
Drugs for psychosis and mood: unique actions at D3, D2,
and D1 dopamine receptor subtypes
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ISSUE:

Drugs for psychosis and mood that bind dopamine D2 receptors can be classified

not only by whether they also block serotonin 2A receptors, but by whether they

also bind D3 or D1 receptors.

Take-Home Points
’ Drugs that bind D2 receptors are treatments for

psychosis and mood; for many years they have been

pharmacologically classified either as those that also

block serotonin 5HT2A receptors or as those that do not.

’ A new classification of drugs for psychosis and mood that

bind D2 receptors creates 3 different categories accord-

ing to which dopamine receptors are bound: those that

preferentially bind D2 receptors (most of these agents),

those that also bind D3 receptors effectively (caripra-

zine>blonanserin), and those that also bind D1 recep-

tors (asenapine, clozapine, and olanzapine> quetiapine

and ziprasidone).

’ These 3 classes theoretically have functional differences

with potential clinical implications, such as improvement

in cognition, motivation, and mood from D3 antagonism/

partial agonism and cognitive dysfunction from D1

antagonism.

Introduction

Classification of psychotropic drugs is an ever-evolving
process, most recently culminating in neuroscience-based
nomenclature (NbN), which is built upon pharmacologi-
cal mechanism of action and not upon clinical indica-
tion.1,2 So-called “second-generation” or “atypical”
antipsychotics have long been pharmacologically
differentiated from “first-generation” or “conventional”
antipsychotics by their potent binding to serotonin 2A
receptors as well as to D2 dopamine receptors.3 Now

these same agents that treat psychosis andmood can also
be classified according to which dopamine receptors
(D1, D2, D3) they bind (Figures 1–9 and Table 1).4,5–8

The presence or absence of actions at various dopamine
receptor subtypes changes their neurobiological mechan-
isms and, potentially, their clinical effects.4

A New Classification of Drugs Based on D1, D2, and
D3 Binding

Here we categorize the so-called “second generation/
atypical antipsychotics” in a new way: into 3 major
categories based on their dopamine receptor subtype
binding profiles (Table 1).4–8 By definition, all 13 of
these agents bind to D2 receptors (Table 1 and Figure 4).
However, some of these agents act effectively at D1
receptors as well as D2 receptors (Table 1 and Figures 1
and 3); others act effectively at D3 receptors as well as
D2 receptors (Table 1 and Figures 2 and 5).5–8 Clinically
relevant binding at D1 and D3 receptors is based not
only on how potently drugs bind to these receptors
compared to how potently they bind to D2 receptors
(Figures 1 and 2), but also how their binding potencies
for D1 and D3 receptors compare to those of dopamine
itself at these same receptors (Figures 3–5).

Drugs with Mostly D2 Antagonism/Partial Agonism

All drugs in Table 1 are more potent than dopamine for
D2 receptors, and some are far more potent (Figure 4 and
Table 1). This means that dopamine is less effective at
competing for D2 receptors than are any of these drugs.
At low levels of dopamine, D2 binding of all these drugs
is therefore predominant. However, if dopamine floods
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Figure 1. This figure shows the dopamine D1 receptor affinity relative to the dopamine D2 receptor affinity for drugs that treat
psychosis and mood. No drug has a higher affinity for D1 than it does for D2, and some have very low affinities for D1
receptors relative to D2.
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Figure 2. This figure shows the dopamine D3 receptor affinity relative to the dopamine D2 receptor affinity for drugs that treat
psychosis and mood. Only one agent, cariprazine, has higher affinity for D3 receptors than for D2 receptors. All other agents
are essentially equal or lower in affinity for D3 compared to D2.
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the synapse during neurotransmission or when the
stimulants methylphenidate or amphetamine are given,
sufficiently large amounts of dopamine are released so
that D2 binding by antipsychotics is reduced by mass
action of dopamine predominating over its lower
affinity.9–11 Thus, the amount of D2 binding of drugs for
psychosis will depend not only on binding affinity and
dose of the drug, but also on the amount of dopamine
present. In general, D2 antagonists/partial agonists are
dosed so that the net binding to D2 receptors in the
presence of whatever amount of dopamine is released in
schizophrenia patients is 60% or more.3,12

All drugs in Table 1 bind to all 3 dopamine receptors
D1,D2, andD3 to some extent (Figures 1–5), but those that
bind D1 and D3 receptors with much lower affinity than
they bind D2 receptors will likely not have clinically
relevant binding at D1 and D3 receptors. Clinically
relevant binding at D1 and D3 receptors is especially

unlikely if drug affinities for these receptors are also lower
than dopamine’s own affinities for these receptors. That is,
if dopamine’s affinity for a receptor is greater than that of
the drug, dopamine would successfully compete with the
drug for the receptor if dopamine and the drug are present
at similar concentrations. Taking all these factors into
consideration, most drugs for psychosis and mood that
bind to D2 receptors are D2-preferring. This includes 8 of
the 13 drugs in Table 1 (see also Figures 1–5 and 9).

The functional outcomes of antagonist/partial
agonist actions at D2 dopamine receptors are the best
characterized receptor actions for any drug that binds to
any dopamine receptor. Namely, D2 antagonist/partial
agonist actions in the nucleus accumbens are well known
to reduce positive symptoms of psychosis, whereas these
same D2 actions in the motor striatum can result in drug-
induced parkinsonism in the short term and tardive
dyskinesia in the long term (Figure 7).3

Figure 3. This figure shows the relative affinities of drugs for psychosis and mood for D1 receptors compared to the affinity of
dopamine itself for D1 receptors. All agents have equal or higher affinity for the D1 receptor than does dopamine itself.
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Drugs with Effective D1 Antagonism (Plus D2
Antagonism/Partial Agonism)

Some drugs in Table 1 bind to D1 receptors with
affinities that suggest potentially clinically relevant
occupancy at antipsychotic dose levels. That is, their
D1 affinities are close to their D2 affinities (Figure 1), and
greater than dopamine’s affinity for D1 receptors (which
is relatively low) (Figure 3). Taken together, 3 agents—
asenapine, olanzapine, and clozapine—aremost likely to
have clinically meaningful D1 antagonism at antipsy-
chotic dosing levels (Table 1). Ziprasidone and quetia-
pine are next in order of having possible D1 binding at
clinical doses because their affinities are within 1 one

order of magnitude of their affinities for D2 receptors,
and higher than dopamine’s affinity for D1 receptors
(Figures 1 and 3). By the time a drug has binding that is 2
orders of magnitude (paliperidone, risperidone, and
iloperidone) or higher affinity for D2 over D1 (Figure 1),
there is diminishing probability of D1 binding.

Only relatively recently have the effects of D1
dopamine receptor blockade been characterized. In the
prefrontal cortex, D1 receptors are themajor postsynaptic
dopamine receptor subtype, unlike the nucleus accum-
bens and motor striatum, which are rich in both D2 and
D1 receptors.4 In animal models, including primates, D1
activity must be optimized in the prefrontal cortex for
best cognitive effects (Figure 6).4,13–16 Both too much as

Figure 4. This figure shows the relative affinities of drugs for psychosis and mood for D2 receptors compared to the affinity of
dopamine itself for D2 receptors. All agents have equal or higher affinity for the D2 receptor than does dopamine itself. Many
agents have higher or much higher affinities for D2 compared to dopamine.
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well as too little dopamine activity at cortical D1
receptors are associated with cognitive dysfunction
(Figure 6).4,13–16 Generally, drugs that block D1 receptors
(or overstimulate them) would therefore theoretically
dysregulate D1 receptors, and hypothetically this would
lead to cognitive dysfunction.4,13–16 Cognitive dysfunc-
tion would certainly be an undesired action of those
agents that block D1 receptors, especially in patients with
disorders already characterized by cognitive dysfunc-
tion, such as schizophrenia and bipolar disorder. Some of
the drugs that potentially exhibit clinically relevant
blockade of D1 receptors also block to varying degrees
muscarinic cholinergic and histamine receptors,3 adding

to their theoretical potential for cognitive dysfunction.
Whether there are any potential benefits of D1 antagon-
ism remains to be shown, although it is possible that
blocking D1 receptors while blocking D2 receptorsmight
diminish drug-induced parkinsonism.

Drugs with Effective D3 Antagonism/Partial Agonism
(Plus D2 Antagonism/Partial Agonism)

Drug affinities for D3 receptors for many agents in
Table 1 are about the same or higher than their affinities
for D2 receptors (Figure 2), but they are mostly lower

Figure 5. This figure shows the relative affinities of drugs for psychosis and mood for D3 receptors compared to the affinity of
dopamine itself for D3 receptors. All but 2 agents have affinities for D3 within 1 order of magnitude higher or lower than does
dopamine itself. One agent has very much higher affinity for D3 than does dopamine, namely cariprazine; 1 agent has
somewhat higher affinity, namely blonanserin.
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Figure 6.Antagonist effects at D1 dopamine receptors are illustrated here. These include reducing dopamine neurotransmission in
the prefrontal cortex, and theoretically causing cognitive dysfunction by “de-tuning” D1 receptor activity.
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Figure 8.Antagonist/partial agonist effects at D3 receptors are illustrated here. Theoretically, D3 actions disinhibit dopamine
release in the prefrontal cortex, which could improve negative symptoms, cognition, and mood.
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than dopamine’s affinity for the D3 receptor (Figure 5).
This high affinity of endogenous dopamine for D3
receptors has been postulated to result in only minimal
or no D3 receptor occupancy in dopamine-rich brain
areas by any but those drugs with the most potent
binding to D3, ie, those drugs with affinities that are even
higher than that of dopamine itself for D3 receptors.17,18

Taken together, cariprazine and perhaps blonanserin (a
drug for psychosis marketed in Japan)6,19,20 may be the
agents most likely to have clinically meaningful degrees
of D3 receptor binding when dosed for psychosis. What
are the implications of D3 binding?

Distribution of D3 receptors differs from that of both
D1 and D2 receptors, with D3 receptors being localized
predominantly in limbic areas.4,21,22 D3 receptors can be
postsynaptic, presynaptic at axon terminals, or presynap-
tic at the somatodendritic area of certain dopamine
neurons arising from the substantia nigra/ventral
tegmentum. There are hardly any D3 receptors at all on
dopamine terminals of the dorsal striatum (motor). Most

areas of the brain that do express D3 receptors also
express D2 receptors, so it can be difficult to determine
which action to attribute to which receptor.

Since D3 receptors are unique among dopamine
receptors in having a high affinity for dopamine, this
suggests that dopamine may be occupying D3 receptors
in the living brain for extended periods of time, leading
to lots of activation of D3 autoreceptors, which would
hold back the release of dopamine from nerve term-
inals.4,17,18 Thus, due to their high affinity for dopamine,
D3 receptors, unlike D1 or D2 receptors, appear to be
stimulated by low levels of tonic dopamine release to
attenuate the effects of dopamine fluctuation related to
bursts of phasic dopamine release (see Stahl4 for discus-
sion of tonic and phasic dopamine release).4,17,18 Blocking
this attenuation would disinhibit dopamine release and
enhance neurotransmission. Theoretically, that would
enhance dopaminergic neurotransmission, especially in
brain areas such as the prefrontal cortex where dopamine
release appears to be controlled by D3 receptors

Table 1. Three Classes of Dopamine Receptor Binding Drugs for Psychosis and Mood

Ki (nM) D3 D2 D1 DA/D3

Order of

Magnitude

DA/D2

Order of

Magnitude

DA/D1

Order of

Magnitude

D2/D3

Order of

Magnitude

D1/D2

Order of

Magnitude

D1/D3

Order of

Magnitude

Dopamine (DA) 60 540 1766 0 0 0 1 1 2

D2 BINDING ONLY

Brexpiprazole* 1.1 0.3 164 1 3 −1 −1 3 2

Paliperidone 2.6 1.4 41 1 2 2 0 2 1

Aripiprazole 4.6 2.3 1173 1 2 0 0 3 3

Risperidone 7.3 3.7 327 1 2 1 0 2 2

Ziprasidone 7.3 4.75 80 1 2 2 0 1 1

Iloperidone 10.5 8.3 129 0 2 1 −1 2 1

Lurasidone** 15.7 0.66 262 0 3 1 −2 3 1

Quetiapine 394 437 1096 −1 0 0 0 1 1

D2+D1 BINDING

Asenapine 1.8 1.7 2.9 1 2 3 0 0 0

Olanzapine 38.05 30.75 56.6 0 1 2 0 0 0

Clozapine 310 147 240 −1 0 1 0 0 0

D2+D3 BINDING

Cariprazine*** 0.09 0.49 1000 3 3 −1 1 4 5

Blonanserin**** 0.494 0.142 1090 2 3 0 0 4 4

All binding data from PDSP Ki database unless noted (5)
* Data from Frankel et al, 2017 (6); K. Meada (personal communication, Otsuka)
** Data from Greenberg et al, 2017 (7)
*** Data from N. Adham (personal communication, Allergan)
**** Data from Tenjin et al, 2013 (8)
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(Figure 8).23–34 Also, blocking D3 receptors enhances
acetylcholine release in the prefrontal cortex, which could
also contribute to pro-cognitive actions.31,35

Current theories link a reduction of limbic dopamine
release to anhedonia, depressive states, motivation, and
pleasure.23–34 Consistent with this notion, in animal
models D3 antagonism improves cognition, mood, and
motivation (Figure 8).23–34 Early clinical results do
suggest enhanced efficacy for negative symptoms of
schizophrenia with the D3 preferring agent caripra-
zine.36 Much further research is required to follow up
on these interesting therapeutic possibilities for D3
antagonist/partial agonist treatment of negative symp-
toms, mood, cognition, and even substance abuse.

Conclusions

Individualizing treatments for psychosis and mood
involves finding the best therapeutic agent for a specific
patient. Knowing the D1 and D3 dopamine receptor
profiles of agents that act on D2 receptors—as well as
the various additional receptors a given drug binds—
can assist practitioners in matching the best therapeutic
agent to the individual patient’s symptom profile.
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