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Picard groups of punctured spectra of dimension

three local hypersurfaces are torsion-free

Hailong Dao

Abstract

Let (R, m) be a Noetherian local ring and UR = Spec(R)− {m} be the punctured
spectrum of R. Gabber conjectured that if R is a complete intersection of dimension
three, then the abelian group Pic(UR) is torsion-free. In this note we prove Gabber’s
statement for the hypersurface case. We also point out certain connections between
Gabber’s conjecture, Van den Bergh’s notion of non-commutative crepant resolutions
and some well-studied questions in homological algebra over local rings.

1. Introduction

Let (R, m) be a local ring (always Noetherian in this note). Let UR = Spec(R)− {m} be the
punctured spectrum of R. In [Gab04] Gabber made the following conjecture.

Conjecture 1.1. Let R be a local complete intersection of dimension three. Then Pic(UR) is
torsion-free.

The above conjecture is equivalent to the statement that the local flat cohomology group
H2
{m}(Spec(R), µn) = 0 when R is a local complete intersection of dimension three, and they are

both implied by the following conjecture(for more details, see [Gab04]).

Conjecture 1.2. Let R be a strictly henselian local complete intersection of dimension at least
four. Then the cohomological Brauer group of UR vanishes: Br(UR) = 0.

Conjecture 1.1 is known when R contains a field; the characteristic 0 case follows from
Grothendieck’s techniques on local Lefschetz theorems (cf. [Bad78, Rob76]), and the positive
characteristic case can be found in [DLM10]. (It is probably known to experts, though we cannot
find an exact reference. It was claimed in [Gab04] that Conjecture 1.2 is known in the positive
characteristic case.) We also note that when UR is replaced by a smooth projective complete
intersection the analogous result on the Picard group is contained in [Del73, Theorem 1.8]. In
any case, the main difficulty is when R is of mixed characteristic.

In this paper we give a short and relatively self-contained proof of Gabber’s Conjecture 1.1
for the case of hypersurfaces, that is, if R̂∼= T/(f) where T is a complete regular local ring.
In fact, in this situation we shall prove a stronger result which is a pure commutative algebra
statement. To state such a result let us recall a useful notion. For a Noetherian ring R one can
define a map c1 :G(R)→ CH1(R) from the Grothendieck group of finitely generated modules
over R to the height one component of the Chow group of Spec(R) (see § 2.2 for more details).
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Given an R-module M , we shall abuse notation a bit and call c1([M ]) the first local Chern class
of M . Then our main result is the following.

Theorem 1.3. Let R be local hypersurface of dimension three. Let N be a finitely generated
reflexive R-module which is locally free on UR. Furthermore, assume that the first local Chern
class of N is torsion in CH1(R). Then HomR(N, N) is a maximal Cohen–Macaulay R-module if
and only if N is free.

It is not hard to see that the above theorem implies Conjecture 1.1 in the hypersurfaces case,
by taking N to be the R-module generated by the sections of a torsion element in Pic(UR); see
§ 2 and the proof of Corollary 3.5 for more details.

This project actually arises from our attempt to understand a striking definition by Van
den Bergh of non-commutative crepant resolutions of a Gorenstein local ring R. To explain the
connection we recall the following definition.

Definition 1.4 (Van den Bergh [Ber04]). Suppose that there exists a reflexive module N
satisfying the following conditions.

(1) A= HomR(N, N) is a maximal Cohen–Macaulay R-module.

(2) A has a finite global dimension equal to d= dimR.

Then A is called a non-commutative crepant resolution (henceforth NCCR) of R.

In [Dao10] we proved that non-commutative crepant resolutions cannot exist when R is
a dimension three, equicharacteristic or unramified hypersurface with isolated singularity and
torsion class group. Theorem 1.3 implies the following corollary.

Corollary 1.5. Let R be a dimension three hypersurface which has an isolated singularity and
a torsion class group (which in this case is equivalent to R being a unique factorization domain,
by our main results). Then R has no non-commutative crepant resolution in the sense of Van
den Bergh.

We now briefly describe the organization of the paper. Section 2 deals with preliminary
materials. In § 3 we give the proofs of the main results announced above as well as some other
interesting applications. Finally, in § 4 we raise some open questions relevant to our approach to
Gabber’s conjecture.

2. Notations and preliminary results

Throughout the note R will be a Noetherian local ring. Recall that a maximal Cohen–Macaulay
(MCM) R-module M is a finitely generated module satisfying depthM = dimR.

Let mod(R) and MCM(R) be the category of finitely generated and finitely generated
maximal Cohen–Macaulay R-modules, respectively. Suppose X is a Noetherian scheme. Let
Coh(X) denote the category of coherent sheaves on X and Vect(X) the subcategory of vector
bundles on X. By G(X), Pic(X), CHi(X), Cl(X) we shall denote the Grothendieck group of
coherent sheaves on X, the Picard group of invertible sheaves on X, the Chow group
of codimension i irreducible, closed subschemes of X, and the class group of X, respectively.
When X = SpecR we shall write G(R), Pic(R), CHi(R), Cl(R). Let G(R) :=G(R)/Z[R] be the
reduced Grothendieck group and G(R)Q :=G(R)⊗Z Q be the reduced Grothendieck group of R
with rational coefficients.
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Picard groups of punctured spectra

2.1 Vector bundles on UR and modules over R

Let ΓX be the section functor on X. We have the following proposition.

Proposition 2.1 (Horrocks [Hor64, § 1]). Let R be a Noetherian local ring such that depth
R> 2. Let X = UR. Then ΓX induces an equivalence of categories between Vect(X) and the
subcategory of mod(R) consisting of finitely generated modules M which is locally free on non-
maximal primes with depthM > 2 (note that the condition depthR> 2 also ensures that X is
connected).

In particular, let E represent an element in Pic(X) and let I = ΓX(E). We know that I
is a reflexive ideal in R which is locally free of rank 1 on X. Furthermore HomR(I, I)∼=
ΓX(HomOX

(E , E))∼= ΓX(OX) =R.

2.2 Some maps between Chow, Picard, and Grothendieck groups

In this subsection we assume that R is a local ring such that depthR> 2. For i= 0, 1 there are
maps ci :G(R)→ CHi(R). These maps admit a very elementary definition as follows. Suppose
M is an R-module. Pick any prime filtration F of M . Then one can take ci([M ]) =

∑
[R/p],

where p runs over all prime ideals such that R/p appears in F and height(p) = i. Note that a
prime can occur multiple times in the sum (for a proof that this is well defined see the main
theorem of [Cha99]). When R is a normal algebra, essentially of finite type over a field, and N
is locally free (i.e. a vector bundle) on UR, c1 agrees with the first Chern class of N , as defined
in [Ful98, Chapter 3], but we shall not need that fact.

One has the following diagram of maps of abelian groups.

Pic(UR)

p

��
G(R)

c1 // CH1(R)

Here p is induced by the well-known map between Cartier and Weil divisors (see [Ful98,
ch. 2]).

Note that we do not indicate any map between Pic(UR) and G(R). However, the diagram
‘commutes’ in a weak sense: if E represents an element in Pic(X) and I = ΓX(E) then p([E ]) =
c1([I]) in CH1(R).

Obviously, c1([R]) = 0, so c1 induces a map q :G(R)→ CH1(R). In particular, if M is a
module such that [M ] = 0 in G(R)Q then c1([M ]) is a torsion element in CH1(R).

2.3 Maximal Cohen–Macaulay approximations

The reference for this subsection is the paper [AB89]. Suppose that R is Cohen–Macaulay and
a homomorphic image of a Gorenstein ring. For any R-module N there exists a short exact
sequence,

0→W →M →N → 0, (2.1)

such that M ∈MCM(R) and W has finite injective dimension. Note that if R is Gorenstein, then
pdR W <∞. Also, if R is Gorenstein and depthN > dimR− 1, then, by counting depth and
the Auslander–Buchsbaum formula, W must be free.
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2.4 Hochster’s theta function
Let R be a local hypersurface, so R̂= T/(f) where T is a regular local ring. Suppose that
M is an R module such that pdRp

Mp <∞ for any p ∈ UR. Then for any R-module N ,
`(TorR

i (M, N))<∞ for i� 0; here `(−) denotes length. The function θR(M, N) was introduced
by Hochster [Hoc81] to be

θR(M, N) = `(TorR
2e+2(M, N))− `(TorR

2e+1(M, N))

where e is any integer such that 2e> dimR. It is well known (see [Eis80]) that the sequence
of modules {TorR

i (M, N)} is periodic of period 2 for i > depthR− depthM , so this function is
well defined. The theta function satisfies the following properties.

Proposition 2.2 (Hochster [Hoc81]). (1) If M ⊗R N has finite length, then

θR(M, N) = χT (M, N) :=
∑
i>0

(−1)i`(TorT
i (M, N)).

Here χT is the well-known Serre’s intersection multiplicity. In particular, if dimM + dimN 6
dimR= dim T − 1, then θR(M, N) = 0 (note that vanishing for χT is proved for all regular local
rings; see [Rob98, § 13.1]).

(2) θR(M, N) is bi-additive on short exact sequences, assuming it is defined on all pairs. In
particular, if M is locally of finite projective dimension on UR, then the rule: [N ] 7→ θR(M, N)
induces maps G(R)→ Z and G(R)Q→Q.

The following elementary but useful result will be used in the proof of our main theorem.

Lemma 2.3 [Dao10, Lemma 2.3]. LetR be a Cohen–Macaulay local ring,M, N finitely generated
R-modules and n > 1 an integer. Consider the following two conditions.

(1) Hom(M, N) satisfies Serre’s condition (Sn+1).

(2) Exti
R(M, N) = 0 for 1 6 i6 n− 1.

If M is locally free in codimension n and N satisfies (Sn), then (1) implies (2). If N satisfies
(Sn+1), then (2) implies (1).

Finally we shall need a refined version of the Bourbaki sequence for a module.

Theorem 2.4 [HWJ01, Theorem 1.4]. Let R be a commutative, Noetherian ring satisfying
condition (S2). Let M be a torsion-free R-module and S be a finite set of prime ideals of R.
Assume that M is free and of constant rank on both S and the set of primes in R that have
height at most 1. Then there is a Bourbaki sequence 0→ F →M → I → 0 such that I *

⋃
P∈S P .

3. Main results

Throughout this section, R will be a local hypersurface of dimension three. All modules are
finitely generated. Note that since depthR> 2, UR is connected, so any module which is locally
free on UR also has constant rank.

Proposition 3.1. Let M be reflexive R-module which is locally free of constant rank on UR.
Let N be an R-module which is locally free of constant rank on the minimal primes of R and
such that c1([N ]) is a torsion in CH1(R). Then θR(M, N) = 0.
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Proof. Without loss of generality one can assume c1([N ]) = 0 by replacing N with a direct sum
of copies of N if necessary. First we claim that in G(R)Q, the reduced Grothendieck group with
rational coefficients, we have an equality [N ] =

∑
ai[R/Pi] such that each Pi ∈ SpecR has height

at least 2. Since N has constant rank a we have a short exact sequence:

0→Ra→N →N ′→ 0

where N ′ is a torsion module. Let F be a prime filtration of N ′. Clearly F involves only primes of
height at least 1. Let s be the formal sum of all height 1 primes in F . Since c1([N ′] = c1([N ]) = 0
we have formally (see § 2.2)

s=
∑

nj div(fj , R/qj).

Here the nj are integers, each qj is a minimal prime of R and fj is a regular element in R/qj
and by definition

div(fj , R/qj) =
∑

`(R/(qj , fj)p)[R/p]

(the sum runs over all primes of height 1 in Supp(R/(qj , fj)). The above formal equality shows
that in G(R) one has

[N ′] =
∑

nj [R/(qj , fj)] +
∑

ai[R/pi]

such that all the primes pi are of height at least 2 and the ai are integers. However, the exact
sequence 0→R/qj →R/qj →R/(fj , qj)→ 0 shows that each [R/(qj , fj)] = 0 in G(R), so our
claim follows.

Because of the claim above we will have completed the proof by showing that θR(M, R/P ) = 0
for each P ∈ SpecR such that height P > 2.

By Theorem 2.4 one can construct a Bourbaki sequence for M :

0→ F →M → I → 0

such that I ( P . Obviously θR(M, R/P ) = θR(I, R/P ). However, R/I ⊗R R/P has finite
length, and dimR/I + dimR/P 6 3 = dimR. By Proposition 2.2 θR(R/I, R/P ) = 0. Since
θR(I, R/P ) =−θR(R/I, R/P ) we are done. 2

Proposition 3.2. Let M ∈MCM(R) such that M is locally free on UR and N be any
finitely generated R-module. Suppose that θR(M∗, N) = 0. If Ext1R(M, N) = 0 then M is free or
pdR N <∞.

Proof. One has the following short exact sequence (see [Har98, 3.6] or [Jor08, Jot75]):

TorR
2 (M1, N)→ Ext1R(M, R)⊗R N → Ext1R(M, N)→ TorR

1 (M1, N)→ 0.

Here M1 is the cokernel of F ∗1 → F ∗2 , where F : · · · → F2→ F1→ F0→M → 0 is a minimal
resolution of M . Since Ext1R(M, N) = 0 it follows that Tor1R(M1, N) = 0.

Since M is MCM and R is a hypersurface we know that the minimal resolution F is periodic of
period at most 2 (see [Eis80] and Exti

R(M, R) = 0 for i > 0). It follows that the dual complex F ∗

is also exact and periodic of period at most 2. Thus M1 is isomorphic to the first syzygy of M∗.
In particular, M1 is maximal Cohen–Macaulay or zero. Since θR(M1, N) =−θR(M∗, N) = 0,
it now follows that TorR

i (M1, N) = 0 for all i > 0 (as M1 is maximal Cohen–Macaulay, the
sequence of modules {TorR

i (M1, N)} is periodic of period 2 for i > 0). So either M1 or N has
finite projective dimension by [HW97, Theorem 1.9] or [Mil98, 1.1]. However, if M1 has finite
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projective dimension and is non-zero, it must be free by the Auslander–Buchsbaum formula,
contradicting the minimality of F. Thus M1 is zero and M must be free. 2

Corollary 3.3. Let (R,m) be local hypersurface of dimension three. Let N be a reflexive
R-module which is locally free on UR. Assume that θR(N∗, N) = 0. Then HomR(N, N) ∈
MCM(R) if and only if N is free.

Proof. The sufficient direction is trivial. Suppose that HomR(N, N) is maximal Cohen–Macaulay.
Then by Lemma 2.3 Ext1R(N, N) = 0. We look at the MCM approximation of N as in § 2.3:

0→W →M →N → 0.

As the discussion in § 2.3 indicates, W is free. Applying HomR(−, N) we obtain Ext1R(M, N) = 0.
Also, applying HomR(−, R) yields

0→N∗→M∗→W ∗→ Ext1R(N, R)→ 0,

since Ext1R(M, R) = 0 because its Matlis dual is H2
m(M) = 0. Note that θR(L,−) is always defined

if L is any of the four modules in the above exact sequence, and it is 0 when L=W ∗ or
L= Ext1R(N, R) (the latter is because Ext1R(N, R) has finite length and Proposition 2.2). So
θR(M∗, N) = θR(N∗, N) = 0.

Proposition 3.2 shows that either M is free or pdR N <∞. Both possibilities imply that
pdR N <∞. As N is reflexive and dimR= 3, pdR N 6 1. However, Ext1R(N, N) = 0, so pdR N
cannot be 1 by Nakayama’s Lemma, and thus N is free. 2

We have derived enough to prove our main result.

Theorem 3.4. Let R be local hypersurface of dimension three. Let N be a reflexive R-module
which is locally free on UR. Furthermore, assume that the image c1([N ]) (of N as an element in
G(R)) is a torsion in CH1(R). Then HomR(N, N) ∈MCM(R) if and only if N is free.

Proof. A combination of Proposition 3.1 and Corollary 3.3 give the desired result. 2

Corollary 3.5. Let R be local hypersurface of dimension three. Then Pic UR is torsion-free.

Proof. Let E represent a torsion element in Pic UR. By § 2.1 I = ΓX(E) is a reflexive ideal which
is locally free of rank 1 on UR. By the diagram in § 2.2 we know that c1([I]) is torsion in CH1(R).
Theorem 3.4 now applies directly to give the desired result. 2

Finally we note some interesting consequences of the main results above in the following
theorem.

Theorem 3.6. Let R be a local hypersurface with an isolated singularity and dimR= 3. The
following statements are equivalent.

(1) θR(M, N) = 0 for all M, N ∈mod(R).

(2) R is a unique factorization domain (equivalently, CH1(R) = Cl(R) = 0).

(3) The class group Cl(R) is a torsion.

Proof. First, since R is local and normal (by Serre’s criterion), it is a domain (see [Mat86,
Theorem 23.8]). Assume (1). Let I be a reflexive ideal representing an element of Cl(R). Then
HomR(I, I)∼=R, and Corollary 3.3 implies I is principal, so Cl(R) = 0.
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The implication (2)⇒ (1) follows from Proposition 3.1. The equivalence (2)⇔ (3) is implied
by the Corollary 3.5. 2

Remark . If R̂ is a hypersurface in an equicharacteristic or unramified regular local ring then the
above result follows from [Dao, Corollary 3.5] and [Dao08, Theorem 3.4]. We also note that the
equivalence (1)⇔ (3) when k = C and R is graded is derived in [MPSW10, 3.10, 6.1].

4. Open questions

In this section we discuss some open questions motivated by the results obtained previously.
Clearly, the most important question is whether or not Theorem 1.3 is true when R is a local
complete intersection of dimension three. Affirmation of such a statement would immediately
prove Gabber’s Conjecture 1.1. Since for an R-module M , c1([M ]) will be a torsion in CH1(R) if
[M ] = 0 in G(R)Q, a possibly weaker but somewhat less technical version would be the following
conjecture.

Conjecture 4.1. Let R be local complete intersection of dimension three. Let N be a reflexive
R-module which is locally free of constant rank on UR. Furthermore, assume that [N ] = 0 in
G(R)Q, the reduced Grothendieck group of R with rational coefficients. Then HomR(N, N) is a
maximal Cohen–Macaulay R-module if and only if N is free.

In view of the proof of the key Proposition 3.2 and previously known results for regular and
hypersurface rings, we feel it is reasonable to make the following conjecture.

Conjecture 4.2. Let R be local complete intersection (of arbitrary dimension). Let M, N be
R-modules such thatM is locally free of constant rank on UR and [N ] = 0 inG(R)Q. Then (M, N)
is Tor-rigid, in the sense that for any i > 0, TorR

i (M, N) = 0 forces TorR
j (M, N) = 0 for j > i.

By going through the proofs of Propositions 3.2 and 3.3 one can see easily that an affirmative
answer to Conjecture 4.2 (in dimension three) would imply Conjecture 4.1.

Tor-rigidity has been a subject of active investigation in commutative algebra. For more
in-depth discussion and references, we refer the reader to the introduction of [Dao] and the
bibliography there. It is well known that if R is regular then Tor-rigidity holds for any
pair of modules from the work of Auslander and Lichtenbaum [Aus61, Lic66]. Furthermore,
Conjecture 4.2 is known when R̂ is a hypersurface in an equicharacteristic or unramified regular
local ring, see [Dao, Dao08]. A simple unknown case is when M, N are zero-dimensional; in such
a situation, the conditions on M and N are automatic, so the above conjecture would just say
that any pair of finitely generated R-modules of finite length over a local complete intersection
is Tor-rigid. The case of Conjecture 4.2 when one of the modules has finite length is discussed
in the last section of [Dao08], and is still open to the best of our knowledge.
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