A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC BOUNDARY-VALUE PROBLEMS

W. L. CHAN
(Received 30 September 1979)
Communicated by G. R. Morris

Abstract

A posteriori error estimates for a class of elliptic unilateral boundary value problems are obtained for functions satisfying only part of the boundary conditions. Next, we give an alternative approach to the a posteriori error estimates for self-adjoint boundary value problems developed by Aubin and Burchard. Further, we are able to construct an alternative estimate with mild additional assumptions. An example of a linear differential operator of order $2 k$ is given.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 35 J 30, 35 J 35, 35 J 40; secondary 65 N 15.

1. Introduction

In considering a mixed boundary value problem, Aubin (1972) has obtained a posteriori error estimates for functions satisfying only the natural boundary conditions and the forced boundary conditions respectively through the introduction of conjugate problems. In this note, we consider a similar problem for unilaterial boundary value problems. A posteriori error estimates are obtained for functions satisfying partially the given boundary conditions. Error bounds are also obtained in terms of another type of function, following a result obtained by Aubin (1972), page 287. Our method, however, does not need the introduction of any conjugate problems.

[^0]
2. Preliminaries and assumptions

Let Ω be a smooth bounded domain in \mathbf{R}^{n} with boundary Γ. We introduce the Sobolev space of order k, denoted by $H^{k}(\Omega)$, consisting of real-valued functions in Ω such that

$$
D^{j} u \in L^{2}(\Omega), \quad 0 \leqslant|j| \leqslant k
$$

and $\gamma_{j}=\partial^{j} / \partial n^{j}, j \geqslant 0$, will be the trace operators mapping $H^{k}(\Omega)$ onto $H^{k-j-1 / 2}(\Gamma)$. The differential operator defined by

$$
\Lambda u=\sum_{|p|,|q| \leqslant k}(-1)^{|q|} D^{q}\left(a_{p q}(x) D^{p} u\right)
$$

is the formal operator associated with the bilinear form

$$
a(u, v)=\sum_{|p|,|q| \leqslant k} \int_{\Omega} a_{p q}(x) D^{p} u D^{q} v d x
$$

There exist operators $\delta_{2 k-j-1}$ mapping $H^{k}(\Omega, \Lambda)$ into $H^{-(k-j-1 / 2)}(\Gamma), 0 \leqslant j \leqslant k$ -1 , where

$$
H^{k}(\Omega, \Lambda)=\left\{u \in H^{k}(\Omega): \Lambda u \in L^{2}(\Omega)\right\}
$$

such that Green's formula

$$
a(u, v)=(\Lambda u, v)_{L^{2}(\Omega)}+\sum_{0 \leqslant j \leqslant k-1}\left\langle\delta_{2 k-j-1} u, \gamma_{j} v\right\rangle_{H^{k-j-1 / 2}(\Gamma)}
$$

holds for all $u \in H^{k}(\Omega, \Lambda), v \in H^{k}(\Omega)$. Here (\cdot, \cdot) denotes inner product and $\langle\cdot, \cdot\rangle$ denotes duality pairing. We also make the following assumptions:

$$
\left\{\begin{array}{l}
a(u, v) \leqslant M\|u\|_{H^{k}(\Omega)}\|v\|_{H^{k}(\Omega)} \quad \text { for all } u, v \in H^{k}(\Omega) \tag{1}\\
a(u, v) \geqslant c\|u\|_{H^{k}(\Omega)}^{2} \quad \text { for all } u \in H^{k}(\Omega)
\end{array}\right.
$$

Formulation of the problem.
Look for u satisfying
(2) $\left\{\begin{array}{l}u \in H^{k}(\Omega), \\ \Lambda u=f, \\ \gamma_{j} u \geqslant 0, \quad \delta_{2 k-j-1} u \geqslant 0,\left\langle\delta_{2 k-j-1} u, \gamma_{j} u\right\rangle=0, \quad 0 \leqslant j \leqslant k-1,\end{array}\right.$
where $f \in L^{2}(\Omega)$ is given. It is easy to verify that (2) is equivalent to
(3) $\left\{\begin{array}{l}u \in H^{k}(\Omega), \\ \gamma_{j} u \geqslant 0,0 \leqslant j \leqslant k-1, \\ a(u, v-u) \geqslant(f, v-u) \text { for all } v \text { such that } \gamma_{j} v \geqslant 0,0 \leqslant j \leqslant k-1 .\end{array}\right.$

We see that (3) is a variational inequality and it is known that under the assumption (1), it has a unique solution (see Lions and Stampacchia (1967)).

3. A posteriori error estimates

Theorem 1. Let u be a solution of (2), $v \in H^{k}(\Omega)$ satisfy $\gamma_{j} v \geqslant 0,0 \leqslant j \leqslant k-1$ and $w \in H^{k}(\Omega, \Lambda)$ satisfy $\delta_{2 k-j-1} w \geqslant 0,0 \leqslant j \leqslant k-1$. Then the following a posteriori error estimates hold:

$$
\left\{\begin{align*}
& \text { (i) } \quad\|v-u\|_{H^{k}(\Omega)} \leqslant \frac{1}{2 c}\left\{M\|v-w\|_{H^{k}(\Omega)}+\|\Lambda w-f\|_{L^{2}(\Omega)}+\Delta^{1 / 2}\right\}, \tag{4}\\
& \text { (ii) }\|u-w\|_{H^{k}(\Omega)} \leqslant \frac{1}{2 c}\left\{M\|v-w\|_{H^{k}(\Omega)}+\|\Lambda w-f\|_{L^{2}(\Omega)}\right. \\
&\left.+[\Delta+4 c(\Lambda w-f, v-w)]^{1 / 2}\right\},
\end{align*}\right.
$$

where $\Delta=\left[\left(M\|v-w\|_{H^{k}(\Omega)}+\|\Lambda w-f\|_{L^{2}(\Omega)}\right)^{2}+4 c \sum_{0 \leqslant j \leqslant k-1}\left\langle\delta_{2 k-j-1} w, \gamma_{j} v\right\rangle\right]$.

Proof.

$$
\begin{aligned}
c\|v-u\|_{H^{k}(\Omega)}^{2} \leqslant & a(v-u, v-u) \leqslant a(v, v-u)-(f, v-u) \\
= & a(v-w, v-u)+a(w, v-u)-(f, v-u) \\
\leqslant & M\|v-w\|_{H^{k}(\Omega)}\|v-u\|_{H^{k}(\Omega)}+\|\Lambda w-f\|_{L^{2}(\Omega)}\|v-u\|_{L^{2}(\Omega)} \\
& +\sum_{0 \leqslant j \leqslant k-1}\left\langle\delta_{2 k-j-1} w, \gamma_{j} v\right\rangle .
\end{aligned}
$$

It follows easily that (i) holds.
Also,

$$
\begin{aligned}
c \| u- & w \|_{H^{k}(\Omega)}^{2} \leqslant a(u-w, u-w)=a(u-w, v-w)+a(u-w, u-v) \\
\leqslant & a(u-w, v-w)+(\Lambda w-f, v-u)+\sum_{0 \leqslant j \leqslant k-1}\left\langle\delta_{2 k-j-1} w, \gamma_{j} v\right\rangle \\
\leqslant & \left(M\|v-w\|_{H^{k}(\Omega)}+\|\Lambda w-f\|_{L^{2}(\Omega)}\right)\|u-w\|_{H^{k}(\Omega)} \\
& +(\Lambda w-f, v-w)+\sum_{0 \leqslant j \leqslant k-1}\left\langle\delta_{2 k-j-1} w, \gamma_{j} v\right\rangle .
\end{aligned}
$$

Hence (ii) follows.

4. Self-adjoint problems

Consider the following simple example. Let Ω be a smooth bounded subset of \mathbf{R}^{n} and Γ its boundary. We are interested in the solution of the boundary value problem:

$$
\left\{\begin{array}{lll}
\text { (i) } & -\Delta u+\lambda u=f & \text { in } \Omega \tag{5}\\
\text { (ii) } \quad u=g_{1} & \text { on } \Gamma_{1} \\
\text { (iii) } & \frac{\partial u}{\partial n}=g_{2} & \text { on } \Gamma_{2}
\end{array}\right.
$$

where $\Gamma=\Gamma_{1} \cup \Gamma_{2}, \Gamma_{1}, \Gamma_{2}$ are disjoint. Aubin and Burchard (1971) have obtained a posteriori error estimates for approximate solutions of (5) by constructing a boundary value problem conjugate to (5), associating with the splitting $-\Delta=$ -div(grad). Alternatively, problem (5) can be viewed as the optimization problem: find u such that

$$
\frac{1}{2} \int_{\Omega}\|\operatorname{grad} u\|^{2}+\lambda\|u\|^{2} d x-\int_{\Omega} f \cdot u d x-\int_{\Gamma_{2}} g_{2} \cdot u d \sigma(x)
$$

is minimized, subject to $u=g_{1}$ on Γ_{1}.
Each function u, satisfying $\partial u / \partial n=g_{2}$ on Γ_{2} will give a lower bound for this minimization problem. Making use of this bound, we can give an a posteriori estimate for (5) which turns out to be the same as that given by Aubin and Burchard. When two functions u_{1}, u_{2}, satisfying $\partial u / \partial n=g_{2}$ are given, we are able to derive an alternative estimate, making use of Schwarz's inequality.

We shall follow the notations of Aubin (1972), page 289. V, H and T are real Hilbert spaces and $\gamma \in L(V, T)$ satisfies

$$
\begin{cases}(\text { i) } & \gamma \text { maps } V \text { onto } T \tag{6}\\ \text { (ii) } & V \subset H, \text { the injection is continuous } \\ \text { (iii) } & \text { Ker } \gamma=V_{0} \text { is dense in } H\end{cases}
$$

Let E be another real Hilbert space and $P \in L(V, E), Q \in L\left(E, E^{\prime}\right)$ and $G=Q P$. The formal operator associated with the bilinear form ($P u, G v$) is $\Lambda=G^{*} P$ where $G^{*}=\left(\left.G\right|_{V_{0}}\right)^{\prime} \in L\left(E, V_{0}^{\prime}\right)$. Then, there exists $\delta \in L\left(V, T^{\prime}\right)$ such that Green's formula

$$
\begin{equation*}
(P u, G v)=(\Lambda u, v)+\langle\delta u, \gamma v\rangle \tag{7}
\end{equation*}
$$

holds for all $u \in V(\Lambda)=\{u \in V: \Lambda u \in H\}$. We are also given a continuous projector σ_{1} of T and define $\sigma_{2}=1-\sigma_{1} ; T_{j}=\sigma_{j} T ; \gamma_{j}=\sigma_{j} \gamma ; \delta_{j}=\sigma_{j}^{\prime} \delta ; j=1,2$.

Thus, (7) can be written as

$$
\begin{equation*}
(P u, G v)=(\Lambda u, v)+\left\langle\delta_{1} u, \gamma_{1} v\right\rangle+\left\langle\delta_{2} u, \gamma_{2} v\right\rangle . \tag{8}
\end{equation*}
$$

Consider the problem: find u satisfying

$$
\begin{cases}\text { (i) } & \Lambda u+\lambda u=f, \quad \lambda>0 \tag{9}\\ \text { (ii) } & \gamma_{1} u=t_{1} \\ \text { (iii) } & \delta_{2} u=t_{2}\end{cases}
$$

where $f \in H, t_{1} \in T_{1}, t_{2} \in T_{2}^{\prime}$ are given. Such a solution exists and is unique if, for instance, Q is E-elliptic and $\lambda>0$. Our problem is given any $v, \hat{v} \in V$ satisfying $\gamma_{1} v=t_{1}, \delta_{2} \hat{v}=t_{2}$, find upper bounds for

$$
(P(u-v), G(u-v))+\lambda(u-v, u-v)
$$

and

$$
(P(u-\hat{v}), G(u-\hat{v}))+\lambda^{-1}\left\|G^{*} P(u-\hat{v})\right\|^{2}
$$

without solving (9).

5. Alternative derivation of a posteriori error estimates

In this section we derive the a posteriori error estimates given by Aubin and Burchard under the additional assumption that Q is self-adjoint.

Lemma 1. Let Q be self-adjoint. Then

$$
\left(v_{1}, Q v_{1}\right)-\left(v_{2}, Q v_{2}\right)=\left(v_{1}-v_{2}, Q\left(v_{1}-v_{2}\right)\right)+2\left(v_{2}, Q\left(v_{1}-v_{2}\right)\right)
$$

Lemma 2. Let Q be self-adjoint and positive definite. If u satisfies (9), then $v=u$ will minimize

$$
J(v)=\frac{1}{2}(P v, Q P v)+\frac{1}{2} \lambda(v, v)-(f, v)-\left\langle t_{2}, \gamma_{2} v\right\rangle
$$

subject to $\gamma_{1} v=t_{1}$.

Furthermore

$$
J(v)-J(u)=\frac{1}{2}\{(P(v-u), Q P(v-u))+\lambda(v-u, v-u)\} .
$$

Proof. Let u satisfy (9) and $\gamma_{1} v=t_{1}$; then $u \in V(\Lambda)$. In view of Lemma 1 and Green's formula

$$
\begin{aligned}
J(v)-J(u) & =\frac{1}{2}\{(P(v-u), Q P(v-u))+\lambda(v-u, v-u)\} \\
& +(P u, Q P(v-u))+\lambda(u, v-u)-(f, v-u)-\left\langle t_{2}, \gamma_{2}(v-u)\right\rangle \\
& =\frac{1}{2}(P(v-u), Q P(v-u))+\frac{1}{2} \lambda(v-u, v-u) \geqslant 0 .
\end{aligned}
$$

Lemma 3. If $\gamma_{1} v=t_{1}, \delta_{2} \hat{v}=t_{2}, \hat{v} \in V(\Lambda)$, then $J(v) \geqslant J_{1}(\hat{v})$, where

$$
J_{1}(\hat{v})=\left\langle\delta_{1} \hat{v}, t_{1}\right\rangle-\frac{1}{2}(P \hat{v}, G \hat{v})-(2 \lambda)^{-1}\left\|f-G^{*} P \hat{v}\right\|^{2}
$$

Furthermore

$$
J(v)-J_{1}(\hat{v})=\frac{1}{2}\left\{(P(v-\hat{v}), G(v-\hat{v}))+\lambda^{-1}\left\|\lambda v+G^{*} P \hat{v}-f\right\|^{2}\right\}
$$

Proof.

$$
\begin{aligned}
& \frac{1}{2}\left[(P v, G v)+(P \hat{v}, G \hat{v})+\lambda(v, v)+\lambda^{-1}\left\|f-G^{*} P \hat{v}\right\|^{2}\right] \\
&= \frac{1}{2}\left\{(P(v-\hat{v}), G(v-\hat{v}))+\lambda^{-1}\left\|\lambda v+G^{*} P \hat{v}-f\right\|^{2}\right\} \\
&+(P \hat{v}, G v)+\left(f-G^{*} P \hat{v}, v\right) \\
&= \frac{1}{2}\left\{(P(v-\hat{v}), G(v-\hat{v}))+\lambda^{-1}\left\|\lambda v+G^{*} P \hat{v}-f\right\|^{2}\right\} \\
&+(f, v)+\left\langle\delta_{1} \hat{v}, t_{1}\right\rangle+\left\langle t_{2}, \gamma_{2} v\right\rangle .
\end{aligned}
$$

Hence $J(v)-J_{1}(\hat{v})=\frac{1}{2}\left\{(P(v-\hat{v}), G(v-\hat{v}))+\lambda^{-1}\left\|\lambda v+G^{*} P \hat{v}-f\right\|^{2}\right\} \geqslant 0$.
Setting $v=u$ in Lemma 3, we have

$$
\begin{equation*}
J(u)-J_{1}(v)=\frac{1}{2}(P(u-\hat{v}), G(u-\hat{v}))+\frac{1}{2} \lambda^{-1}\left\|G^{*} P(u-\hat{v})\right\|^{2} \tag{10}
\end{equation*}
$$

Theorem 2. Suppose $v, \hat{v} \in V$ satisfy $\gamma_{1} v=t_{1}, \delta_{2} \hat{v}=t_{2}, \hat{v} \in V(\Lambda)$. Then

$$
\begin{aligned}
& (P(u-v), G(u-v))+\lambda(u-v, u-v) \\
& \quad \leqslant(P(v-\hat{v}), G(v-\hat{v}))+\lambda^{-1}\left\|\lambda v+G^{*} P \hat{v}-f\right\|^{2}, \\
& \quad(P(u-\hat{v}), G(u-\hat{v}))+\lambda^{-1}\left\|G^{*} P(u-\hat{v})\right\|^{2} \\
& \quad \leqslant(P(v-\hat{v}), G(v-\hat{v}))+\lambda^{-1}\left\|\lambda v+G^{*} P \hat{v}-f\right\|^{2} .
\end{aligned}
$$

Proof. Since $J(v)-J(u) \leqslant J(v)-J_{1}(\hat{v})$ and $J(u)-J_{1}(\hat{v}) \leqslant J(v)-J_{1}(\hat{v})$, the results follow from Lemma 3 and Lemma 2.

6. An alternative estimate

In this section, we shall derive another error estimate for v under the assumption that we are given two functions satisfying $\delta_{2} \hat{v}=t_{2}$, by completing the square for $J_{1}(v)$ and then applying Schwarz's inequality. Note that if we fix $r \in V(\Lambda)$ satisfying $\delta_{2} r=t_{2}$, it follows from Lemma 3 that

$$
\begin{equation*}
J(v)-\frac{1}{2}\left\{P(v-r), G(v-r)+\lambda^{-1}\left\|\lambda v+G^{*} P r-f\right\|^{2}\right\}=\mathrm{constant} \tag{11}
\end{equation*}
$$

(independent of v).
Hence any solution to (11) will minimize $J_{2}(v)=\frac{1}{2}\{(P(v-r), G(v-r))+$ $\left.\lambda^{-1}\left\|\lambda v+G^{*} \operatorname{Pr}-f\right\|^{2}\right\}$. Now we give a lower bound for $J_{2}(v)$.

Lemma 4. Suppose \hat{v} satisfies $\delta_{2} \hat{v}=t_{2}, \hat{v} \in V(\Lambda)$. Then
$J_{2}(v) \geqslant(1 / 2 K)\left(\left\langle\delta_{1}(\hat{v}-r), t_{1}-\gamma_{1} r\right\rangle-\lambda^{-1}\left(G^{*} P(\hat{v}-r), \lambda r+G^{*} \operatorname{Pr}-f\right)\right)^{2}$, where $K=(P(\hat{v}-r), G(\hat{v}-r))+\lambda^{-1}\left\|G^{*} P(\hat{v}-r)\right\|^{2}$.

Proof. Since

$$
\begin{aligned}
& (P(\hat{v}-r), G(v-r))+\lambda^{-1}\left(-G^{*} P(\hat{v}-r), \lambda v+G^{*} \operatorname{Pr}-f\right) \\
& \quad=\left\langle\delta_{1}(\hat{v}-r), t_{1}-\gamma_{1} r\right\rangle-\lambda^{-1}\left(G^{*} P(\hat{v}-r), \lambda r+G^{*} \operatorname{Pr}-f\right)
\end{aligned}
$$

the inequality then follows from Schwarz's inequality.

Theorem 3. Suppose $v, \hat{v}, r \in V$ satisfy $\gamma_{1} v=t_{1}, \delta_{1} \hat{v}=\delta_{1} r=t_{2}, \hat{v}, r \in V(\Lambda)$. Then

$$
\begin{aligned}
& \quad(P(u-v), G(u-v))+\lambda(u-v, u-v) \\
& \quad \leqslant \\
& \quad(P(v-r), G(v-r))+\lambda^{-1}\left\|\lambda v+G^{*} \operatorname{Pr}-f\right\|^{2} \\
& \quad-\frac{1}{K}\left(\left\langle\delta_{1}(\hat{v}-r), t_{1}-\gamma_{1} r\right\rangle-\lambda^{-1}\left(G^{*} P(\hat{v}-r), \lambda r+G^{*} \operatorname{Pr}-f\right)\right)^{2} .
\end{aligned}
$$

Proof. Denote the bound in Lemma 4 by $b(\hat{v})$. Then $J(v)-J(u)=J_{2}(v)-$ $J_{2}(u) \leqslant J_{2}(v)-b(\hat{v})$.

The result then follows from Lemma 2.

One can easily show that the estimate given in Theorem 3 is related to that given in Theorem 2. Indeed, the difference of the two estimates is $2\left\{\left(J(v)-J_{1}(\hat{v})\right)-\left(J_{2}(v)-b(\hat{v})\right)\right\}=2\left\{\left(J_{1}(r)-J_{1}(\hat{v})\right)+b(\hat{v})\right\}$. But

$$
\begin{aligned}
J_{1}(r)-J_{1}(\hat{v})= & \frac{1}{2}\left\{(P(\hat{v}-r), G(\hat{v}-r))+\lambda^{-1}\left\|G^{*} P(\hat{v}-r)\right\|^{2}\right\} \\
& +\lambda^{-1}\left(G^{*} P(\hat{v}-r), G^{*} \operatorname{Pr}+\lambda r-f\right)-\left\langle\delta_{1}(\hat{v}-r), t_{1}-\gamma_{1} r\right\rangle .
\end{aligned}
$$

Hence, the difference of the two estimates is

$$
\begin{aligned}
& {\left[(P(\hat{v}-r), G(\hat{v}-r))+\lambda^{-1}\left\|G^{*} P(\hat{v}-r)\right\|^{2}\right]^{-1}} \\
& \quad \times\left\{(P(\tilde{v}-r), G(\hat{v}-r))+\lambda^{-1}\left\|G^{*} P(\hat{v}-r)\right\|^{2}\right. \\
& \left.\quad+\lambda^{-1}\left(G^{*} P(\hat{v}-r), G^{*} P r+\lambda r-f\right)-\left\langle\delta_{1}(v-r), t_{1}-\gamma_{1} r\right\rangle\right\}^{2} \\
& =\left[P(\hat{v}-r), G(\hat{v}-r)+\lambda^{-1}\left\|G^{*} P(\hat{v}-r)\right\|^{2}\right]^{-1} \\
& \quad \times\left\{(P(\hat{v}-r), G(\hat{v}-r))+\lambda^{-1}\left(G^{*} P(\hat{v}-r), G^{*} P \hat{v}+\lambda r-f\right)\right. \\
& \left.\quad-\left\langle\delta_{1}(\hat{v}-r), t_{1}-\gamma_{1} r\right\rangle\right\}^{2} \geqslant 0
\end{aligned}
$$

Now suppose we know two solutions of $\gamma_{1} v=t_{1}$. We may proceed in an analogous way to obtain an estimate for \hat{v} satisfying $\delta_{2} \hat{v}=t_{2}$. Fix $s \in V(\Lambda)$ satisfying $\gamma_{1} s=t_{1}$. If we set

$$
J_{3}(\hat{v})=\frac{1}{2}\left((P(s-\hat{v}), G(s-\hat{v}))+\lambda^{-1}\left\|\lambda s+G^{*} P \hat{v}-f\right\|^{2}\right),
$$

then

$$
J_{1}(\hat{v})+J_{3}(\hat{v})=J(s)=\text { constant }(\text { independent of } \hat{v})
$$

We also have

$$
\begin{aligned}
& (P(s-\hat{v}), G(s-v))+\lambda^{-1}\left(\lambda s+G^{*} P \hat{v}-f, \lambda(s-v)\right) \\
& \quad=\left(G^{*} P s+\lambda s-f, s-v\right)+\left\langle\delta_{2} s-t_{2}, \gamma_{2}(s-v)\right\rangle .
\end{aligned}
$$

Then by Schwarz's inequality,

$$
J_{3}(\hat{v}) \geqslant \frac{1}{2 Y}\left(\left(G^{*} P s+\lambda s-f, s-v\right)+\left\langle\delta_{2} s-t_{2}, \gamma_{2}(s-v)\right\rangle\right)^{2},
$$

where $Y=(P(s-v), G(s-v))+\lambda(s-v, s-v)$.
It follows that

$$
\begin{aligned}
&(P(u-\hat{v}), G(u-\hat{v}))+\lambda^{-1}\left\|G^{*} P(u-\hat{v})\right\|^{2}=2\left(J(u)-J_{1}(\hat{v})\right) \\
& \quad= 2\left(J_{1}(u)-J_{1}(\hat{v})\right)=2\left(J_{3}(\hat{v})-J_{3}(u)\right) \\
& \leqslant(P(s-\hat{v}), G(s-\hat{v}))+\lambda^{-1}\left\|\lambda s+G^{*} P \hat{v}-f\right\|^{2} \\
& \quad-\frac{1}{r}\left(\left(G^{*} P s+\lambda s-f, s-v\right)+\left\langle\delta_{2} s-t_{2}, \gamma_{2}(s-v)\right\rangle\right)^{2} .
\end{aligned}
$$

Further, it can be easily shown that the difference between this estimate and that given in Theorem 2 is

$$
\begin{aligned}
& {[P(s-v), G(s-v)+\lambda(s-v, s-v)]^{-1}} \\
& \quad \times(P(s-v), G(s-v))+\lambda(s-v, s-v) \\
& \quad-\left(\left(G^{*} P s+\lambda s-f, s-v\right)-\left\langle\delta_{2} s-t_{2}, \gamma_{2}(s-v)\right\rangle\right)^{2} \geqslant 0 .
\end{aligned}
$$

7. Example

We now apply the results of the previous section to obtain a posteriori error estimates for approximate solutions of self-adjoint boundary value problems of a differential operator of order $2 k$.

Again we follow the notations of Aubin (1972), as described in Section 2 with the additional assumption that $a_{p q}(x)=a_{q p}(x)$.

Suppose we are given the following data:
(i) $f \in L^{2}(\Omega)$,
(ii) $g_{j} \in H^{k-j-1 / 2}(\Gamma), 0 \leqslant j \leqslant p-1,1 \leqslant p \leqslant k$,
(iii) $h_{j} \in H^{k-j-1 / 2}(\Gamma), k \leqslant j \leqslant 2 k-p-1$.

We consider the problem: find u that satisfies

$$
\left\{\begin{array}{lll}
\text { (i) } & \Lambda u+\lambda u=f, & \lambda>0 \tag{12}\\
\text { (ii) } & \gamma_{j} u=g_{j}, & 0 \leqslant j \leqslant p-1, \\
\text { (iii) } & \delta_{j} u=h_{j}, & k \leqslant j \leqslant 2 k-p-1 .
\end{array}\right.
$$

Results of the previous sections can be applied to obtain

Theorem 5. Suppose u is a solution of (12), $v \in H^{k}(\Omega)$ satisfies $\gamma_{j} v=g_{j}$, $0 \leqslant j \leqslant p-1$ and $\hat{v}, r \in H^{k}(\Omega, \Lambda)$ satisfy $\delta_{j} \hat{v}=\delta_{j} r=h_{j}, k \leqslant j \leqslant 2 k-p-1$. Then

$$
\begin{aligned}
& a(u-v, u-v)+\lambda(u-v, u-v)_{L^{2}(\Omega)} \\
& \quad \leqslant a(v-r, v-r)+\lambda^{-1}\|\lambda v+\Lambda r-f\|_{L^{2}(\Omega)}^{2} \\
& \quad-\frac{1}{Z}\left\{\sum_{0 \leqslant j \leqslant p-1}\left\langle\delta_{2 k-j-1}(\hat{v}-r), g_{j}-\gamma_{j} r\right\rangle_{H^{k-j-1 / 2}(\Gamma)}\right. \\
& \left.\quad-\lambda^{-1}(\Lambda(\hat{v}-r), \lambda r+\Lambda r-f)_{L^{2}(\Omega)}\right\}^{2}
\end{aligned}
$$

where $Z=a(\hat{v}-r, \hat{v}-r)+\lambda^{-1}\|\Lambda(\hat{v}-r)\|_{L^{2}(\Omega)}^{2}$.
If $s \in H^{k}(\Omega, \Lambda), v \in H^{k}(\Omega)$ satisfy $\gamma_{j} s=\gamma_{j} v=g_{j}, 0 \leqslant j \leqslant p-1$, and if $\hat{v} \in$ $H^{k}(\Omega, \Lambda)$ satisfy $\delta_{j} \hat{v}=h_{j}, k \leqslant j \leqslant 2 k-p-1$, then

$$
\begin{aligned}
& a(u-\hat{v}, u-\hat{v})+\lambda^{-1}\|\Lambda(u-\hat{v})\|_{L^{2}(\Omega)}^{2} \\
& \leqslant
\end{aligned} \quad \begin{aligned}
& a(s-\hat{v}, s-\hat{v})+\lambda^{-1}\|\lambda s+\Lambda \hat{v}-f\|_{L^{2}(\Omega)}^{2} \\
& \quad-\frac{1}{W}\left\{(\Lambda s+\lambda s-f, s-v)_{L^{2}(\Omega)}\right. \\
& \left.\quad+\sum_{k \leqslant j \leqslant 2 k-p-1}\left\langle\delta_{j} s-h_{j}, \gamma_{2 k-j-1}(s-v)\right\rangle_{H^{k-j-1 / 2}(\Gamma)}\right\}^{2},
\end{aligned}
$$

where $W=a(s-v, s-v)+\lambda(s-v, s-v)_{L^{2}(\Omega)}$.

Remark. In Theorem 5, we have given a bound for $a(u-v, u-v)$ only. To obtain a bound for $\|u-v\|_{H^{k}(\Omega)}^{2}$ we must assume that $a(u, v)$ is elliptic and hence that there exists a constant M such that $M\|u-v\|^{2} \leqslant a(u-v, u-v)$.

References

J. P. Aubin (1972), Approximation of elliptic boundary-value problems, (Wiley Interscience, New York).
J. P. Aubin and H. Burchard (1971), 'Some aspects of the method of the hypercircle applied to elliptic variational problems', Proceedings of SYNSPADE, edited B. Hubbard (Academic Press, New York).
J. L. Lions and G. Stampacchia (1967), 'Variational inequalities', Comm. Pure Appl. Math. 20, 493-519.

Department of Mathematics

Science Centre
The Chinese University of Hong Kong
Shatin, N. T.
Hong Kong

[^0]: (c) 1985 Australian Mathematical Society 0263-6115/85 \$A2.00 +0.00

