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Abstract

This paper presents the requirements and needs for establishing a benchmarking protocol that considers representation
characteristics, supported cognitive criteria, and enabled reasoning activities for the systematic comparison of function
modeling representations. Problem types are defined as reverse engineering, familiar products, novel products, and sin-
gle-component systems. As different modeling approaches share elements, a comparison of modeling approaches on
multiple levels was also undertaken. It is recommended that researchers and developers of function modeling representa-
tions collaborate to define a canonically acceptable set of benchmark tests and evaluations so that clear benefits and
weaknesses for the disparate collection of approaches can be compared. This paper is written as a call to action for the re-
search community to begin establishing a benchmarking standard protocol for function modeling comparison purposes.
This protocol should be refined with input from developers of the competing approaches in an academically open environ-
ment. At the same time, the benchmarking criteria identified should also serve as a guide for validating a modeling approach
or analyzing its failure.
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1. INTRODUCTION

Reasoning about function of products is critical in product de-
velopment, which has led to many approaches to functional
modeling being advocated to support systematic products de-
velopment. The selection of the approach deemed most ap-
propriate for a particular reasoning need remains problematic,
however, given the lack of clear guidance for informing this
decision (Otto & Wood, 2001; Ulrich & Eppinger, 2008;
Ullman, 2010; Pahl et al., 2013). Therefore, this paper pro-
vides a justification and a proposed research direction for es-
tablishing a common benchmarking scheme for function
representations that are developed and deployed throughout
academia and practice with the ultimate goal of providing in-
dustry with practically usable functional modeling tools and
concepts and a clear rationale for selecting a particular one.
Despite decades of research into functional descriptions, re-
search suggests industry has yet to incorporate functional
modeling in practice in a systematic way, while still proclaim-
ing a need to express product information beyond form (Eck-

ert, 2013; Tomiyama et al., 2013; Arlitt et al., 2016). It should
be noted that there are other representations that are similar,
but are not directly associated with function modeling, that
are used in industry such as p-diagrams (Telenko & Seeper-
sad, 2010; Campean et al., 2013), block diagramming (Stur-
ges et al., 1996; Braha & Maimon, 1998), or IDEF0 (Nagel
et al., 2009; Buede & Miller, 2016). Another possible reason
for this resistance is the lack of a canonical definition of func-
tion with each approach grounded in different conceptualiza-
tions, or the possibility of multiple distinct concepts inherent
within a shared terminology.

Researchers and practitioners have proposed many differ-
ent views of function in engineering design (Deng, 2002;
Crilly, 2010; Srinivasan et al., 2012; Eckert, 2013; Goel,
2013; Vermaas, 2013), with three recent approaches included
in this Special Issue on function being the dimensional analy-
sis conceptual modeling framework (Hossein et al., 2017),
critical chain models (Agyemang et al., 2017), and system
state flow diagrams (Yildirim et al., 2017). These concepts
in turn have been used to inform the creation of many ap-
proaches for modeling information about a product’s func-
tionality. For example, several design textbooks emphasize
the use of function-flow networks to capture the sequence
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and dependencies for the desired functionality of a product
(Otto & Wood, 2001; Ulrich & Eppinger, 2008; Ullman,
2010; Pahl et al., 2013).

Rather than develop a single, unified definition of function,
we assert that each approach has its own strengths and weak-
nesses. Although each approach is useful and particularly
well suited for different reasoning applications and domains,
their transference across different domains remains a difficult
proposition. Therefore, we propose a different approach to
function research through the creation of a set of comparative
benchmarks that can be explored with the different modeling
approaches. The community may in turn use these proposed
benchmarks to discern which approaches are more useful for
different needs, and perhaps to discover which elements of
the representations and vocabularies are most conducive for
different elements of functional thinking.

The information captured within function models can be
used to facilitate many different engineering activities across
the entire product lifecycle, such as synthesis, analysis, explora-
tion, visualization, explanation, and fault detection (Gero &
Kannengiesser, 2002; Goel & Bhatta, 2004; Kurtoglu &
Tumer, 2008). While modeling approaches might be defined
clearly, they do not always come with clear guidance on how
to represent specific models. Unfortunately, these modeling ap-
proaches and representations are perceived as easy neither to
use nor to learn, with potential users remaining poorly informed
with respect to what these representations can provide. There-
fore, both of these assumptions represent an educational
challenge for the community with the notion of function even
considered as unclear (Eckert et al., 2011). Thus, these assump-
tions must be addressed with each representation and modeling
approach proposed, but with common frames of reference, per-
haps supported through a standard benchmarking protocol that
would define common problems and common issues against
which methods can be challenged.

2. THE NEED FOR BENCHMARKING

We next turn to other canonical benchmark systems that have
proven useful in the cross-comparison of algorithms and
methods. Despite the subject of repeated analysis in the re-
search community, benchmarking has rarely been applied
to the methods and tools developed in the engineering design
community. One of the few examples of an effort to directly
compare different function representations focused on addi-
tive manufacturing processes (Summers & Rosen, 2013).
For example, software engineering may entail the use of
benchmarking to compare algorithms (Dolan & Moré,
2002), specifically with regard to the traveling salesman
problem, which involves a series of benchmark problems
used for such comparisons (Peterson, 1990). Likewise several
accepted optimization benchmark problems have been used
to evaluate performance of new algorithms (Brest et al.,
2006). Similarly, standard benchmark tests have been used
in the automotive industry to consider different control strat-
egies (Rajamani, 2012).

Each of these different benchmark sets have been con-
structed to test new algorithms, either optimization or con-
trols. With developing a benchmark set of problems for
comparing function representations, the algorithm, or reason-
ing dimension, must be considered, as should the representa-
tion and the modeling of the functions, thus defining a critical
distinction between the traditional approaches of benchmark-
ing and the approach proposed here.

No protocol for benchmarking functional modeling cur-
rently exists, nor has there been any systematic comparison
of the expressive power of various models been, despite the
individual comparisons available in the literature of such re-
lationships. A huge variability between individuals and in
particular between different modeling approaches exists, as
indicated in the experiment on functional descriptions, where
different engineers were provided with a product and asked to
generate a functional description (Eckert et al., 2012). Conse-
quently, a systematic analysis is needed to determine how
different modeling approaches compare in representational
expressive power, reasoning inferencing capacity, and model-
ing ease of use.

3. IS FUNCTION RESEARCH SUFFICIENTLY
MATURE?

Before defining a series of benchmark test cases for use in the
cross-evaluation of competing function representations, we
must first determine if the research field is sufficiently estab-
lished to warrant such an effort. This is critical for determin-
ing both the sufficient need in a plethora of competing
approaches and a sufficient population size of researchers
willing to use these benchmarks as comparative tools. To
this end, we first consider the field’s evolution over the past
five decades (Table 1). The evolution has been characterized
by incremental shifts and the creation of function vocabular-
ies (from normative function descriptions, Pahl et al., 2013;
to controlled vocabularies, Hirtz, Stone, McAdams, et al.,
2002; to physics-defined vocabularies, Sen et al., 2013c).
It has also involved the creation of conceptually divergent
approaches for modeling interface-centered (Wang et al.,
2009), component-centered (Fenves et al., 2008), and user-
centered functionalities (Gaffney et al., 2007). Functional
modeling currently receives a renewed interest as the greater
integration of mechanical systems with electric systems
and software required trade-off across systems on a func-
tional. For example, the integrated function modeling frame-
work (Gericke & Eisenbart, 2017) in this Special Issue
bridges this gap by combining multiple views on functional
modeling.

There are many representations available, such as the struc-
ture–behavior–function (Bhatta & Goel, 1997), the function–
behavior–structure (Qian & Gero, 1996), the functional basis
(Hirtz et al., 2002), the function–behavior–state (Umeda
et al., 1996), affordance-based design (Maier, Srinivasan,
et al., 2007), the contact and channel model (Albers et al.,
2008), and the general function lists used in such design tools
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as morphological charts (Smith et al., 2012), the house of
quality (Olewnik & Lewis, 2005), and axiomatic design
(Suh, 1999). Developed by many researchers worldwide,
each of these function representations and modeling ap-
proaches is characterized with a different intent, history,
and context behind the representation (Erden et al., 2008).
It is because of the many different roles and uses within engi-
neering design that these models have evolved disparately.
Unfortunately, many of these approaches are limited by the
“inventors” problem within design research, in which re-
searchers will push the creation of a solution to a problem
and a design need without actually designing the tool or
method based on the intrinsic properties. Thus, many of the
representations, while serving different specific purposes
such as machinery and manufacturing systems with an
emphasis on flows (Pahl et al., 2013), might support other
activities addressed by competing representations. This
discrepancy suggests the need for developing a systematic
comparison system.

Most of the modeling approaches were developed in re-
sponse to a problem that would have been difficult to ap-
proach using methods with which the authors were familiar,
and that work particularly well on certain problems. For
example, although the functional models based on flow of
energy, matter, and information work extremely well for
production machinery (Pahl et al., 2013), in which many
examples are used to inform the model, they are ineffective

in elucidating the functions a single complex component
(e.g., the turbine blade of a jet engine). Further, although
most of the functional modeling approaches in the literature
use examples to illustrate their points, they neither discuss
the scope of their approach nor reflect about the applicability
to other classes of problems.

4. LEVELS OF COMPARISON

A thorough analysis of this problem must be predicated on a
short discussion of the different levels at which function mod-
eling, representation, and reasoning can be compared. Such
comparisons may range from the fundamental core idea
through to the use of models (Fig. 1). The most theoretical
level of comparisons involves studying differences of
“purpose,” “transformation,” or “intent” (Rosenman &
Gero, 1998), which have been reduced to formal frameworks
such as the function–behavior–structure (Gero & Kannen-
giesser, 2004). Such frameworks have been used to create de-
fined representations for instantiating models, which are then
coupled with reasoning activities, such as “model building”
and “model using” for drawing inferences (Cebrian-Tarrason
et al., 2008). Tools such as FunctionCAD (Nagel et al.,
2009), 2nd-CAD (Vargas-Hernandez & Shah, 2004),
function-behavior-state modeler (Umeda et al., 1996), de-
sign repository (Bohm et al., 2005), and ConMod (Sen
et al., 2013b) have been used to support such model-building

Fig. 1. Level of comparison and consideration during function benchmarking.

Table 1. Recent decades of engineering function research

Decade Example References

1960s Eastman, 1969; Pahl et al., 2013
1970s Collins, Hagan, & Bratt, 1976; Freeman & Newell, 1971; Rodenacker, 1971
1980s Andreasen & Hein, 1987; Hubka & Eder, 1988; Ullman, Dietterich, & Stauffer, 1988; Sembugamoorthy, Chandrasekaran,

Sembugamoorthy, & Chandrasekaran, 1986
1990s Bracewell & Sharpe, 1996; Goel, 1997; Kirschman & Fadel, 1998; Qian & Gero, 1996; Sasajima, Kitamura, Ikeda, & Mizoguchi, 1995;

Umeda, Ishii, Yoshioka, Shimomura, & Tomiyama, 1996; Vescovi, Iwasaki, Fikes, & Chandrasekaran, 1993
2000s Albers, Thau, & Alink, 2008; Chandrasekaran, 2005; Erden et al., 2008; Gero & Kannengiesser, 2002; Hirtz et al., 2002
2010s Linz, 2011; Schultz et al., 2010; Sen, Summers, & Mocko, 2011; Srinivasan et al., 2012; Yang, Patil, & Dutta, 2010
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activities. The models created from these tools have then been
used for different inferences, such as failure modes (Stone
et al., 2005), predicting assembly time (Mohinder et al.,
2017), and predicting assembly time (Mathieson et al.,
2011; Gill & Summers, 2016). Thus, we must consider the
primary factors of representation and reasoning, and their in-
teraction with the modeler and user.

Different functional modeling approaches have different
core ideas at the core of the approach. For example, some ana-
lyze function is terms of the flow (Pahl et al., 2013), whereas
other approaches involve elucidating the relationship of func-
tion, structure, and behavior (Gero & Kannengiesser, 2004).
Underpinning the core idea of any of these approaches are
various notions of functions (Vermaas, 2013).

The different modeling approaches usually are supplied
with modeling formalisms, which are the parameters in which
a functional model is described. For example, both verb–noun
pairs (Hirtz, Stone, & McAdams, 2002; Nagel, Stone, et al.,
2008; Nagel et al., 2009) and either sentences or single words
have been used to describe a given function (Deng, 2002).
Conversely, contact and channel have been used to prescribe
the elements contained within the description of a function.
One such formalism involves the description of at least two
working surface pairs where the function is enacted (Albers
et al., 2008).

The expressive power of these functional models is greatly
affected by such formalisms that are used in their construc-
tion, a variation of great importance when building functional
models of complex products, where the effort increases sig-
nificantly with the complexity of a model. Some modeling
approaches are characterized by a hierarchical decomposition
of functions while others are not (Erden et al., 2008). The
models also vary in the degree of abstraction required; for
example, contact and channel and function modeling requires
a concrete embodiment of the modeling link functions,
whereas functional descriptions are abstract in other models.
This variation in turn affects the hierarchical decomposition
as the lower level description might depend on the chosen
embodiment.

The other dimension of comparison is the reasoning with
functions both in building models and in using models
once they have been generated, which is of importance
when the models are used by someone other than their author.
In such a case, the familiarity of the modeling approach and
the intuitiveness of the representation then becomes a major
issue when inferring information. Several studies have been
undertaken to study the authorship and consistency and inter-
pretability of models (Kurfman et al., 2003; Caldwell, Rama-
chandran, et al., 2012; Caldwell, Thomas, et al., 2012), as
well as elucidating the correctness of model construction
(Nagel et al., 2015). Alternatively, some approaches have
been proposed that automatically reason on function models
from database collections (Lucero et al., 2014; Patel, An-
drews, et al., 2016; Sridhar et al., 2016). Finally, some ap-
proaches entail the support of first principle based physics
reasoning (Goel et al., 2009; Sen et al., 2011b, 2013a).

Thus, it is possible that reasoning might be supported through
human use and interpretation or through automated reasoning
to infer information.

Some functional modeling approaches, such as functional
basis (Hirtz et al., 2002), are supported by dedicated model-
ing tools (Vargas-Hernandez & Shah, 2004; Bryant et al.,
2006; Nagel et al., 2009), which allow the user to build mod-
els more comfortably and therefore also support building
larger models. The usability of the tools affects the potential
success of the modeling approach independent of the other
elements.

5. COMPARISON ACROSS THE CRITERIA

The framework in Figure 1 proposes different criteria on
which modeling approaches can be compared. Here we detail
our criteria for comparing these criteria by proposing charac-
teristics along which the comparison can be made.

5.1. Representation characteristics

When comparing function modeling approaches, the typical
approach initially involves comparing the representations at
the formalism level, including vocabulary and grammar. A
representation is the formalism through which a model is con-
structed, which means that a model is instantiated through a
representation. Multiple models of the same “real-world” tar-
get may be created through the same representation with each
distinct model clearly mapped to a single real-world target.
Ambiguity is introduced when one model serves as a surro-
gate for multiple targets (Shah & Mantyla, 1995), which
are not clearly specified.

Similar comparison criteria, derived from research in arti-
ficial intelligence, include representational adequacy, inferen-
tial adequacy, inferential efficiency, and acquisitional
efficiency (Winston, 2005). Another approach to compare
representations examines the vocabulary, structure, expres-
sion, purpose, and abstraction (Summers & Shah, 2004). Ex-
panding upon that research, we propose that the representa-
tion comparison should include, but not be limited to the
following:

† scope: the domain for which the function modeling ap-
proach is intended (Nagel, Vucovich, et al., 2008);

† flexibility: the ability to modify and adapt the represen-
tation to address new problems (Regli et al., 2000);

† indexing: support access to the right (or useful) knowl-
edge when needed (Goel & Bhatta, 2004);

† consistency: enforce physics and other consistencies
(Sen et al., 2011b);

† translationabilty: tied to other engineering models
(Nebel, 2000);

† behavior: ability of the representation to simulation
behavior (Qian & Gero, 1996); and

† scalability: support both simple and complex problem
types (Chiang et al., 2001).
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5.2. Modeling characteristics

In addition to these representational issues, the interaction of
the designer during the model construction is of concern
when comparing the functional modeling approaches. For in-
stance, is the modeling computationally supported, restricted
to human effort, or is a mixed initiative approach supported
(Sen et al., 2013a). In addition, the support of various con-
struction approaches within the model, such as forward
chaining (moving from input to output), backward chaining
(moving from output to input), nucleation, environment to
system (outside to inside), or system to environment (inside
to outside) are also important considerations (Sen & Sum-
mers, 2014). A final characteristic relates to the support of de-
composition and recomposition across multiple hierarchical
levels and abstractions within the respective modeling ap-
proach (Pahl et al., 2013).

5.3. Cognitive criteria characteristics

The concept of cognitive criteria has been developed in hu-
man–computer interaction to help software designers to think
through the usability of the artifacts they were creating, such
as programming languages or user interfaces (Green, 1991).
Although many developers and software engineers have ex-
perience in developing well-design information artifacts,
they have no way of articulating why these approaches are
appropriate for meeting user needs. Functional modeling
approaches are considered information artifacts, similar to
how programming languages and cognitive criteria offer a vo-
cabulary for discussing usability issues, which is informed by
cognitive science (Blackwell et al., 2001). The framework is
deliberately broad to avoid being overwhelmed in the details
of an implementation and thereby losing the sought-after con-
ceptual improvements. However, this task-specific approach,
which addresses processes and activities rather than merely

the final product, means that it can be used to evaluate and
not simply compare functional modeling approaches. The
cognitive criteria are orthogonal in supporting reasoning
trade-offs and for analyzing the space of possible solutions
in a coherent manner, and where possible observing the effect
of combinations of criteria. Table 2 presents a selection of the
cognitive criteria with their questions for programming and a
possible interpretation of these questions for functional mod-
eling, which would require refinement prior to a benchmark-
ing exercise (Green & Petre, 1996).

The computing cognitive criteria have a dimension of the
progressive evaluation, which is the method for obtaining
feedback on the modeling through the process and that ap-
pears far more meaningful for a programming language,
which can be deployed in many different ways. Criteria
such as diffuseness, which address the number of symbols
or graphic entities required to express a meaning, and hard
mental operations, which questions the need for annotations,
also specifically address the notion. Both greatly depend
upon a particular implementation version, as few standards
concerning functional modeling have yet to emerge.

For each of the dimensions a scale of subcategories can be
developed such as the abstraction gradient, which is decom-
posed into abstraction-hating, abstraction-tolerant, and ab-
straction-hungry (Green & Petre, 1996). For example, while
abstraction-hungry programming languages may be consid-
ered difficult, abstraction can reduce error proneness and
increase viscosity.

5.4. Reasoning characteristics

Reasoning is the comparison dimension that motivates the
need for a common, standard benchmark for evaluating
function modeling approaches. It is for different classes of
reasoning that each function model is constructed. These rea-

Table 2. Key cognitive dimensions (criteria) based on Green and Petre (1996)

Dimensions Question for Programming Languages Question of Functional Modeling

Abstraction gradient What are the minimum and maximum levels of
abstraction? Can fragments be encapsulated?

What are the minimum and maximum levels of
abstraction? Can a partial model be created?

Closeness of mapping What “programming games” must be learned? What modeling conventions must be learned? How
intuitive is the resulting model?

Error proneness Does the design of the notation induce “careless
mistakes”?

Does the design of the notation induce “careless
mistakes”?

Hidden dependencies Is every dependency overtly indicated in both directions?
Is the indication perceptual or only symbolic?

Is every dependency overtly indicated in both directions?
Is the indication perceptual or only symbolic?

Premature commitment Must programmers make decisions before they have the
information they need?

Does the model require decisions prior to availability of
all necessary information?

Secondary notation Can programmers use layout, color, or other cues to
convey extra meaning, above and beyond the
“official” semantics of the language?

Can the models be annotated or linked to other product
representations?

Viscosity How much effort is required to perform a single change? How much effort is required to perform a single change?
What is the difficulty of adapting the model from a
model of a similar product?
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soning activities entail failure detection (Kurtoglu & Tumer,
2008), reverse engineering and product understanding (Hirtz
et al., 2002), design decision justification (Gero, 1996), de-
sign verification and validation (Wiltgen & Goel, 2016), or
concept definition and exploration (Pahl et al., 2013). Some
types of reasoning that can be evaluated with respect to sup-
port include the following:

† Interpretability: How consistent and precise is the inter-
pretation of the function models across different indi-
viduals, domain, and expertise (Caldwell, Thomas,
et al., 2012)?

† Physics maintenance: Can questions about conservation
of energy or material, irreversibility, or other physics
queries be answered (Sen et al., 2011a)?

† Analogical mapping: Does the representation support
analogical mapping and alignment (Qian & Gero,
1996)?

† Pattern learning: Does the representation support the
learning of abstractions required for analogical transfer
(Bhatta & Goel, 1997)?

† State transformations: Does the representation support
answering questions about different states (Deng,
2002)?

† Change propagation: Does the representation support
discovery about the effects of perturbations in the sys-
tem (Kurtoglu & Tumer, 2008)?

These reasoning criteria might relate to the cognitive cri-
teria. For example, interpretability, analogical mapping, and
change propagation might relate to closeness of mapping
and viscosity. In contrast, physics maintenance and state trans-
formation is focused more on the content of the model. Other
challenges in reasoning might relate to the ability to contex-
tualize the system within a larger environment or the distribu-
tion of system-level functions to several distributed elements.

6. BENCHMARK PROBLEM TYPES

In order to explore the different characteristics of representa-
tion that enable cognitive criteria to support reasoning activ-
ities, a set of benchmark problems are needed. Expanding
upon the problem type classifications in the literature, we pro-
pose four types for study, an example for each type found in
the literature, and a list of alternative examples for each. We
do not include large-scale, complex systems such as subma-
rines, aircraft, or space systems as these are not readily avail-
able to all researchers for benchmarking activities. A limita-
tion of many benchmarking efforts is that the problems
selected should be relatively simple so that researchers are
not dissuaded from applying their approaches against
similar problems. Complex systems might be of interest in
benchmarking, but the effort involved in constructing these
models might be too great when compared to the value of
understanding the differences. This challenge is noted here
but is not resolved.

6.1. Reverse engineered products

Many function modeling approaches have been demonstrated
on existing products after dissection and reverse engineering.
A repository of commercial products that have been reversed
engineered to understand them has been developed with the
function representation serving as the foundation for the in-
formation model (Bohm et al., 2005). An advantage of in-
cluding this type of problem in the benchmarking formalism
is that the products exist, and their performance can be mea-
sured and evaluated. A reverse engineered product provides a
common platform for comparison. An example product that
has been used extensively (Maier, Ezhilan, et al., 2007;
Huang & Jin, 2009; Hamraz et al., 2012) to explore function
modeling is the hairdryer (Figs. 2 and 3). Other possible pro-
ducts that can be considered are pneumatic impact drivers
(a greater number of mechanical components), battery power
tools (readily available in multiple variations), vacuum cleaners
(for comparison across multiple customer cultural differences),
bike lights (simple and inexpensive systems), or the glue gun
(simple product with material flow) proposed for this Special
Issue (Mocko et al., 2007; Summers et al., 2017). The selection
of a common product is most important so that the community
can standardize their demonstration cases.

6.2. Familiar product

Engineers use reverse engineering and the dissection of pro-
ducts to map existing systems and components to specific func-
tionality, the first step of which involves hypothesizing the in-
ternal functioning of a product (Otto & Wood, 1998). Further,
while reverse engineering can test the ability of a representation
to model the detailed functionality of an existing system, mod-
eling a familiar without the product in hand can expose the abil-
ity to be fluidly and flexibly model the system, as significant
backtracking and hierarchical jumping is likely. An example
of the results from an experimental exercise to explore how en-
gineers model known products is found in Figure 4 (Eckert
et al., 2011). Different engineers are likely to model the system
in different ways even given the same underlying representa-
tion, so the expressive power of modeling approaches can be as-
sessed. Thus, this benchmark product can be used to explore de-
fining characteristics of the representation, such as consistency

Fig. 2. Example knowledge types in the hairdryer (Hamraz et al., 2012).
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and repeatability, without the cost of buying products to reverse
engineer. Other products considered for reverse engineering are
bicycles, gear boxes, or printing machines.

6.3. Novel products

Generative forward system design involves the development
of new multicomponent systems for characteristics not pre-
viously addressed: novelty (not yet attempted), system (multi-
ple components), and intentional (design with a purpose). Ex-
amples of “problems” that used to benchmark and compare
different function modeling approaches include automated
omelet makers, hand-cranked pretzel makers, shoe-string ty-
ing mechanisms, clothes folding machines in hotel laundries,
and a hand-cranked automated burrito maker. Benchmark ex-
amples can be drawn from literature to support the objectivity
of the benchmark. For example, the burrito folding system
problem has been used previously in the comparing of
function lists and function structures in morphological charts

(Richardson et al., 2011). Figure 5 illustrates the function lists
and structures for the burrito folder that were used in these idea-
tion experiments. Such a benchmark is useful in exploring the
degree to which a function representation can be used in under-
standing novel problems and generating new solutions.

6.4. Single-component products

Single-component multifunctional products, such as passive
morphing airfoils (Schultz et al., 2010) and speed screws
are also useful as benchmarks (Albers et al., 2008). For exam-
ple, the design and analysis of a speed screw demonstrated the
effective use of the contact and channel model in the design
of a single component. Given that function models cannot
capture the functionality and behaviors associated with single
components, however, this scaling ability in both small and
large systems must be explored. While the speed screw
benchmark example (Fig. 6) shows the downward scalability
of reverse engineering, the passive, morphing airfoil design
(Fig. 7) illustrates the downward scalability of forward engi-
neered products. Larger scale systems, such as aircraft, are not
considered within the benchmarking protocol due to the
challenge of general access for the researchers.

6.5. Problem characteristics

While these problem types are focused on the “thing” to be
modeled within the function representations, other character-
istics may also be considered when comparing the problems.
This list is not exhaustive and is intended to recommend to the
community other criteria to be considered when developing
the benchmark problems for experimental studies. Defining

Fig. 3. Function structure of a hairdryer product stored in the Design Repository (http://repository.designengineeringlab.org/).

Fig. 4. Example function model for a hydraulic pump (Eckert et al., 2011).

Fig. 5. Function list and function structure for burrito folder (Richardson et al., 2011).
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these characteristics will enable the development of similar
problems to capture and address comparable criteria.

For instance, measures of the problem size, problem
connectivity, and problem difficulty are used to compared
problem complexity (Summers & Shah, 2010). Similarly,
an information metric was used to compare size complexity
(i.e., different problems and prototypes) to explore the impact
of representation and level of fidelity in assessing require-
ment satisfaction (Hannah et al., 2011). Finally, problem
size as measured with a requirement count and number of
words was used to compare design problems in a function
modeling experiment (Worinkeng et al., 2015; Patel, Kramer,
et al., 2016).

Other considerations used in defining a design problem in-
cluded the following:

† the domain appropriateness for the participants (Oster-
gaard et al., 2005; Wetmore et al., 2010; Sen & Sum-
mers, 2014);

† realistic and not contrived concepts (Linsey et al., 2010;
Thiagarajan et al., 2017);

† constraints and conditions of the problem (Stacey &
Eckert, 2010; Eckert & Stacey, 2014);

† a compelling and intrinsic motivation for the partici-
pants (Linsey et al., 2010; Joshi & Summers, 2014);
and

Fig. 6. States of working surface pairs for the contact and channel model for a speed screw (Albers et al., 2008).

Fig. 7. Function structure for a morphing airfoil (Schultz et al., 2010).
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† representation characteristics of both expression and ab-
straction (McKoy et al., 2001; Summers & Shah, 2004;
Hannah et al., 2011).

The authors wish to emphasize that the problems developed
should be common across multiple criteria for the cross-com-
parison between benchmarking results, particularly when using
sampling logic for the experimental analysis.

7. RESEARCH RECOMMENDATIONS

While this paper is written as a call to action for the establish-
ment of standards for function modeling benchmarking,
such standards should be developed and evolved with input
from both users and developers of the various modeling
approaches. Such collaborations should also occur in an
academically open environment. Researchers will find
clear value in this benchmarking process as it forces the
disparate communities to begin to communicate with each
other, distributes tutorials on the creation and execution of a
variety of models and methods to enhance the education of
future engineers, and can be paired with a reasoning/repre-
sentation selection database to systematically develop in-
formed tools and methods. The benchmarking exercises can
also help researchers justify a systematic evolution of their
approaches.

We do not see benchmarking as an alternative to validation
and verification of functional modeling approaches, but as an
addition, which can help in the process of evaluating the ap-
proach. While validation and verification can attest to the
completeness and correctness of a functional modeling ap-
proach, benchmarking helps us compare multiple approaches
in terms of information captured, reasoning supported, com-
putational efficiency, and cognitive plausibility.

An internationally diverse benchmarking development
group representing the various approaches is a recommended
strategy for creating this protocol. In addition to the intellec-
tual motivation for benchmarking, this group can pressure
both public and private sector agencies to allocate research
funds to support the development of benchmarking schemes.

These benchmarking criteria described above are not in-
tended to serve as the final set, but rather to serve as the point
of departure. Additional study is needed to refine these char-
acteristics and to strategically select case examples for com-
parison. This proposed development group can support these
endeavors directly.
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