convex hull ofK(B; g(x)), such that 0 € df(x) + fidg(x) + G°.

REMARK. Theorem 2 generalizes to nondifferentiable problems with op-
erator constraints Guignard's well-known Kuhn-Tucker conditions for differ-
entiable programming [10, Theorem 3] which hold for M = P(S;x). Beyond
the generalization to nondifferentiable problems, Theorem 2 is applicable
to a wider class of programs, though in general it is not as sharp as the
result in the differentiable case. For example, in the extreme case we can
always choose G = M = {0}, but then G° = X*. If G = 7 (5 ; x), then
0 € df(x) + fidg(x) + [T(S;x)]° and we have a result consistent with the
necessary condition 0 € df(x) + [T(S;x)]° established by Clarke in a slightly
different form [5, Lemma 2]. The "larger" G is, the sharper the result in
Theorem 2; hence the strongest conclusion in general occurs when K(S;x) is
itself convex and M = K(S;x); then cl M = P(S;x) and our result is identi-
cal to the optimality condition in differentiable programming. However, in
the differentiable case it is not necessary to assume K(S;~x) is convex (see the
remark following Proposition 6).

Sufficient conditions are obtained by imposing mild convexity assump-
tions.

THEOREM 3. If G is a closed convex cone in X such that x - x e G for all
xeS, if there exists fi € [P(B; g(x))]° such thatOe df(x)+tidg(x)+G°, ifS
is strictly pseudoconvex at x and T(K{S;x)) c K(B; g(x)) for all T e dg(x),
and iff is pseudoconvex on S, then x~ is optimal for f over S.
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3. Examples and proofs

3.1. EXAMPLES AND PROOFS FOR SECTION 2.1. In this section we dis-
cuss situations which give rise to order Lipschitz functions, give examples of
generalized gradients, and prove Propositions 1, 2, 4, and Theorem 1.

As before, we consider a mapping / : X —• V where unless indicated oth-
erwise, X is a Banach space and V is a locally convex ordered topological
vector space that is an order complete vector lattice with a closed, convex
normal positive cone V+. The mapping / is convex if

f(Xxx + (1 - X)x2) < Xf(Xl) + (1 - k)f{x2)

for each X\, x2 € X and each A € [0,1 ]; we say / is closed if the epigraph of /
is closed in the product topology on X x V. If in addition V is a Banach space
and By = {v e V\ \\v\\ < 1}, then following Robinson [33, pages 140-141],
we set Iy+ = (By + V+) n (By - V+) and say that the mapping f:X -> V is
locally V+-Lipschitzian at ~x e X if there exists a neighborhood N ofx and a
constant k such that f(x) - f(y) e k\\x - y\\Iy+ for each x,y e N. If Iv+ is
order bounded (a rather severe restriction) and / is locally V+-Lipschitzian
at x, then f is order Lipschitz at JC. If / : X —> V is closed and convex and
Iy+ is order bounded, then / is locally order Lipschitz on X [33, Theorem 5].

The mapping / : X —• V is strictly differentiable at ~x in the Hadamard
sense if there exists a continuous linear mapping V/Qc): X —• V such that
the mappings

converge to 6 uniformly on all compact y-sets. If A" is a Banach lattice and
the cone K of positive continuous linear mappings in L(X, V) is generating,
that is, K - K = L(X, V), then L{X, V) c Lb(X, V), where Lb(X, V) denotes
the space of order-bounded linear mappings from X to V [31, page 173]. If,
in addition, there is an order-bounded y-neighborhood W of 6 € X where
the above convergence is uniform and a neighborhood Z of 8 € V such
that Z + [a,b] is order-bounded, where Vf(x)(W) c [a,b], then / is order
Lipschitz at x. We note that if / is strictly differentiable at x in the full limit
sense, then the same holds in the Hadamard sense [40, page 346].

We now proceed with the proofs of Propositions 1, 2, and 4 andTheorem 1.

PROOF OF PROPOSITION 1 The proof of the sublinearity of f°(x; •) follows
that for real-valued Lipschitz functions, while f°(x;y) < M for all y € W
follows directly from Definitions 1 and 2. For any given y e X, f°{x; ayy) =
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<*yf°(x,y) < M, so f°(x;y) < a~xM and thus f°{x;y) e V. Finally,

(-f)°(x,y) = inf_ sup A-'[-/(x + Xy) + f(x)]
e>0 0<X<e

= inf_ sup k-' [f(x
N€n(x) x€N

e>0 0<X<e

PROOF OF PROPOSITION 2. Since V+ is normal, the order intervals [v, w] =
{z e F|w < z < w} in F are bounded in the topology of V [31, page 62].
Therefore, since f°(x,-) is convex, it is continuous on X if it is bounded
above in a neighborhood of one point [51, page 71]. But the interior of
epi / ° ( x ; ) is included in the set of {y,v) e X x V such that / ° ( x ; ) is
bounded above by v in a neighborhood of y.

PROOF OF PROPOSITION 4. Suppose T: X -* V is a linear mapping satisfy-
ing T(y) < f°(x;y) for all y € X. By the linearity of T, -T(y) = T(-y) <
f°{x,-y), thus -f°(x;-y) < T(y) < f°(x,y). Since V+ is normal and
f°{x\ •) is continuous, linr,,-^ T(y) = 6 and hence T is continuous on X.

PROOF OF THEOREM 1. Observe that df(x) is the convex analytic sub-
differential of /°(Jc;) at zero. Then since / is assumed regular at x, the
theorem follows from Theoreme 6 and Corollaire 7 in [51].

We conclude this section with two examples of generalized gradients.

EXAMPLE 2. Let X = V = C[0,1], the Banach space of continuous real-
valued functions on the interval [0,1] with the supremum norm. The cone of
nonnegative functions in C[0,1] is normal for the topology generated by the
above norm [31, page 65]. Let <f>: [0,1] x R —• R be measurable in t for any
x in R and assume there exists a nonnegative function k(-) e Ll[0,1] and an
e > 0 such that

\<Kt,y)-4>(t,z)\<k(t)\y-z\

whenever \y - ~x(t)\ <e,\z- ~x(t)\ < e, and 0 < f < 1. Define the mapping

/(*(•)): C[0 , l ] -*C[0, l ]

by

/(*(•))(')= ['<t>(T,x(x))dr,
Jo
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then / is Lipschitz at x(-) with the absolute value operator. Indeed, for any
t € [0,1] and z ( ) , y(-) in an e-neighborhood of JC(-).

f4>(r, Z(T)) - <j>(x,y
o

< f'k(x)\z(x)-y(x)\dx
Jo

< f k(x)\z(x)-y(x)\dx
Jo

< N O - y(-)ll f k{x) dt = \\k(-)\\ \\z(.) - y(-)||.
Jo

Since the argument above is symmetric in y(-) and z(-), we have

\M-)-fWWt)<K(t)\\z(-)-y(-)\\,
where K(t) = \\k(-)\\ for all t e [0,1]. By the remarks following Definition 1,
/ is order Lipschitz at x(-).

When / is regular afx(-) we will use the concept of fan introduced by Ioffe
[20-22] to show that the expression for the generalized gradient is

(1) df(x(-))(h(-))(t) c [
Jo

The above expression means that for T e df(x{-)) and h{-) e C[0,1],
T(h{-)(t) can be written /0' <^7-(T)/I(T) dx, where x —> ^r{^)h{x) is a measurable
selection of the set-valued mapping x —> d<f>(x,~x(x))h{x).

Define the set-valued mapping A: C[0,1] —> C[0,1] by
^(^(-)) = {«(•) € C[0, l]|w(-) = F(A(-)) for some T e df(x(-))}-

Then by Theorem 1 and [20, page 7; 21, page 96], A is a bounded odd
fan generated by df(x) with support function s(v*,h) = sup{v*(T(h))\T e
df(x)}, where v* e V*, and adjoint fan A*(v*) = {x* e X*\x* = T*v* for
some T e df(x)}. For any h(-) e C[0,1] we will show that A{h{-)) is a subset
of /'(3c())(A()), where the upper derivative /'Qc(-)) of / at x(-) is the fan
with support function

[20, page 36; 21, page 108]. The relation A(h{-)) c /'(3c())(/i()) will verify
(1) by application of [22, Example 2.5.3] where it is shown that (1) holds for
the upper derivative /'(*(•)).

The adjoint fan /'*(*(•)): V* -* X* of f'(x{-)) is the set-valued mapping
defined by

f*(x(-Mv*) = {x* € X*\f(x(-);v*,x(-)) > x'(x(-)) Vx(-) e X},
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that is, / '* (*(•))(«*) is the generalized gradient of the function fv-:X —*
R given by fv.(x) = V(f(x)). Now for any v* e V, x* e A*(v*) and
h(-) e X, we have *•(*(•)) < /°*(3c(-);t;*)(A(-)) < f°{x{)W*M-)); hence
x* € f(x(-))(V), which implies A*(v*) C /*(*(•))(«*), and thus A(h()) c
/'(*(•))(/*(•))> as desired.

EXAMPLE 3. Let X = Li[0,1] and V = L2[0,1]; for x(-) e Li[0,1] consider
the mapping

/(*(•))(')= f y/F+t\x(s)\ds.
Jo

Since / X y<FT7|x(5)|^]2rfr < 2/Jl/o1
 | J C ( 5 ) | ^ ] 2 ^ < oo and f(y(-))(t) -

/ (*())( ' ) < /o' v^+7(|y(5) - x(5)|) rf5 < y/2\\y(.) - x{.)\\, f is an order Lip-
schitz mapping from L^O, 1] to Z-2[0,1]. The set of functions in I-2[0,1]
that are nonnegative almost everywhere is a normal cone [31, page 65]. To
determine the generalized gradient of / at 6 e X note that, for h(-) e X,
f°{d;h{-)){t) < /„' y/sTl\h(s)\ds and hence df{6) is a subset of the set of

T e L(X, V) such that T(h(-))(t) < /0' y/s+l\h(s)\ds for all *(•) e X and
f € [0,1]. To obtain an integral representation of df{6), we note that since
V = L2[0,1], every T e L(X, V) is weakly compact [9, page 483, Corollary
3]. Then by [9, page 507, Theorem 10] if T e L(X, V) there is an essentially
unique bounded measurable function <f>:[0,1] —> L2[0,1], called the kernel,
such that

T(h(-))(t)= f </>(s)(t)h(s)ds.
Jo

Hence df(6) is a subset of the set of T e L(X, V) that have a corresponding
essentially unique kernel <j>: [0,1] —* L2[0,1] such that

/ t(s)(t)h(s)ds< I VsTl\h(s)\ds
Jo Jo

for all h{) € L,[0,1] and t e [0,1].

3.2 EXAMPLES AND PROOFS FOR SECTION 2.2. In this section we prove
Proposition 7 and Theorems 2 and 3. We conclude with sample applications
of the Kuhn-Tucker conditions of Theorem 2 for particular choices of A and
B in the constraint set S = {x e A\g(x) e B}.

PROOF OF PROPOSITION 7. The condition 0 e df(x) + [P(S;x)]° implies
0 = T + y, where T e df{x) and y e [P(S;x)]°. therefore, for all x e S,
0 = T(x - 3c) + y(x - 3c). Since 5 is pseudoconvex at 3c, x — ~x e P(S;5c) for
all x € 5, whish implies y(x -x)<0. Thus T(x - x) > 0 and, for all x e 5,
f°(x;x -x)> T(x - 5c) > 0, which by the pseudoconvexity of / implies
fix) > f{x).
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PROOF OF THEOREM 2. Since 3c is a local minimum of / on S, we have
by Proposition 7 that 0 G d /(3c) + M° for any convex cone M contained
in K(S;x). Since M° = (clM)° (property C2, [10]) and J° + G° is closed,
then M° = J° + G° (property C3, [10]) and 0 G df{x) + J° + G°. Let
y G <•(//*); then ft(T(y)) < 0 for any fi e [P{B; g(x))]° and T e dg{x). Now
suppose that T(y) & P(B;g(x)); then since P(B;g(x)) is a closed convex
cone, by the strong separation theorem [9, page 417] there exists v* G V*
such that v*(T(y)) > 0 > u*(w) for any w 6 P(.B; £(3c)), which implies that
v* e [P(B; g(x))]°. Then v*(T{y)) < 0 and this contradicts V{T(y)) > 0.
Therefore, T(y) e P(B;g(x)), that is, for each y G °(H*) we have shown
y € J. Hence "(#*) C / and since if* is a closed convex cone, H* =
{°{H*))° D J", which shows that there exists /i G [P{B;g(x))]° such that

PROOF OF THEOREM 3. There exists £ e df(x), T G dg(x) and A:* G GC

such that 0= £ +fioT + x*, hence 0 = £ (x - x) + fi(T(x - 3c)) + x*{x - 3c).
Since S is strictly pseudoconvex we have T{x - 3c) G K(B; g{x)) and thus
H{T{x - 3c)) < 0; also, x*{x - x) < 0 for al x G 5, hence f (x -3c) > 0. Since
/ is pseudoconvex on S, it follows that /°(3c;x - 3c) > £ (x - 3c) > 0, which
implies f(x) > /(3c) for any xeS.

EXAMPLE 4. Let X and V be the Euclidean space E" and Em, respectively.
If B = E™ = {y G ^""^ < 0}, the problem becomes
min{f(x)\x G A, g{x) < 0}. Let / and J be such that £,(3c) = 0 for all
i G / and gypc) < 0 for all j G J, where 3c G S = {x G ^ |^(x) < 0}.
Then [P(B-gpc))]0 = [/»(#?;*(3f))]° = {A G £m|A > 0, A (̂3c) = 0} = {A G
Em\ki > 0, / G / , kj = 0, 7 G / } . If 3c minimizes / over S, the neces-
sary conditions of Theorem 2 imply that there exist scalars A, > 0 such that
kigi(x) = 0, i = 1 , . . . , m, and 0 G d/(3c) + £ £ , A,dg,(3c) + G°. If A = £ "
and G° = [P{E";x)]° = {0}, we have 0 G df(x) + £ £ , A,9ft(3c); moreover,
if / and g are continuously differentiable at 3c, the latter condition reduces
to 0 = V/(3c) + YZi *t Vgi(x). Note that both K = {x G E"\£jX < 0 for each
£i G dgi(x),i G / } and H* = {hj E"\h = E , G / A ,£ , A, > 0,f, G aft(3c)}
are closed convex cones. If K(S,x) is convex (which occurs if, for example,
S is convex) then to obtain the strongest result G must be a closed convex
cone such that J C\G = P(S;x) and J° + G° is closed. In the differentiable
case (where the convexity of ^T(5;3c) is not required) Guignard [10] shows
that this assumption on G is the weakest constraint qualification for finite-
dimensional programming problems.

EXAMPLE 5. Consider the problem min{f{x)\x G A, gt{x) = 0, / G / , gj(x)
< 0,j G 7} where / = { l , . . . , m - r} and J - {m - r + \,...,m). Thus
B = {0} x Er_ where {0} c Em~''. The optimality conditions of Theorem 2,
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derived as in the above example, state that there exist scalars A,, / e / , A, > 0,
; G / , such that 0 e df(x) + £ f c e / u y Xkdgk(x) + G°.

EXAMPLE 6. Theorem 2 provides a multiplier rule for an infinite dimen-
sional equality constraint. If X is a Banach space, V is a locally convex
ordered topological vector space that is an ocvl with a normal positive cone,
and B = {0}, then P(B; g(x)) = {0} and Theorem 2 says that there exists
H G V* such that 0 G df(x) + fidg(x) + G°. Multiplier rules for infinite
dimensional equality constraints have appeared only recently; Ioffe [19], [22]
for example, provides such a rule for V a (not necessarily ordered) Banach
space.

EXAMPLE 7. If X and V are as in Example 6, then corresponding to the
problem

(PI) minimize f(x) subject to x G A, g(x) e B,

where B is a closed convex cone, is the saddle-value problem

find x e A, -fi G B° satisfying <j>(x,p) < <t>{x,fi) < <f>(x,Jl)
K ' for all x e A, n G B°

where (f>(x,n) = f(x) + fi(g(x)). Without going too far into detail, (see
[32] for proofs) we will state relationships between solutions to PI and P2.
For fixed / i e 5°, we denote by dx(f>(x, fi) the generalized gradient at JC of the
function x —> <f>{x, /x) (x —> <f>{x, fi) is order Lipschitz at x since / is Lipschitz
at x, g is order Lipschitz at jc, and ft is an order bounded linear functional).
If (x,/i) solves P2, then (i) 0 e dx<t>{x,Ji) + M°, where M is any convex cone
contained in K(A; x), (ii) g(x) e B, and (iii) Ji(g(x)) = 0. As a consequence,
if (3c, ft) solves P2, then 3c solves PI. Conversely, if A is pseudoconvex at
3c e A, <t>{x,~p) is pseudoconvex on A, 0 G dx(f>(x~,Ji) + [K(A;x)]°, and (x,Ji)
satisfy conditions (ii) and (iii) above, then (3c,/I) solves P2. In addition, if
3c solves PI, A is pseudoconvex at 3c and the hypotheses of Theorem 2 are
satisfied with G = K(A;x), then (3c,~p) solves P2 if <f>(x,Jl) is pseudoconvex
on A, ~ji satisfies 0 < fi(y) < y for all y G V+, f and Ji o g are regular at 3c in
the sense of Clarke [7, page 39] and £(g(3c)) = 0.

4. Summary

For a vector-valued function f:X —* V that is order Lipschitz at 3c we
have defined and obtained properties for the generalized directional deriva-
tive f°(x,y) and the generalized gradient df(x). In particular, we have dis-
cussed conditions under which the sublinear mapping /°(3c; •) is continuous
and have shown that when this is the case, /(3c) is nonempty, convex, closed
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and equicontinuous (as a subset of L(X, V) with the topology of pointwise
convergence) and f°{x\y) = max{T(y)\T e d/(*)}. If the order intervals
in V are compact, then df(x) is also compact. We also have obtained nece-
sary and sufficient optimality conditions for a nondifferentiable mathematical
programming problem with a vector-valued operator constraint and/or an ar-
bitrary set constraint. The proof techniques point to future research in the
area of convex-valued multifunctions as in Ioffe [19], for example, which in
turn could lead to more general optimality conditions.
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