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Abstract

We analyze domination properties and factorization of operators in Banach spaces through subspaces of
L1-spaces. Using vector measure integration and extending classical arguments based on scalar integral
bounds, we provide characterizations of operators factoring through subspaces of L1-spaces of finite
measures. Some special cases involving positivity and compactness of the operators are considered.
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1. Introduction

Domination by scalar-valued integrals is the main tool for factoring operators through
(subspaces of) Lp-spaces, providing fundamental results as Pietsch’s theorem and the
Maurey–Rosenthal factorization theorem. This kind of factorization is at the core
of modern functional analysis. It is connected with operator ideal theory as there
are several operator ideals that are characterized by factorizations through subspaces
of Lp-spaces: summing, integral, nuclear, factorable, etc. (see, for example, [5, 8]).
Another important source of factorization arguments comes from the works of Krivine,
Kwapień, Maurey, Pisier and Rosenthal in the 1970s regarding geometric properties of
operators acting in Banach lattices (convexity and concavity). This theory (nowadays
called Maurey–Rosenthal factorization) is well developed and has many applications
in other areas like harmonic analysis. For detailed information on the Maurey–
Rosenthal factorization theory we refer to [12, 15, 18]; some recent contributions can
be found in [17] and [4, 6, 7, 11, 13, 16]. A sample result follows (see, for example,
[4, Section 4.3]).
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Theorem 1.1 (Maurey–Rosenthal). Let X be an order continuous Banach function
space over a finite measure µ, let Y be a Banach space and T : X → Y a 1-concave
operator, that is, there is a constant C > 0 such that

n∑
j=1

‖T (x j)‖ ≤ C
∥∥∥∥∥ n∑

j=1

|x j|

∥∥∥∥∥ (1.1)

for all x1, . . . , xn ∈ X, n ∈ N. Then T factors as

X T //

S

��

Y

L1(µ)

R

==

where S is a positive (multiplication) operator and R is an operator.

In the usual proof of Theorem 1.1, the geometric inequality (1.1) gives rise to
a domination inequality by means of a scalar-valued integral, which in turn yields
the desired factorization. In this paper we are interested in showing how the natural
extension of this type of domination inequality to the case of vector-valued integrals
can provide a general understanding of the factorization problem, as well as new results
and applications. The setting for such extension is provided by the spaces of scalar
functions which are integrable with respect to vector measures. This class of Banach
function spaces is a powerful tool for the analysis of operators on function spaces (see
[17, Chs 4 and 6] and the references therein).

We shall focus on factorizations through subspaces of L1-spaces of finite measures,
that is, subspaces of L1(µ) where µ is a finite measure. Typical examples of Banach
spaces which are (isomorphic to) subspaces of L1-spaces of a finite measure are `p, all
Lp-spaces of a finite measure, and Hp for 1 ≤ p ≤ 2. Subspaces of L1-spaces have been
thoroughly studied in the literature. Classical results of Rosenthal [19, 20] ensure that
a subspace of L1(µ) (µ a finite measure) not containing `1 is reflexive and isomorphic
to a subspace of an Lp-space of a finite measure for some 1 < p ≤ 2. We stress that
factorizations through L1-spaces of arbitrary nonnegative measures are related to the
ideal of 1-factorable operators. In this direction, a result of Kwapień (see, for example,
[8, Theorem 9.13]) states that an operator between Banach spaces T : X → Y factors
through a subspace of an L1-space of a nonnegative measure if and only if there is a
constant C > 0 such that, whenever the finite sets U,V ⊆ X satisfy∑

x∈U

|〈x∗, x〉| ≤
∑
x∈V

|〈x∗, x〉| for all x∗ ∈ X∗,

we have ∑
x∈U

‖T (x)‖ ≤ C
∑
x∈V

‖x‖.
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We next summarize the content of this paper. In Section 2 we provide a
characterization of operators factoring through subspaces of L1-spaces of finite
measures. Our general result (Theorem 2.1) involves some domination inequalities
by means of integrals with respect to vector measures. In Section 3 we study such
factorizations when the first factor is a positive and/or compact operator. In the positive
case, the factorization through a subspace of an L1-space is sometimes equivalent to the
factorization through an L1-space (Proposition 3.1). On the other hand, the compact
case is related to a certain summability property of the operator (Theorem 3.5). From
the technical point of view, our proof of Theorem 3.5 uses some recent results from [3]
on compactness in L1-spaces of vector measures. Finally, in Section 4 we deal with
the particular case of operators acting in C(K) spaces.

Terminology. All our linear spaces are real. If X is a Banach space, we will write BX

for its closed unit ball and X∗ for its dual space. The evaluation of x∗ ∈ X∗ at x ∈ X
is denoted by 〈x∗, x〉 = 〈x, x∗〉 = x∗(x). The norm of X is denoted by ‖ · ‖X or simply
‖ · ‖. When X is a Banach lattice, the symbol X+ stands for its positive cone, that
is, the set of all nonnegative elements of X. An operator is a linear continuous map
between Banach spaces. A subspace of a Banach space is a closed linear subspace. By
a nonnegative measure we mean a [0,∞]-valued countably additive measure defined
on a measurable space. Nonnegative finite measures are simply called finite measures.
By a Banach function space over a finite measure µ we mean an order ideal of L1(µ)
containing all simple functions which is equipped with a complete lattice norm.

A vector measure is a countably additive measure m defined on a measurable
space (Ω, Σ) and taking values in a Banach space X. We will say that m is positive
if X is a Banach lattice and m(Σ) ⊆ X+. A Rybakov control measure of m is a finite
measure of the form µ = |〈m, x∗0〉| for some x∗0 ∈ BX∗ such that m(A) = 0 whenever
µ(A) = 0. Here 〈m, x∗〉 denotes the real-valued measure obtained by composing m with
any x∗ ∈ X∗. We refer the reader to [17] for the basic properties of the Banach space
L1(m) of (equivalence classes of) real-valued functions on Ω which are integrable with
respect to m. The space L1(m) is a Banach function space over any Rybakov control
measure of m when equipped with the norm

‖ f ‖L1(m) := sup
x∗∈BX∗

∫
Ω

| f | d|〈m, x∗〉|, f ∈ L1(m).

Any order continuous Banach lattice with weak unit is order isometric to L1(m) for
some vector measure m. We write Im : L1(m)→ X for the integration operator given
by

Im( f ) :=
∫

Ω

f dm, f ∈ L1(m).

The symbol ‘Ω’ will be omitted in formulas involving integrals when no confusion
arises, so we write expressions like

∫
f dm to denote the integral over the total set on

which the measure is defined. We will also deal with the Banach space L∞(m), which
is defined as L∞(µ) for any Rybakov control measure µ of m.
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2. General factorization through a subspace of an L1-space

Let X and Y be Banach spaces and let T : X→ Y be an operator factoring through a
subspace E ⊆ L1(ν) for some finite measure ν, that is, there exist operators S : X → E
and R : E → Y such that T = R ◦ S . Then

n∑
j=1

‖T (x j)‖ ≤ ‖R‖
n∑

j=1

‖S (x j)‖L1(ν)

= ‖R‖
n∑

j=1

∫
|S (x j)| dν = ‖R‖

∥∥∥∥∥ n∑
j=1

|S (x j)|
∥∥∥∥∥

L1(ν)

for every x1, . . . , xn ∈ X, n ∈ N. This ‘1-concavity type’ inequality is the starting point
of the following characterization that relates domination by integrals with respect to
vector measures and factorization through subspaces of L1-spaces.

Theorem 2.1. Let X and Y be Banach spaces. The following assertions are equivalent
for an operator T : X → Y.

(i) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors as

X T //

S

��

Y

E

R

??

where S and R are operators.
(ii) There exist a finite measure ν, an L1(ν)-valued vector measure m, and an

operator i : X → L1(m) such that

‖T (x)‖ ≤
∥∥∥∥∥∫ i(x) dm

∥∥∥∥∥
L1(ν)

(2.1)

for every x ∈ X.
(iii) There exist an order continuous Banach lattice with weak unit L, an L-valued

vector measure m, and an operator i : X → L1(m) such that
n∑

j=1

‖T (x j)‖ ≤
∥∥∥∥∥ n∑

j=1

∣∣∣∣∣∫ i(x j) dm
∣∣∣∣∣∥∥∥∥∥

L
(2.2)

for every x1, . . . , xn ∈ X, n ∈ N.

The following simple lemma will be used in the proof of Theorem 2.1; it gives a
basic tool that relates domination and factorization of operators.

Lemma 2.2. Let X, Y, and Z be Banach spaces and let T : X → Y and S : X → Z be
operators such that

‖T (x)‖Y ≤ ‖S (x)‖Z for all x ∈ X. (2.3)

Then there is an operator R : S (X)→ Y such that T = R ◦ S .
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Proof. By (2.3), we can define a linear continuous mapping r : S (X)→ Y by declaring
r(S (x)) := T (x) for all x ∈ X. Then r can be extended uniquely to an operator
R : S (X)→ Y satisfying the required property. �

Proof of Theorem 2.1. (i) =⇒ (ii) Let (Ω, Σ) be the measurable space on which ν is
defined. Take the vector measure m : Σ→ L1(ν) given by m(A) := χA (the characteristic
function of A) for all A ∈ Σ. In this case, the integration operator Im : L1(m)→ L1(ν) is
an order isometry (see, for example, [17, Corollary 3.66]). Consider now the operator
i : X → L1(m) given by i := I−1

m ◦ S . We can assume without loss of generality that
‖R‖ = 1. Then for every x ∈ X we have

‖T (x)‖ = ‖R(S (x))‖ ≤ ‖R‖ ‖S (x)‖L1(ν)

= ‖Im(i(x))‖L1(ν) =

∥∥∥∥∥∫ i(x) dm
∥∥∥∥∥

L1(ν)
.

Therefore, inequality (2.1) holds.
(ii) =⇒ (i) We can apply Lemma 2.2 to S := Im ◦ i : X → L1(ν) in order to find an

operator R : S (X)→ Y such that R ◦ S = T .
(ii) =⇒ (iii) This is clear by taking L := L1(ν).
(iii) =⇒ (ii) We begin by proving the following claim.

Claim 2.3. There is ξ ∈ BL∗ such that

‖T (x)‖ ≤
〈∣∣∣∣∣∫ i(x) dm

∣∣∣∣∣, ξ〉 for all x ∈ X. (2.4)

Indeed, for each x̄ = (x1, . . . , xn) ∈ Xn, n ∈ N, we define φx̄ : BL∗ → R as

φx̄(ξ) :=
n∑

j=1

‖T (x j)‖ −
〈 n∑

j=1

∣∣∣∣∣∫ i(x j) dm
∣∣∣∣∣, ξ〉.

Clearly, φx̄ is convex, w∗-continuous, and there exists ξx̄ ∈ BL∗ such that φx̄(ξx̄) ≤ 0
(by (2.2)). Note also that the collection of all functions of the form φx̄ is a convex cone
of RBL∗ . An appeal to Ky Fan’s lemma (see, for example, [8, Lemma 9.10]) ensures
that there is ξ ∈ BL∗ such that φx̄(ξ) ≤ 0 for all φx̄ as above. In particular, inequality
(2.4) holds and the claim is proved.

Since L is an order continuous Banach lattice with weak unit, there exist a Banach
function space Z over some probability space (Ω,Σ, µ), an order isometry J : L→ Z,
and a function h ∈ L1(µ) such that

〈u, ξ〉 =

∫
Ω

J(u)h dµ for all u ∈ L (2.5)

(see, for example, [15, Theorem 1.b.14]). Let ν be the finite measure defined by the
formula ν(A) :=

∫
A |h| dµ for all A ∈ Σ, so that the identity map α : Z → L1(ν) is an

operator. Clearly, the operator j := α ◦ J : L→ L1(ν) satisfies

j(|u|) = | j(u)| for every u ∈ L. (2.6)
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Define an L1(ν)-valued vector measure by m̃ := j ◦ m. Then every m-integrable
function is m̃-integrable and the identity map β : L1(m) → L1(m̃) is an operator
satisfying Im̃ ◦ β = j ◦ Im (see, for example, [17, Lemma 3.27]). Bearing in mind (2.4),
for every x ∈ X we have:

‖T (x)‖ ≤
〈∣∣∣∣∣∫ i(x) dm

∣∣∣∣∣, ξ〉 (2.5)
=

∫
Ω

J
(∣∣∣∣∣∫ i(x) dm

∣∣∣∣∣)h dµ

≤

∫
Ω

J
(∣∣∣∣∣∫ i(x) dm

∣∣∣∣∣)|h| dµ =

∫
Ω

j
(∣∣∣∣∣∫ i(x) dm

∣∣∣∣∣) dν

(2.6)
=

∫
Ω

∣∣∣∣∣ j(∫ i(x) dm
)∣∣∣∣∣ dν

=

∫
Ω

∣∣∣∣∣∫ β(i(x)) dm̃
∣∣∣∣∣ dν =

∥∥∥∥∥∫ (β ◦ i)(x) dm̃
∥∥∥∥∥

L1(ν)
.

Therefore, inequality (2.1) holds for the L1(ν)-valued vector measure m̃ and the
operator β ◦ i : X → L1(m̃), hence T satisfies (ii). The proof is finished. �

Remark 2.4. When X is an order continuous Banach function space over a finite
measure, we get an alternative proof for (i) =⇒ (ii) in Theorem 2.1, with a different
choice of operators and vector measures.

Proof. Let (Ω, Σ, µ) be the finite measure space on which X is based. Suppose (i) in
Theorem 2.1 holds. We can assume without loss of generality that ‖R‖ = 1. Define
m(A) := S (χA) for every A ∈ Σ. Since S is an operator and X is order continuous, the
following statements hold: m : Σ→ L1(ν) is a vector measure; every element of X
belongs to L1(m); the identity map i : X → L1(m) is an operator; and S = Im ◦ i (see,
for example, [17, Proposition 4.4]). Then

‖T (x)‖ = ‖R(S (x))‖ ≤ ‖S (x)‖ = ‖Im(i(x))‖L1(ν) =

∥∥∥∥∥∫
Ω

i(x) dm
∥∥∥∥∥

L1(ν)

for every x ∈ X. This proves that (ii) in Theorem 2.1 holds. �

Corollary 2.5. Let X be a Banach space and L an order continuous Banach lattice
with weak unit. If T : X → L is an operator satisfying

n∑
j=1

‖T (x j)‖ ≤
∥∥∥∥∥ n∑

j=1

|T (x j)|
∥∥∥∥∥

L
for all x1, . . . , xn ∈ X, n ∈ N, (2.7)

then T factors through a subspace of L1(ν) for some finite measure ν.

Proof. By [15, Theorem 1.b.14], we can assume that L is a Banach function space
over some probability space (Ω, Σ, µ). The set function m : Σ → L defined by
m(A) := χA is a vector measure such that the integration operator Im : L1(m)→ L is an
isomorphism (see, for example, [17, Corollary 3.66]). Inequality (2.7) means that (iii)
in Theorem 2.1 holds by taking i := I−1

m ◦ T . Therefore, T factors through a subspace
of L1(ν) for some finite measure ν. �
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In general, an operator factoring through a subspace of an L1-space need not factor
through an L1-space.

Example 2.6. The identity operator T : `2→ `2 factors through the subspace of L1[0,1]
generated by the Rademacher functions (which is isomorphic to `2). However,
T cannot be factored through an L1-space. Indeed, T is not 1-summing, while
Grothendieck’s theorem ensures that every operator from an L1-space to `2 is 1-
summing (see, for example, [8, Theorem 3.4]).

A Banach space Y is called injective (respectively, separably injective) if, for every
Banach space (respectively, separable Banach space) Z and every subspace Z0 ⊆ Z,
any operator R : Z0 → Y can be extended to an operator R̃ : Z → Y . A typical example
of injective (respectively, separably injective) space is `∞ (respectively, c0). We refer
the reader to [1, 22] for basic information on injective and separably injective spaces.

Remark 2.7. Let X and Y be Banach spaces and T : X → Y an operator satisfying the
statements of Theorem 2.1. Then T factors through L1(ν) if either Y is injective or Y
is separably injective and X is separable.

Proof. The injective case is obvious. On the other hand, if X is separable, then so
is Z0 := S (X) ⊆ E. Since L1(ν) is weakly compactly generated, it has the separable
complementation property (see, for example, [10, Section 13.2]), hence there is a
separable complemented subspace Z of L1(ν) such that Z0 ⊆ Z. If, in addition, Y is
separably injective, then the restriction R|Z0 can be extended to an operator from Z
to Y . Since Z is complemented in L1(ν), such an operator can be obviously extended
to an operator from L1(ν) to Y . �

3. Positive and compact factorizations

We begin this section by showing that, under some adequate requirements, factoring
through a subspace of an L1-space is equivalent to factoring through an L1-space. To
this end we shall apply the Maurey–Rosenthal theorem (Theorem 1.1).

Proposition 3.1. Let X be an order continuous Banach function space over a finite
measure, Y a Banach space and T : X → Y an operator. The following statements are
equivalent.

(i) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors as

X T //

S

��

Y

E

R

??

where S is a positive operator and R is an operator.
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(ii) There is a finite measure ν such that T factors as

X T //

S

��

Y

L1(ν)

R

==

where S is a positive operator and R is an operator.

Proof. Only (i) =⇒ (ii) requires a proof. Let (Ω,Σ, µ) be the finite measure space on
which X is based. Since S is positive and L1(ν) is 1-concave, S is 1-concave (see,
for example, [15, Proposition 1.d.9]). The Maurey–Rosenthal theorem ensures that S
factors as

X S //

U

��

E

L1(µ)

V

==

where U is a positive (multiplication) operator and V is an operator. Then we have the
factorization T = (R ◦ V) ◦ U and so (ii) holds. �

The following remark should be compared with Corollary 2.5.
Remark 3.2. Let X be an order continuous Banach function space over a finite
measure, Y a Banach lattice and T : X → Y a positive operator satisfying

n∑
j=1

‖T (x j)‖ ≤
∥∥∥∥∥ n∑

j=1

|T (x j)|
∥∥∥∥∥ for all x1, . . . , xn ∈ X, n ∈ N. (3.1)

Then T factors through L1(ν) for some finite measure ν.
Proof. Every positive operator between Banach lattices satisfying (3.1) is 1-concave
(see, for example, [15, Proposition 1.d.9]). Hence the conclusion follows from the
Maurey–Rosenthal theorem. �

Some straightforward verifications in the proof of Theorem 2.1 yield the following
characterization.

Theorem 3.3. Let X be a Banach lattice, Y a Banach space, and T : X→ Y an operator.
The following statements are equivalent.

(i) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors as

X T //

S

��

Y

E

R

??

where S is a positive operator and R is an operator.
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(ii) There exist a finite measure ν, an L1(ν)-valued positive vector measure m, and a
positive operator i : X → L1(m) such that

‖T (x)‖ ≤
∥∥∥∥∥∫ i(x) dm

∥∥∥∥∥
L1(ν)

for every x ∈ X.
(iii) There exist an order continuous Banach lattice with weak unit L, an L-valued

positive vector measure m, and a positive operator i : X → L1(m) such that
n∑

j=1

‖T (x j)‖ ≤
∥∥∥∥∥ n∑

j=1

∣∣∣∣∣∫ i(x j) dm
∣∣∣∣∣∥∥∥∥∥

L

for every x1, . . . , xn ∈ X, n ∈ N.

From now on we focus on factorizations for which the first factor is a compact
operator. In this case, domination by L∞-valued operators appears in a natural way
and the key property for the vector measure is to have norm relatively compact range.
This type of factorization is related to the following summability property.

Definition 3.4. Let X and Y be Banach spaces. An operator T : X → Y satisfies
property (S∞) if there exist a finite measure ν, an L1(ν)-valued vector measure m with
norm relatively compact range, and an operator i : X → L∞(m) such that

n∑
j=1

‖T (x j)‖ ≤ sup
h∈BL∞(m)

n∑
j=1

∥∥∥∥∥∫ i(x j)h dm
∥∥∥∥∥

L1(ν)
(3.2)

for every x1, . . . , xn ∈ X, n ∈ N.

Theorem 3.5. Let X and Y be Banach spaces. If an operator T : X → Y satisfies
property (S∞), then there exist a finite measure ν and a subspace E ⊆ L1(ν) such that
T factors as

X T //

S

��

Y

E

R

??

where S is a compact operator and R is an operator.

In the proof of Theorem 3.5 we will use an auxiliary locally convex Hausdorff
topology τm on L1(m) (m a vector measure). A net ( fα) in L1(m) is said to be τm-
convergent to f ∈ L1(m) if and only if for every h ∈ L∞(m) we have∫

fαh dm→
∫

f h dm in norm.

The topology τm has been studied recently in [3, 21].
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Proof of Theorem 3.5. Since m has norm relatively compact range, K := BL∞(m) is τm-
compact as a subset of L1(m) (see [3, Proposition 3.5]). From now on K is equipped
with the topology τm. For each g ∈ L∞(m) we consider the operator

Tg : L1(m)→ L1(ν), Tg( f ) =

∫
f g dm.

Since Tg is τm-norm continuous, the restriction Tg|K is Bochner integrable with respect
to any regular Borel probability on K. Moreover, the function g̃ : K → R given by

g̃(h) := ‖Tg(h)‖L1(ν) (3.3)

is continuous. We denote by C(K, L1(ν)) the Banach space of all L1(ν)-valued
functions on K which are τm-norm continuous, with the supremum norm.

Claim A. The map j : X → C(K, L1(ν)) given by j(x) := Ti(x)|K is an operator. Indeed,
the linearity of j is clear. On the other hand, the norm of any f ∈ L1(m) can be
computed as

‖ f ‖L1(m) = sup
h∈K

∥∥∥∥∥∫ h f dm
∥∥∥∥∥

L1(ν)
(3.4)

(see, for example, [17, Lemma 3.11]) and so for every x ∈ X we have

‖ j(x)‖C(K,L1(ν)) = sup
h∈K

∥∥∥∥∥∫ hi(x) dm
∥∥∥∥∥

L1(ν)

(3.4)
= ‖i(x)‖L1(m) ≤ ‖m‖ · ‖i(x)‖L∞(m) ≤ ‖m‖ · ‖i‖ · ‖x‖,

where ‖m‖ denotes the total semivariation of m. Therefore, j is continuous.

Claim B. Let η be a regular Borel probability on K. Then the map

Φ : K → L1(η, L1(ν)), Φ(g) := Tg|K ,

is τm-norm continuous. Here L1(η, L1(ν)) denotes the Banach space of all (equivalence
classes of) L1(ν)-valued functions on K which are Bochner integrable with respect to η.
Since K is a compact subset of the angelic space (L1(m), τm) (see [3, Proposition 2.2]),
it suffices to prove that Φ is τm-norm sequentially continuous. Let (gn) be a sequence
in K which τm-converges to g ∈ K. For each n ∈ N we define fn := gn − g ∈ 2BL∞(m)

and we consider the function f̃n ∈ C(K) defined by (3.3). Note that the sequence ( f̃n)
in C(K) satisfies f̃n → 0 pointwise on K (because fn → 0 with respect to τm) and

‖ f̃n‖C(K) = sup
h∈K

∥∥∥∥∥∫ h fn dm
∥∥∥∥∥

L1(ν)

(3.4)
= ‖ fn‖L1(m) ≤ 2‖m‖ for all n ∈ N.

By Lebesgue’s dominated convergence theorem we get

‖Φ(gn) − Φ(g)‖L1(η,L1(ν)) =

∫
K
‖Tgn (h) − Tg(h)‖L1(ν) dη(h) =

∫
K

f̃n dη→ 0.

This proves Claim B.

https://doi.org/10.1017/S1446788716000513 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000513


[11] Factorization of operators through subspaces of L1-spaces 323

Consider now the w∗-compact convex set P(K) ⊆ C(K)∗ of all regular Borel
probability measures on K. For each x̄ = (x1, . . . , xn) ∈ Xn, n ∈ N, we define the
function φx̄ : P(K)→ R by

φx̄(η) :=
n∑

k=1

‖T (xk)‖ −
n∑

k=1

∫
K

˜i(xk) dη.

Clearly, φx̄ is convex and w∗-continuous. Moreover, since
∑n

k=1
˜i(xk) is continuous

on K, there is hx̄ ∈ K such that
n∑

k=1

‖T (xk)‖
(3.2)
≤ sup

h∈K

n∑
k=1

˜i(xk)(h) =

n∑
k=1

˜i(xk)(hx̄),

hence φx̄(δhx̄ ) ≤ 0, where δhx̄ ∈ P(K) denotes the evaluation functional at hx̄. It is also
easy to check that the collection of all functions of the form φx̄ is a convex cone of
RP(K). According to Ky Fan’s lemma (see, for example, [8, Lemma 9.10]) there is
η ∈ P(K) such that φx̄(η) ≤ 0 for all functions of the form φx̄. Thus

‖T (x)‖ ≤
∫

K
ĩ(x) dη = ‖S (x)‖L1(η,L1(ν)) for every x ∈ X, (3.5)

where S is the composition of the operator j (of Claim A) with the identity operator
from C(K, L1(ν)) to L1(η, L1(ν)). In view of (3.5), we can apply Lemma 2.2 to find an
operator R : S (X)→ Y such that T = R ◦ S . Taking into account that L1(η, L1(ν)) is
isometrically isomorphic to L1(η ⊗ ν), we have a factorization of T through a subspace
of the L1-space of the finite measure η ⊗ ν. It remains to check that S is compact.
Let ρ > 0 such that i(ρBX) ⊆ K. Since S (ρBX) = Φ(i(ρBX)) ⊆ Φ(K) and Φ(K) is norm
compact in L1(η, L1(ν)) (by Claim B), the set S (ρBX) is norm relatively compact, hence
so is S (BX). The proof is finished. �

The proof that (ii) =⇒ (i) in the following remark follows the steps of the proof of
(iii) =⇒ (ii) in Theorem 2.1.

Remark 3.6. Let X and Y be Banach spaces and T : X→ Y an operator. The following
assertions are equivalent and imply that T satisfies property (S∞).

(i) There exist a finite measure ν, an L1(ν)-valued vector measure m with norm
relatively compact range and an operator i : X → L∞(m) such that

‖T (x)‖ ≤
∥∥∥∥∥∫ i(x) dm

∥∥∥∥∥
L1(ν)

for every x ∈ X.
(ii) There exist an order continuous Banach lattice with weak unit L, an L-valued

vector measure m with norm relatively compact range and an operator i : X →
L∞(m) such that

n∑
j=1

‖T (x j)‖ ≤
∥∥∥∥∥ n∑

j=1

∣∣∣∣∣∫ i(x j) dm
∣∣∣∣∣∥∥∥∥∥

L

for every x1, . . . , xn ∈ X, n ∈ N.
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In order to prove a version of Theorem 3.5 for positive operators and positive vector
measures we need the following technical result.

Lemma 3.7. Let m be a vector measure. Then:

(i) L1(m)+ is τm-sequentially closed.
(ii) K ∩ L1(m)+ is τm-compact whenever K ⊆ L1(m) is τm-compact.

Proof. The convex set L1(m)+ is norm closed, hence weakly closed, so (i) follows
from [3, Proposition 3.3]. Bearing in mind that τm-compactness and τm-sequential
compactness coincide (see [3, Corollary 2.3]), part (ii) follows from (i). �

Theorem 3.8. Let X be a Banach lattice, Y a Banach space, and T : X→ Y an operator
such that there exist a finite measure ν, an L1(ν)-valued positive vector measure m with
norm relatively compact range, and a positive operator i : X → L∞(m) such that

n∑
j=1

‖T (x j)‖ ≤ sup
h∈BL∞(m)

n∑
j=1

∥∥∥∥∥∫ i(x j)h dm
∥∥∥∥∥

L1(ν)

for every x1, . . . , xn ∈ X, n ∈ N.
Then there exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors as

X T //

S

��

Y

E

R

??

where S is a positive compact operator and R is an operator.

Proof. This can be proved as Theorem 3.5 with only a few changes:

(1) Take the τm-compact set K := BL∞(m) ∩ L1(m)+ (Lemma 3.7).
(2) ‖ j(x)‖C(K,L1(ν)) ≤ ‖i(x)‖L1(m).
(3) ‖ f̃n‖C(K) ≤ ‖ fn‖L1(m).
(4) φx̄(η) :=

∑n
k=1 ‖T (xk)‖ − 2

∑n
k=1

∫
K

˜i(xk) dη.

(5) ‖T (x)‖ ≤ 2
∫

K ĩ(x) dη = ‖2S (x)‖L1(η,L1(ν)).
(6) i(ρBX ∩ X+) ⊆ K.

Since m and i are positive, the operator j is positive and the same holds for S . �

4. Factorization of operators acting in C(K) spaces

Throughout this section we consider the case of operators acting in a C(K) space
(K a compact Hausdorff topological space), that is, the Banach space of all real-valued
continuous functions on K. Such operators play an important role in the general
theory of Banach spaces. A fundamental result of Bartle, Dunford, and Schwartz [2]
(see, for example, [9, VI.2])states that if T : C(K)→ Y is a weakly compact operator
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(Y a Banach space), then there is an Y-valued regular Borel vector measure m on K
such that T ( f ) =

∫
K f dm for all f ∈ C(K).

Remark 4.1. Let K be a compact Hausdorff topological space, Y a Banach space, and
T : C(K)→ Y an operator. The following statements are equivalent.

(i) T is 1-summing.
(ii) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors as

C(K) T //

S

��

Y

E

R

==

where S is a positive operator and R is an operator.
(ii′) The same as (ii) with a (not necessarily finite) nonnegative measure ν.
(iii) There is a finite measure ν such that T factors as

C(K) T //

S

��

Y

L1(ν)

R

>>

where S is a positive operator and R is an operator.
(iii′) The same as (iii) with a (not necessarily finite) nonnegative measure ν.

Proof. The implication (i) =⇒ (iii) follows from Pietsch’s factorization theorem (see,
for example, [8, Corollary 2.15]). (ii′) =⇒ (i) is a consequence of the fact that every
positive operator from C(K) to a 1-concave Banach lattice (like L1(ν)) is 1-summing
(see, for example, [15, Theorem 1.d.10]). The remaining implications are obvious. �

It turns out that an operator acting in a C(K) space factors through a subspace of an
L1-space if and only if it is 2-summing. These operators can also be characterized in
the spirit of Theorem 2.1, as follows.

Theorem 4.2. Let K be a compact Hausdorff topological space and Y a Banach space.
The following assertions are equivalent for an operator T : C(K)→ Y.

(i) T is 2-summing.
(ii) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors as

C(K) T //

S

��

Y

E

R

==

where S and R are operators.
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(ii′) The same as (ii) with a (not necessarily finite) nonnegative measure ν.
(iii) There exist a finite measure ν and an L1(ν)-valued regular Borel vector

measure m on K such that

‖T ( f )‖ ≤
∥∥∥∥∥∫

K
f dm

∥∥∥∥∥
L1(ν)

for every f ∈ C(K).
(iv) There exist an order continuous Banach lattice with weak unit L and an L-valued

regular Borel vector measure m on K such that
n∑

j=1

‖T ( f j)‖ ≤
∥∥∥∥∥ n∑

j=1

∣∣∣∣∣∫
K

f j dm
∣∣∣∣∣∥∥∥∥∥

L

for every f1, . . . , fn ∈ C(K), n ∈ N.

Proof. (i) =⇒ (ii) This implication holds for operators defined on arbitrary Banach
spaces. Indeed, any 2-summing operator factors through a Hilbert space (see, for
example, [8, Corollary 2.16]) and every Hilbert space embeds isomorphically into an
L1-space of a finite measure (see, for example, [14, p. 128, Theorem 12]).

(ii) =⇒ (ii′) Trivial.
(ii′) =⇒ (i) Since every operator from C(K) to an L1-space is 2-summing (see, for

example, [8, Theorem 3.5]), S is 2-summing and so is T = R ◦ S .
(ii) =⇒ (iii) We can assume without loss of generality that ‖R‖ = 1. Since L1(ν)

contains no subspace isomorphic to c0, the operator S is weakly compact (see, for
example, [9, p. 159, Theorem 15]). Therefore, there is an E-valued regular Borel
vector measure m on K such that S = Im ◦ i, where i : C(K)→ L1(m) is the identity
operator (see, for example, [9, VI.2]). Then

‖T ( f )‖ = ‖R(S ( f ))‖ ≤ ‖S ( f )‖ = ‖Im( f )‖L1(ν) =

∥∥∥∥∥∫
K

f dm
∥∥∥∥∥

L1(ν)

for every f ∈ C(K). This proves that (iii) holds.
(iii) =⇒ (iv) This is clear by taking L := L1(ν).
(iv) =⇒ (iii) This can be proved as in (iii) =⇒ (ii) of Theorem 2.1.
(iii) =⇒ (ii) Let i : C(K)→ L1(m) be the identity operator and consider the operator

S := Im ◦ i : C(K)→ L1(ν). Then Lemma 2.2 applied to T and S gives the desired
factorization. The proof is complete. �

The following example shows that compact operators from a C(K) space need not
factor through subspaces of L1-spaces.

Example 4.3. Consider the standard basis (en) of c0, a sequence (In) of pairwise
disjoint open subintervals of [0, 1] and points kn ∈ In for all n ∈ N. Define an operator
T : C[0, 1]→ c0 by

T ( f ) :=
∞∑

n=1

f (kn)
√

n
en, f ∈ C[0, 1].

Then T is compact but not 2-summing (hence T does not factor through a subspace of
an L1-space).
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Proof. Clearly, T is the limit (in the operator norm) of the sequence (Tp) of finite-rank
operators Tp : C[0, 1]→ c0 defined by

Tp( f ) :=
p∑

n=1

f (kn)
√

n
en, f ∈ C[0, 1].

Hence T is compact. We prove that T is not 2-summing by contradiction. If T were
2-summing, then Pietsch’s domination theorem (see, for example, [8, Theorem 2.12])
would ensure the existence of a finite Borel measure µ on [0, 1] such that

‖T ( f )‖c0 ≤ ‖ f ‖L2(µ) for all f ∈ C(K).

Take a sequence ( fn) in C[0, 1] such that 0 ≤ fn ≤ 1, supp( fn) ⊆ In, and fn(kn) = 1 for
all n ∈ N. Then, for any N ∈ N, we have

N∑
n=1

1
n

=

N∑
n=1

‖T ( fn)‖2c0
≤

N∑
n=1

‖ fn‖2L2(µ) =

∫
[0,1]

( N∑
n=1

f 2
n

)
dµ ≤ µ([0, 1]) <∞,

because 0 ≤
∑N

n=1 f 2
n ≤ 1. This gives a contradiction. Therefore, T is not 2-summing

and cannot be factored through a subspace of an L1-space. �
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Rosenthal-type factorizations and l-sums of L1-spaces’, J. Funct. Anal. 220(2) (2005), 460–485.

[12] J. Garcı́a-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics,
North-Holland Mathematics Studies, 116 (North-Holland, Amsterdam, 1985).
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