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Irreducible quotients of

A-hypergeometric systems

Mutsumi Saito

Abstract

Gel’fand, Kapranov and Zelevinsky proved, using the theory of perverse sheaves, that
in the Cohen–Macaulay case an A-hypergeometric system is irreducible if its parameter
vector is non-resonant. In this paper we prove, using the theory of the ring of differential
operators on an affine toric variety, that in general an A-hypergeometric system is
irreducible if and only if its parameter vector is non-resonant. In the course of the
proof, we determine the irreducible quotients of an A-hypergeometric system.

1. Introduction

Let K be a field of characteristic 0, and let A := (aij) be a d× n integer matrix. We assume
that Zd is generated by the column vectors of A as an abelian group. Given a parameter vector
β = (β1, . . . , βd)T ∈Kd, the A-hypergeometric (or GKZ ) system MA(β) with parameter vector β
is defined by

MA(β) :=D(Kn)/D(Kn)IA(∂) +D(Kn)〈Aθ − β〉, (1)

where D(Kn) is the nth Weyl algebra, i.e.

D(Kn) =K[x1, . . . , xn]〈∂1, . . . , ∂n〉, (2)

IA(∂) is the toric ideal of K[∂1, . . . , ∂n] defined by A, and D(Kn)〈Aθ − β〉 is the left ideal of
D(Kn) generated by

∑n
j=1 aijxj∂j − βi, i= 1, . . . , d.

The irreducibility of MA(β) is one of the most fundamental questions in the theory of
A-hypergeometric systems. Gel’fand et al. proved, using the theory of perverse sheaves, that
when the toric ring is Cohen–Macaulay, MA(β) is irreducible if its parameter vector β is non-
resonant; see [GKZ90, Proposition 4.4 and Theorem 4.6]. Schulze and Walther have determined
for which parameter vector β the Fourier transform of MA(β) is naturally isomorphic to the
direct image of a simple object on the big torus of the affine toric variety defined by A (see
[SW09, Corollary 3.7]), which sharpens [GKZ90, Theorem 4.6]. Walther proved in [Wal07,
Theorem 3.13] that if MA(β) has irreducible monodromy representation, then so does MA(γ)
for any γ ∈ β + Zd, using homological tools developed in [MMW05]. Naturally, an irreducible
D(Kn)-module has irreducible monodromy representation; see Proposition 6.8.

In this paper, using the theory of the ring of differential operators on an affine toric variety,
we prove that MA(β) is irreducible if and only if β is non-resonant, without assuming that the
toric ring is Cohen–Macaulay. Moreover, in the course of the proof, we determine the irreducible
quotients of MA(β).
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M. Saito

Let ι be the anti-automorphism of D(Kn) defined by ι(xj) = ∂j and ι(∂j) = xj for j =
1, . . . , n. Then ι gives rise to the equivalence between the category of left D(Kn)-modules and
the category of right D(Kn)-modules; the left D(Kn)-module MA(β) corresponds to the right
D(Kn)-module MKn(β) (whose definition is given in (8)). Hence the irreducibility of MA(β) is
equivalent to that of MKn(β). In this paper, we work with the categories of right D-modules.
This has two advantages: one is that the support of MKn(β) is precisely the affine toric variety
defined by A; the other is that we consider direct image functors of D-modules, and for this
purpose, right D-modules work more naturally than left D-modules.

In § 2 we introduce the varieties considered in this paper, and in § 3 we briefly recall the rings
of differential operators on these varieties and their Zd-gradings.

In § 4, for each variety X introduced in § 2 we consider the category OX , which is analogous to
the category O from the theory of highest-weight modules over semisimple Lie algebras defined
in [BGG76] (cf. [MV98, Sai07]). We then recall the simple objects in OX for X =XA, the affine
toric variety defined by A (see Proposition 4.3), and for X = TA, the big torus of XA (see
Proposition 4.2). Finally, we define Verma-type modules in OX . The right-module counterpart
MKn(β) of the A-hypergeometric system MA(β) is a Verma-type module in OKn .

In § 5, we explicitly describe the direct image functors of D-modules by inclusions between
the varieties under consideration. Using this description, in § 6 we show that the direct image of a
simple object in OTA by the inclusion of TA into Kn has a unique irreducible D(Kn)-submodule,
and we describe it explicitly (see Theorem 6.4). We then show that each simple object in OKn

is obtained in a similar way from a possibly smaller torus (Theorem 6.6).

In § 7, we compute the pull-back of each simple object in OKn by the inclusion of XA into Kn

(Theorems 7.3 and 7.4). As a consequence, we determine the irreducible quotients of MKn(β)
(Corollaries 7.5 and 7.6). In § 8, we prove that MKn(β) is irreducible if and only if β is non-
resonant (Theorem 8.3).

2. Varieties

Let A := {a1, a2, . . . , an} be a finite set of column vectors in Zd. We will sometimes identify A
with the matrix (a1, a2, . . . , an) = (aij). Let ZA and R>0A denote, respectively, the abelian
group and the cone generated by A. Throughout this paper, we assume that ZA= Zd and that
R>0A is strongly convex.

Let K denote a field of characteristic 0. For a face τ of the cone R>0A, we define the following
varieties:

Kτ := {x= (x1, . . . , xn) ∈Kn : xj = 0 when aj /∈ τ},
(K×)τ := {x ∈Kτ : xj 6= 0 when aj ∈ τ},

Xτ := {x ∈Kτ : xu − xv = 0 for u, v ∈ Nn such that Au=Av},
Tτ := {x ∈ (K×)τ : xu − xv = 0 for u, v ∈ Nn such that Au=Av}.

Here we have used multi-index notation, where xu stands for xu1
1 x

u2
2 · · · xunn , with u=

(u1, u2, . . . , un)T. When τ is the whole cone R>0A, we denote the above varieties by Kn, (K×)n,
XA and TA, respectively. Then

XA =
∐

faces τ of R>0A

Tτ (3)

614

https://doi.org/10.1112/S0010437X10004987 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004987


Irreducible quotients of A-hypergeometric systems

is the (K×)d-orbit decomposition of the toric variety XA (see, e.g., [Ful93]). Here (K×)d acts on
Kn by

(K×)d ×Kn 3 (t, (x1, . . . , xn)) 7→ (ta1x1, . . . , t
anxn) ∈Kn,

where ta = ta1
1 t

a2
2 · · · t

ad
d for a= (a1, a2, . . . , ad)T.

Let NA denote the monoid generated by A. The semigroup algebra K[NA] =
⊕
a∈NA Kt

a is
the ring of regular functions on the affine toric variety XA. Then we have K[NA]'K[x]/IA,
where IA is the ideal of the polynomial ring K[x] :=K[x1, . . . , xn] generated by all xu − xv for
u, v ∈ Nn with Au=Av.

3. Rings of differential operators

Let R be a commutative K-algebra, and let M and N be R-modules. We briefly recall the module
D(M, N) of differential operators from M to N ; for details, see [SS88]. For k ∈ N, the subspaces
Dk(M, N) of HomK(M, N) are defined inductively by

D0(M, N) := HomR(M, N)

and

Dk+1(M, N) := {P ∈HomK(M, N) : [f, P ] ∈Dk(M, N) for all f ∈R},
where [ , ] denotes the commutator. Set D(M, N) :=

⋃∞
k=0 D

k(M, N) and D(M) :=D(M,M).
Then D(M) is a K-algebra, and D(M, N) is a (D(N), D(M))-bimodule.

The ring D(Kn) :=D(K[x]) of differential operators on Kn is the nth Weyl algebra (2).
The ring D((K×)n) :=D(K[x±1

1 , . . . , x±1
n ]) of differential operators on (K×)n is given by

D((K×)n) = K[x±1
1 , . . . , x±1

n ]〈∂1, . . . , ∂n〉
=
⊕
u∈Zn

xuK[θ1, . . . , θn],

where θj = xj∂j .
The ring D(TA) :=D(K[t±1

1 , . . . , t±1
d ]) of differential operators on TA is given by

D(TA) = K[t±1
1 , . . . , t±1

d ]〈∂t1 , . . . , ∂td〉

=
⊕
a∈Zd

taK[s1, . . . , sd],

where si = ti∂ti and ∂ti = ∂/∂ti.
The ring D(XA) :=D(K[NA]) of differential operators on XA is a subalgebra of D(TA):

D(XA) = {P ∈D(TA) : P (K[NA])⊆K[NA]}.

Let X be Kn, (K×)n, TA or XA. For a= (a1, . . . , ad)T ∈ Zd, set

D(X)a := {P ∈D(X) : [si, P ] = aiP for i= 1, . . . , d},

where si =
∑n

j=1 aijxj∂j for X =Kn or (K×)n. Then

D(X) =
⊕
a∈Zd

D(X)a

is a Zd-graded algebra.
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Let τ be a face of the cone R>0A. Let Z(A ∩ τ) and N(A ∩ τ) denote, respectively, the abelian
group and the monoid generated by A ∩ τ . Set

Zτ := {u= (u1, . . . , un) ∈ Zn : uj = 0 when aj /∈ τ}.

As in the case where τ is the whole cone R>0A, for Kτ , (K×)τ , Tτ and Xτ we consider the
following rings of differential operators:

D(Kτ ) = D(K[xj : aj ∈ τ ]) =K[xj : aj ∈ τ ]〈∂j : aj ∈ τ〉,
D((K×)τ ) = K[x±1

j : aj ∈ τ ]〈∂j : aj ∈ τ〉=
⊕
u∈Zτ

xuK[θj : aj ∈ τ ],

D(Tτ ) =
⊕

a∈Z(A∩τ)

taK[s1|τ , . . . , sd|τ ],

D(Xτ ) = {P ∈D(Tτ ) : P (K[Xτ ])⊆K[Xτ ]},

where si|τ is the operator si restricted to K[Tτ ] =K[t±aj : aj ∈ τ ] and K[Xτ ] is the subalgebra
of K[Tτ ] defined by

K[Xτ ] =K[N(A ∩ τ)] =K[taj : aj ∈ τ ].
These rings of differential operators are graded by Z(A ∩ τ), and since Z(A ∩ τ) is a subgroup of
ZA= Zd, they are also considered to be Zd-graded. Note that si|τ =

∑
aj∈τ aijθj in x-coordinates.

4. The category OX

Take X to be Kn, (K×)n, TA or XA. We shall define a full subcategory OX of the category of
right D(X)-modules (cf. [MV98]). A right D(X)-module M is an object of OX if the support
of M is contained in XA and M has a weight decomposition M =

⊕
λ∈Kd Mλ, where

Mλ = {x ∈M : x.f(s) = f(−λ)x for all f ∈K[s]}

with K[s] =K[s1, . . . , sd].

Proposition 4.1. Let M be a simple object in OX . Then M is an irreducible right D(X)-
module.

Proof. Let N be a right D(X)-submodule of M . Let x ∈N , and write x=
∑
b∈S xb for xb ∈Mb,

where S is a finite subset of Kd. For b ∈ S, take f(s) ∈K[s] such that f(−b) 6= 0 and f(−c) = 0
for all c ∈ S\{b}. Upon applying f(s) to x, we see that xb ∈N . Hence N ∈ OX . By the simplicity
of M in OX , we have N = 0 or N =M . 2

In the rest of this section, we define objects LTA(λ) and LXA(λ) which are simple in the
categories OTA and OXA , respectively. Then we define Verma-type modules MXA(β), MKn(β)
and M(K×)n(β).

Let λ ∈Kd. We define a right D(TA)-module LTA(λ) by

LTA(λ) :=D(TA)/〈s− λ〉D(TA) :=D(TA)
/ d∑
i=1

(si − λi)D(TA).

Let K[t±1] denote the Laurent polynomial ring K[t±1
1 , . . . , t±1

d ]. By taking formal adjoint
operators, D(TA) acts on K[t±1]t−λ dTA from the right as follows:

(g(t) dTA).P = P ∗(g) dTA,
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where
P ∗ =

∑
a

fa(−s)ta

for P =
∑
a t
afa(s) ∈

⊕
a∈Zd t

aK[s] =D(TA) and dTA is simply a formal symbol. Then
K[t±1]t−λ dTA is a realization of LTA(λ), and we denote K[t±1]t−λ dTA by LTA(λ), so that

LTA(λ) =
⊕
a∈Zd

LTA(λ)−λ+a with LTA(λ)−λ+a =Kt−λ+a dTA. (4)

The following proposition is clear.

Proposition 4.2. Each LTA(λ) is a simple object in OTA . Each simple object in OTA is
isomorphic to LTA(λ) for some λ ∈Kd, and LTA(λ)' LTA(µ) if and only if λ− µ ∈ Zd.

Recall that the ring D(XA) is described as follows (see [Mus87, Theorem 2.3]):

D(XA)a = taI(Ω(a)) for a ∈ Zd,

where
Ω(a) := ΩA(a) := NA\(−a+ NA),

I(Ω(a)) := {f(s) ∈K[s] : f(c) = 0 for all c ∈ Ω(a)}. (5)

Recall also the preorder � defined in [MV98] (see also [ST01]):

for α, β ∈Kd, α� β ⇐⇒ I(Ω(β −α)) 6⊆mα, (6)

where mα is the maximal ideal of K[s] at α. We define an equivalence relation ∼ by setting
α∼ β if and only if α� β and α� β. We write α≺ β if α� β and α 6∼ β.

Since the ring D(XA) is a subalgebra of D(TA), the right D(TA)-module

LTA(λ) =K[t±1]t−λ dTA =
⊕
a∈Zd

Kt−λ+a dTA

is also a right D(XA)-module. Then the subquotient

LXA(λ) :=
⊕
µ�λ

Kt−µ dTA

/⊕
µ≺λ

Kt−µ dTA (7)

is a right D(XA)-module (see [ST01, Proposition 4.1.5]). We have the following proposition.

Proposition 4.3. Each LXA(λ) is a simple object in OXA . Each simple object in OXA is
isomorphic to LXA(λ) for some λ ∈Kd. Moreover, LXA(λ)' LXA(µ) if and only if λ∼ µ.

(See [MV98, Proposition 3.1.7], [ST01, Theorem 4.1.6] or [Sai07, Proposition 3.6(4)].)
For β ∈Kd, we define a right D(XA)-module MXA(β), a right D(Kn)-module MKn(β) and

a right D((K×)n)-module M(K×)n(β) by

MXA(β) := D(XA)/〈s− β〉D(XA),

MKn(β) := D(Kn)/(IAD(Kn) + 〈s− β〉D(Kn)),

M(K×)n(β) := D((K×)n)/(IAD((K×)n) + 〈s− β〉D((K×)n)).

(8)

Recall that si = ti∂ti in t-coordinates and that si =
∑n

j=1 aijθj with θj = xj∂j in
x-coordinates. Clearly, MXA(β) ∈ OXA , MKn(β) ∈ OKn and M(K×)n(β) ∈ O(K×)n .

Let τ be a face of the cone R>0A. Similarly to the case where τ is the whole cone R>0A,
for Y =Kτ , (K×)τ , Tτ or Xτ we consider OY , replacing ZA= Zd, KA=Kd and f(s) ∈K[s]
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by Z(A ∩ τ), K(A ∩ τ) and f(s)|τ , respectively, where f(s)|τ is the operator f(s) restricted to
K[Tτ ] =K[t±aj : aj ∈ τ ].

5. Direct image functors

In this section, we describe direct image functors explicitly. Using them, we link some of the
modules defined in § 4.

5.1 From OTA to O(K×)n

We shall write D((K×)n, TA) instead of D(K[x±1], K[t±1]), where K[x±1] stands for the Laurent
polynomial ring K[x±1

1 , . . . , x±1
n ].

Since TA is closed in (K×)n, the direct image functor∫ 0

TA→(K×)n
:M 7→M ⊗D(TA) D((K×)n, TA)

gives a category equivalence between OTA and O(K×)n , known as Kashiwara’s equivalence
(see, e.g., [Kas03, Theorem 4.30] or [HTT08, Theorem 1.6.1]). From [SS88, § 1.3, (e) and (f)],
we have

D((K×)n, TA) = D((K×)n)/IAD((K×)n)

=
⊕
a∈Zd

taK[θ1, . . . , θn]. (9)

By definition,

M(K×)n(β) =
∫ 0

TA→(K×)n
LTA(β). (10)

Hence, by Kashiwara’s equivalence, Proposition 4.2 leads to the following result.

Proposition 5.1. For each β ∈Kd,M(K×)n(β) is a simple object inO(K×)n . Each simple object
in O(K×)n is isomorphic to some M(K×)n(β). Moreover, M(K×)n(β)'M(K×)n(β′) if and only if

β − β′ ∈ Zd.

5.2 From OXA to OKn

Again from [SS88, § 1.3, (e) and (f)], we have

D(Kn, XA) :=D(K[x], K[NA]) =D(Kn)/IAD(Kn). (11)

Since IA is Zd-homogeneous, D(Kn, XA) inherits the Zd-grading from D(Kn).

The algebra D(XA) can be identified with

{P ∈D(Kn) : PIA ⊆ IAD(Kn)}/IAD(Kn)

(see, e.g., [MR87, Theorem 5.13]). We may therefore consider D(XA) as being contained in
D(Kn, XA).

Let
∫ 0
XA→Kn denote the functor from OXA to OKn defined by∫ 0

XA→Kn

M :=M ⊗D(XA) D(Kn, XA).
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Note that, in general, XA is singular and
∫ 0
XA→Kn does not give a category equivalence. By

definition, we have

MKn(β) =
∫ 0

XA→Kn

MXA(β). (12)

For the following result, see [Sai07, Proposition 4.1 and Corollary 4.2].

Proposition 5.2.

D(Kn, XA) =
⊕
a∈Zd

D(Kn, XA)a with D(Kn, XA)a = taI(Ω̃(a)),

where

Ω̃(a) := Ω̃A(a) := {u ∈ Nn :Au /∈ −a+ NA},

I(Ω̃(a)) = {f(θ) ∈K[θ] : f(u) = 0 for all u ∈ Ω̃(a)}
(13)

and K[θ] :=K[θ1, . . . , θn].

5.3 From OKτ to OKn

Let τ be a face of the cone R>0A. We consider the direct image functor
∫ 0
Kτ→Kn from OKτ to

OKn . Given M ∈ OKτ , we define
∫ 0
Kτ→Kn M ∈ OKn by∫ 0

Kτ→Kn

M :=M ⊗D(Kτ ) D(Kn, Kτ ),

where

D(Kn, Kτ ) :=D(K[x], K[xj : aj ∈ τ ]).

Put

Kτc := {x= (x1, . . . , xn) ∈Kn : xj = 0 when aj ∈ τ},

Nτc := {a= (a1, . . . , an) ∈ Nn : aj = 0 when aj ∈ τ},

Zτ
c

:= {a= (a1, . . . , an) ∈ Zn : aj = 0 when aj ∈ τ}.

Then

D(Kn, Kτ ) = D(Kn)/〈xj : aj /∈ τ〉D(Kn)
= D(Kτ )�D(Kτc)/〈xj : aj /∈ τ〉D(Kτc).

Since, as right D(Kτc)-modules,

D(Kτc)/〈xj : aj /∈ τ〉D(Kτc)'
⊕
b∈Zτc

Kx−b d(K×)τ
c
/ ⊕
b/∈Nτc

Kx−b d(K×)τ
c
,

we have

D(Kn, Kτ )'D(Kτ )�
⊕
b∈Nτc

Kx−b d(K×)τ
c
. (14)

Hence ∫ 0

Kτ→Kn

M 'M �
⊕
b∈Nτc

Kx−b d(K×)τ
c
. (15)

619

https://doi.org/10.1112/S0010437X10004987 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004987


M. Saito

6. Simple objects in OKn

In this section, we describe the simple objects in OKn explicitly.
By (9), (10) and the realization (4), we have the following realization of M(K×)n(β).

Lemma 6.1. Let β ∈KA=Kd. Then

M(K×)n(β) =
⊕
a∈Zd

Kt−β+a dTA ⊗K[s] K[θ].

The D(Kn)-module
∫ 0

TA→Kn

LTA(β) is defined to be the D((K×)n)-module

∫ 0

TA→(K×)n
LTA(β) =M(K×)n(β), (16)

considered as a D(Kn)-module.

Definition 6.2. Let β ∈KA=Kd. In β + ZA= β + Zd there exists a unique minimal
equivalence class with respect to � (see Remark 6.3), which we denote by βempty. Any fixed
element belonging to the class is also denoted by βempty.

Remark 6.3. In [Sai01] we defined, for a face τ and a parameter vector α ∈KA=Kd, a finite
set

Eτ (α) = {λ ∈K(A ∩ τ)/Z(A ∩ τ) :α− λ ∈ NA+ Z(A ∩ τ)}. (17)

The class βempty is given by

Eτ (βempty) =
{
ER>0A(β) if τ = R>0A,
∅ if τ 6= R>0A.

(18)

Theorem 6.4. Let β ∈KA/ZA=Kd/Zd, and fix an element e := βempty. Then

LKn(TA, β) := (t−e dTA ⊗ 1)D(Kn)

=
⊕
a∈Zd

Kt−e+a dTA ⊗K[s] I(Ω̃(a))

' D(Kn)/(IAD(Kn) +D(Kn) ∩ 〈s− e〉D((K×)n))

is a unique simple D(Kn)-submodule of
∫ 0
TA→Kn LTA(β).

Moreover, LKn(TA, β)' LKn(TA, β′) if and only if β − β′ ∈ Zd.

Proof. Recall that
∫ 0
TA→Kn LTA(β) is the module M(K×)n(β) regarded as a D(Kn)-module (16).

Hence LKn(TA, β) is isomorphic to D(Kn)/(IAD(Kn) +D(Kn) ∩ 〈s− e〉D((K×)n)) by the
definition of M(K×)n(β) =M(K×)n(e). The first equation is clear from (11) and Proposition 5.2.

Let y ∈M(K×)n(β)γ be non-zero. We prove that yD(Kn)⊇ LKn(TA, β). By multiplying a
suitable xu from the right, we may assume that

y = t−β
′
dTA ⊗ f(θ) for some β′ ∼ e. (19)

Here f(θ) /∈ 〈Aθ − β′〉K[θ] since y 6= 0. We shall use the symbols s and Aθ interchangeably. We
claim that

t−β
′′
dTA ⊗ 1 ∈ yD(Kn) for some β′′ ∼ e. (20)
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We take an element of type (19) in yD(Kn) such that the total degree deg(f) of f is as small
as possible, and we call this element y again. If f(θ) ∈K[s], then clearly we have the claim (20).
Suppose f(θ) /∈K[s]. Let u, v ∈ Nn satisfy Au=Av. Since

f(θ)(xu − xv) = (xu − xv)f(θ + u) + xv(f(θ + u)− f(θ + v)),

we have
y.(xu − xv) = t−β

′+Av dTA ⊗ (f(θ + u)− f(θ + v)).
By the minimality of deg(f),

f(θ + u)− f(θ + v) ∈ 〈Aθ − (β′ −Av)〉K[θ].

Hence, for all u, v ∈ Nn with Au=Av,

f(θ + u)− f(θ + v) ∈ 〈Aθ − (β′ −Av)〉K[θ].

Since f(θ) /∈ 〈Aθ − β′〉K[θ], there exists z ∈Kn with Az = β′ such that f(z) 6= 0. By Lemma 6.5
below, we have

f(θ) ∈ f(z) + 〈Aθ − β′〉K[θ].
Hence y = t−β

′
dTA ⊗ f(z). We have thus proved claim (20).

Since β′′ ∼ e, there exists p(s) ∈ I(Ω(β′′ − e)) such that p(β′′) 6= 0. Hence tβ
′′−ep(s) ∈

D(XA)⊆D(Kn)/IAD(Kn), and

(t−β
′′
dTA ⊗ 1)tβ

′′−ep(s) = p(β′′)t−e dTA ⊗ 1.

We have thus proved that yD(Kn)⊇ LKn(TA, β) and that LKn(TA, β) is a unique simple D(Kn)-
submodule of

∫ 0
TA→Kn LTA(β).

Next, we prove the second statement. If β − β′ ∈ Zd, then βempty = β′empty. Hence
LKn(TA, β) = LKn(TA, β′) by definition. If β − β′ /∈ Zd, then LKn(TA, β) and LKn(TA, β′) have
distinct weight sets and hence are not isomorphic. 2

Lemma 6.5. Let f(θ) ∈K[θ] satisfy

f(θ + l)− f(θ) ∈ 〈Aθ − c〉K[θ]

for all l with Al= 0. Take γ ∈Kn such that Aγ = c. Then

f(θ) ∈ f(γ) + 〈Aθ − c〉K[θ].

Proof.

f(θ + l)− f(θ) ∈ 〈Aθ − c〉K[θ] for all l such that Al= 0

=⇒ f(l+ γ)− f(γ) = 0 for all l such that Al= 0

⇐⇒ f(θ + γ) ∈ f(γ) + 〈Aθ〉K[θ]
⇐⇒ f(θ) ∈ f(γ) + 〈Aθ − c〉K[θ]. 2

Let τ be a face of R>0A, and let λ ∈K(A ∩ τ)/Z(A ∩ τ). We define a right D(Kτ )-module
LKτ (Tτ , λ) in the same way as we defined LKn(TA, β) in Theorem 6.4. By Theorem 6.4,
LKτ (Tτ , λ) is a simple D(Kτ )-module. By Kashiwara’s equivalence,

LKn(Tτ , λ) :=
∫ 0

Kτ→Kn

LKτ (Tτ , λ) (21)

is a simple D(Kn)-module.
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Theorem 6.6. Each simple object in OKn is isomorphic to LKn(Tτ , λ) for some face τ and
some λ ∈K(A ∩ τ)/Z(A ∩ τ).

Moreover, LKn(Tτ , λ)' LKn(Tτ ′ , λ′) if and only if τ = τ ′ and λ− λ′ ∈ Z(A ∩ τ).

Proof. Let L be a simple object in OKn . Suppose that supp(L) = TA =XA. There exists the
following exact sequence in OKn :

0→ ΓKn\(K×)n(L)→ L→ Γ(K×)n(L),

where ΓKn\(K×)n(L)={y ∈ L : supp(y)⊆Kn\(K×)n} and Γ(K×)n(L) is the localization of L at the
multiplicatively closed set {xmj : j=1, . . . , n;m ∈ N}. By the simplicity of L, ΓKn\(K×)n(L) = 0.
Hence L is a simple submodule of Γ(K×)n(L), and then Γ(K×)n(L) is simple in O(K×)n . Indeed,
let y be a non-zero element of Γ(K×)n(L); then there exists u ∈ Nn such that y.xu ∈ L. Since L is a
simple D(Kn)-module, we have y.D(Kn)⊇ L. Since Γ(K×)n(L) is generated by L as a D((K×)n)-
module, we obtain y.D((K×)n) = Γ(K×)n(L), and hence Γ(K×)n(L) is simple in O(K×)n . Then, by
Proposition 5.1, Γ(K×)n(L)'M(K×)n(β) for some β ∈KA/ZA. Since M(K×)n(β) has the unique
simple submodule LKn(TA, β), we conclude that L' LKn(TA, β).

By the simplicity of L, the support of L is the closure of Tτ for some face τ . By the same argu-
ment as in the previous paragraph, we obtain L' LKn(Tτ , λ) for some λ ∈K(A ∩ τ)/Z(A ∩ τ).

The second statement is clear from the second statement of Theorem 6.4. 2

Example 6.7. Let A= (1). In this case, the cone R>0A= R>0 has only two faces: {0} and R>0.
Then

LK(T{0}, 0) =
∫ 0

{0}→K
K 'D/xD,

where D is the first Weyl algebra.
Let β ∈K. If β /∈ Z = ZA, then β = βempty. If β ∈ Z, then β = βempty if and only if β ∈ Z6−1.

The simple module LK(TA, β) is the unique simple submodule of x−βK[x, x−1] dTA generated
by x−β

empty
dTA. Hence

LK(TA, β) = x−β dTA.D 'D/(x∂ − β)D for β /∈ Z,
LK(TA, β) = LK(TA,−1) = x dTA.D 'D/∂D for β ∈ Z.

A left D(Kn)-module M is said to have irreducible monodromy representation if
D(Kn)(x)⊗D(Kn) M is an irreducible left D(Kn)(x)-module, where D(Kn)(x) =K(x)⊗K[x]

D(Kn) with K(x) =K(x1, . . . , xn) being the field of rational functions (cf. [Wal07]). We
naturally have the following proposition.

Proposition 6.8. Let M be an irreducible left D(Kn)-module. Suppose that D(Kn)(x)⊗D(Kn)

M 6= 0. Then M has irreducible monodromy representation.

Proof. We can write M =D(Kn)/I with I a maximal left ideal of D(Kn). Then

D(Kn)(x)⊗D(Kn) M =D(Kn)(x)/D(Kn)(x)I.

Let J be a left ideal of D(Kn)(x) containing D(Kn)(x)I. Since J ∩D(Kn) is a left ideal of
D(Kn) containing I, we have J ∩D(Kn) =D(Kn) or I. If J ∩D(Kn) =D(Kn), then 1 ∈ J and
thus J =D(Kn)(x).

Suppose that J ∩D(Kn) = I. Let P ∈ J . Then there exists a non-zero polynomial f ∈K[x]
such that fP ∈ J ∩D(Kn) = I. Hence P ∈D(Kn)(x)I, and we have J =D(Kn)(x)I. 2
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7. Pull-back of LKn(Tτ , λ)

Let i\ denote the functor from OKn to OXA defined by

i\(N) := HomD(Kn)(D(Kn, XA), N)
= {x ∈N : x.IA = 0}. (22)

The following adjointness property holds:

HomD(Kn)

(∫ 0

XA→Kn

M, N

)
'HomD(XA)(M, i\(N)). (23)

In this section, we compute the pull-back of LKn(Tτ , λ) by i\. As a consequence, we determine
the irreducible quotients of MKn(β).

Before considering i\(LKn(TA, λ)), we present two preparatory lemmas.

Lemma 7.1. Let c ∈ ZC(Ω(a)), where Ω(a) is as defined in (5) and ZC stands for the Zariski
closure in Kd. Then there exist b ∈ Ω(a) and a face τ such that b+ N(A ∩ τ)⊆ Ω(a) and
c ∈ b+K(A ∩ τ).

Proof. This follows from [ST04, Proposition 5.1]. 2

Lemma 7.2. Suppose that

I(Ω(a))⊆ 〈s− c〉K[s].

Then

{f ∈ I(Ω̃(a)) : f(γ) = f(γ ′) if Aγ =Aγ ′ = c} ⊆ 〈Aθ − c〉K[θ], (24)

where Ω̃(a) is as defined in (13).

Proof. Since I(Ω(a))⊆ 〈s− c〉K[s], we have c ∈ ZC(Ω(a)). By Lemma 7.1 there exist b ∈ Ω(a)
and a face τ such that b+ N(A ∩ τ)⊆ Ω(a) and c ∈ b+K(A ∩ τ). Take u ∈ Nn such that
Au= b. Then there exists γ ′ ∈ u+Kτ such that Aγ ′ = c. Observe that γ ′ ∈ ZC(Ω̃(a)), since
u+ Nτ ⊆ Ω̃(a).

Let f(θ) belong to the set on the left-hand side of (24). If Aγ = c (=Aγ ′), then we have
f(γ) = f(γ ′) = 0 since γ ′ ∈ ZC(Ω̃(a)). Hence f ∈ 〈Aθ − c〉K[θ]. 2

Theorem 7.3.

i\(LKn(TA, β)) = LXA(βempty).

Proof. Fix e := βempty. By Theorem 6.4,

LKn(TA, β) =
⊕
a∈Zd

t−e+a dTA ⊗K[s] (I(Ω̃(a))/I(Ω̃(a)) ∩ 〈s− e+ a〉K[θ])

⊆
⊕
a∈Zd

t−e+a dTA ⊗K[s] K[θ]/〈s− e+ a〉K[θ].

First, we claim that

i\(LKn(TA, β))⊆
⊕
a∈Zd

Kt−e+a dTA. (25)
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Let f(θ) ∈K[θ], and fix γ ∈Kn with Aγ = e− a. Then

t−e+a dTA ⊗ f(θ).IA = 0
⇐⇒ t−e+a dTA ⊗ f(θ).(xu − xv) = 0 for all u and v with Au=Av

⇐⇒ t−e+a+Au dTA ⊗ (f(θ + u)− f(θ + v)) = 0 for all u and v with Au=Av

⇐⇒ f(θ + u)− f(θ + v) ∈ 〈Aθ − e+ a+Au〉K[θ] for all u and v with Au=Av

⇐⇒ f(θ + u− v)− f(θ) ∈ 〈Aθ − e+ a〉K[θ] for all u and v with Au=Av.

Hence, by Lemma 6.5, t−e+a dTA ⊗ f(θ) ∈ i\(LKn(TA, β)) implies

f(θ) ∈ f(γ) + 〈Aθ − e+ a〉K[θ].

Therefore t−e+a dTA ⊗ f(θ) = f(γ)t−e+a dTA ⊗ 1 and the claim (25) is proved.

Recall that

e− a 6∼ e ⇐⇒ e− a 6� e
⇐⇒ I(Ω(a))⊆ 〈s− e+ a〉K[s].

(26)

Suppose e− a∼ e. Then there exists f(s) ∈ I(Ω(a)) such that f(s) /∈ 〈s− e+ a〉K[s]. Hence,
for γ ∈Kn with Aγ = e− a, we have f(γ) = f(Aγ) 6= 0. Then

i\(LKn(TA, β)) 3 t−e+a dTA ⊗ f(Aθ) = f(γ)t−e+a dTA ⊗ 1 6= 0,

and thus the weight −e+ a appears in i\(LKn(TA, β)).

Next, suppose e− a 6∼ e. Then I(Ω(a))⊆ 〈s− e+ a〉K[s]. By the proof of (25), if
t−e+a dTA ⊗ f(θ) ∈ i\(LKn(TA, β)), then f(γ) = f(γ ′) for any γ, γ ′ ∈Kn with Aγ =Aγ ′ =
e− a. Hence, by (7), it suffices to prove the inclusion

{f ∈ I(Ω̃(a)) : f(γ) = f(γ ′) if Aγ =Aγ ′ = e− a} ⊆ 〈Aθ − e+ a〉K[θ],

assuming that I(Ω(a))⊆ 〈s− e+ a〉K[s]. We finish the proof by invoking Lemma 7.2. 2

Given faces τ and τ ′ of R>0A, λ ∈K(A ∩ τ)/Z(A ∩ τ) and λ′ ∈K(A ∩ τ ′)/Z(A ∩ τ ′), set

(τ ′, λ′)≺ (τ, λ) def.⇐⇒ τ ′ ≺ τ and λ− λ′ ∈ Z(A ∩ τ). (27)

Theorem 7.4. Let λ ∈K(A ∩ τ)/Z(A ∩ τ). Then

dimK i\(LKn(Tτ , λ))−c =
{

1 if c ∈ CKn(τ, λ),
0 otherwise,

where

CKn(τ, λ) =
{
c ∈Kd :

Eτ (c) 3 λ and Eτ ′(c) 63 λ′
whenever (τ ′, λ′)≺ (τ, λ)

}
. (28)
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Proof. By (15),

LKn(Tτ , λ)' LKτ (Tτ , λ)�
( ⊕
b̃∈Nτc

Kx−b̃ d(K×)τ
c

)
.

By the definition of i\,

i\(LKn(Tτ , λ)) = {f ∈ LKn(Tτ , λ) : f.IA = 0}
⊆ {f ∈ LKn(Tτ , λ) : f.(xu − xv) = 0 for u, v ∈ Nτ with Au=Av}.

Hence, by Theorem 7.3,

i\(LKn(Tτ , λ))⊆
( ⊕
a∼λempty

Kt−a dTτ

)
�

( ⊕
b̃∈Nτc

Kx−b̃ d(K×)τ
c

)
.

Note that for a ∈K(A ∩ τ), a∼ λempty if and only if a ∈ CKn(τ, λ) ∩K(A ∩ τ) =: CKτ (τ, λ).
Let

f =
∑

(a,b̃)∈C

fa,b̃t
−a dTτ ⊗ x−b̃ d(K×)τ

c
, (29)

where C = CKτ (τ, λ)× Nτc . Note that the set of (a, b̃) ∈ C with a fixed a+Ab̃ is finite, since
a ∈ λ+ Z(A ∩ τ), b̃ ∈ Nτc and R>0(A\τ) ∩ Rτ = {0}.

Let u= uτ + uτc and v = vτ + vτc , with uτ , vτ ∈ Nτ and uτc , vτc ∈ Nτc , satisfy Au=Av.
We claim that for f as in (29),

f ∈ i\(LKn(Tτ , λ)) ⇐⇒


(i) fa+Auτ ,b̃+uτc

= fa+Avτ ,b̃+vτc

for (a, b̃), (a+Auτ , b̃+ uτc), (a+Avτ , b̃+ vτc) ∈ C,
(ii) fa+Auτ ,b̃+uτc

= 0
for (a, b̃), (a+Auτ , b̃+ uτc) ∈ C, (a+Avτ , b̃+ vτc) /∈ C.

(30)

We have

f.(xu − xv) =
∑

(a,b̃)∈C

fa,b̃t
−a+Auτ dTτ ⊗ x−b̃+uτc d(K×)τ

c

−
∑

(a,b̃)∈C

fa,b̃t
−a+Avτ dTτ ⊗ x−b̃+vτc d(K×)τ

c

=
∑

(a,b̃),(a−Auτ ,b̃−uτc )∈C

fa,b̃t
−a+Auτ dTτ ⊗ x−b̃+uτc d(K×)τ

c

−
∑

(a,b̃),(a−Avτ ,b̃−vτc )∈C

fa,b̃t
−a+Avτ dTτ ⊗ x−b̃+vτc d(K×)τ

c

=
∑

(a,b̃),(a+Auτ ,b̃+uτc )∈C

fa+Auτ ,b̃+uτc
t−a dTτ ⊗ x−b̃ d(K×)τ

c

−
∑

(a,b̃),(a+Avτ ,b̃+vτc )∈C

fa+Avτ ,b̃+vτc
t−a dTτ ⊗ x−b̃ d(K×)τ

c
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=
∑

(a,b̃),(a+Auτ ,b̃+uτc )∈C
(a+Avτ ,b̃+vτc )∈C

(fa+Auτ ,b̃+uτc
− fa+Avτ ,b̃+vτc

)t−a dTτ ⊗ x−b̃ d(K×)τ
c

+
∑

(a,b̃),(a+Auτ ,b̃+uτc )∈C
(a+Avτ ,b̃+vτc )/∈C

fa+Auτ ,b̃+uτc
t−a dTτ ⊗ x−b̃ d(K×)τ

c

−
∑

(a,b̃),(a+Avτ ,b̃+vτc )∈C
(a+Auτ ,b̃+uτc )/∈C

fa+Avτ ,b̃+vτc
t−a dTτ ⊗ x−b̃ d(K×)τ

c
,

so (30) is established.
Let us keep f ∈ i\(LKn(Tτ , λ)) as in (29) and take (a, b̃), (a′, b̃′) ∈ C with a+Ab̃= a′ +Ab̃′.

We claim that then
fa,b̃ = fa′,b̃′ . (31)

Indeed, let w ∈Kτ and ã, ã′ ∈ Zτ satisfy λ=Aw, a=A(w + ã) and a′ =A(w + ã′). Put
uτ := (ã− ã′)+ ∈ Nτ , vτ := (ã− ã′)− ∈ Nτ , uτc := (b̃− b̃′)+ ∈ Nτc and vτc := (b̃− b̃′)− ∈ Nτc .
Here, (ã− ã′)+ is the non-negative part of ã− ã′, and (ã− ã′)− is the negative of the
non-positive part of ã− ã′. Then A(uτ + uτc) =A(vτ + vτc) and b̃− uτc = b̃′ − vτc ∈ Nτc .
Furthermore, a−Auτ = a′ −Avτ ∈ CKτ (τ, λ), since a∼ a′ ∼ λempty is the minimal class
(see [Sai01, Proposition 2.2(5)]). Hence, from (30)(i) we obtain (31).

We can rewrite (30)(ii) as
fa,b̃ = 0 (32)

for (a, b̃), (a−Auτ , b̃− uτc) ∈ C and (a−Auτ +Avτ , b̃− uτc + vτc) /∈ C.
We prove next that (32) is equivalent to the following condition:

if there exists (τ ′, λ′)≺ (τ, λ) such that Eτ ′(a+Ab̃) 3 λ′,
then fa,b̃ = 0. (33)

For this purpose, when (a, b̃) ∈ C we prove the equivalence

there exists (τ ′, λ′)≺ (τ, λ) such that Eτ ′(a+Ab̃) 3 λ′ (34)
⇐⇒ there exist uτ , vτ ∈ Nτ and uτc , vτc ∈ Nτc such that (35)

A(uτ + uτc) =A(vτ + vτc), (a−Auτ , b̃− uτc) ∈ C
and (a−Auτ +Avτ , b̃− uτc + vτc) /∈ C.

First, suppose that (35) holds. Then b̃− uτc ∈ Nτc , and there exists (τ ′, λ′)≺ (τ, λ) such that
Eτ ′(a−Auτ +Avτ ) 3 λ′. It follows from b̃− uτc ∈ Nτc and A(uτ + uτc) =A(vτ + vτc)
that Avτ −Auτ ∈A(b̃− Nτc). Hence Eτ ′(a+Ab̃) 3 λ′ (cf. [Sai01, Proposition 2.2(5)]).

Conversely, suppose that (34) holds. Then a+Ab̃− λ′ ∈ NA+ Z(A ∩ τ ′). Let w′ ∈Kτ ′ ,
ã ∈ Zτ , b̃′ ∈ Nτc and ã′ ∈ Nτ\τ ′ × Zτ ′ satisfy λ′ =Aw′, a=A(w′ + ã) and a+Ab̃− λ′ =
Ab̃′ +Aã′. As before, put uτ := (ã− ã′)+ ∈ Nτ , vτ := (ã− ã′)− ∈ Nτ , uτc := (b̃− b̃′)+ ∈ Nτc

and vτc := (b̃− b̃′)− ∈ Nτc . Then (a−Auτ , b̃− uτc) ∈ C. Furthermore, a−Auτ +Avτ = a−
A(ã− ã′) = λ′ +Aã′ ∈ λ′ + NA+ Z(A ∩ τ ′). Hence λ′ ∈ Eτ ′(a−Auτ +Avτ ), and thus (a−
Auτ +Avτ , b̃− uτc + vτc) /∈ C. Finally, A(uτ + uτc)−A(vτ + vτc) =A(ã− ã′) +A(b̃− b̃′) =
a− λ′ −Aã′ +A(b̃− b̃′) = 0. Therefore we have established the equivalence between (34)
and (35) and hence the equivalence between (32) and (33).
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In summary, we have shown that

i\(LKn(Tτ , λ)) =
⊕

c∈CKn (τ,λ)

K
∑

(a,b̃),c=a+Ab̃

t−a dTτ ⊗ x−b̃ d(K×)τ
c
, (36)

so the proof of Theorem 7.4 is complete. 2

Corollary 7.5.

dimK HomD(R)(MKn(β), LKn(Tτ , λ)) =
{

1 if β ∈ CKn(τ, λ),
0 otherwise.

Proof. We have

dimK HomD(Kn)(MKn(β), LKn(Tτ , λ))

= dimK HomD(Kn)

(∫ 0

XA→Kn

MXA(β), LKn(Tτ , λ)
)

= dimK HomD(XA)(MXA(β), i\(LKn(Tτ , λ)))

= dimK(i\(LKn(Tτ , λ)))−β.

The first equality comes from (12) and the second from the adjointness (23). The third follows
from [MV98, Proposition 3.1.7] (see also [Sai07, Proposition 3.6]). Theorem 7.4 then finishes the
proof of this corollary. 2

For β ∈Kd, set

E(β) := {(τ, λ) : τ a face of R>0A, λ ∈ Eτ (β)}. (37)

Then Corollary 7.5 can be rephrased as follows.

Corollary 7.6.

dimK HomD(R)(MKn(β), LKn(Tτ , λ)) =
{

1 if (τ, λ) is minimal in E(β),
0 otherwise.

Here the minimality is with respect to (27).

Example 7.7. Let

A=
[
0 1 2
1 1 0

]
= [a1, a2, a3].

Then the cone R>0A has exactly four faces: R>0A= R2
>0, σ1 := R>0a1, σ3 := R>0a3 and {0}.

The semigroup NA is shown in Figure 1.

Figure 1. The semigroup NA.

Let τ be a face of R>0A. Then

|Z2 ∩K(A ∩ τ)/Z(A ∩ τ)|=
{

1 if τ 6= σ3,
2 if τ = σ3.
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Hence the category OK3 has exactly five simple objects with weights in Z2, namely LK3(TA, 0),
LK3(Tσ1 , 0), LK3(Tσ3 , 0), LK3(Tσ3 , (1, 0)T) and LK3(T{0}, 0). For each of these, we write down
the weight set (CKn(τ, λ) in Theorem 7.4) of the pull-back by i\.

(i) i\(LK3(TA, 0)): the weights in CK3(R>0A, 0) are β ∈ Z2 with Eσ1(β) = ∅ and Eσ3(β) = ∅,
shown in Figure 2.

Figure 2. The weight space of i\(LK3(TA, 0)).

(ii) i\(LK3(Tσ1 , 0)): the weights in CK3(σ1, 0) are β ∈ Z2 with Eσ1(β) = {0} and E{0}(β) = ∅,
shown in Figure 3.

Figure 3. The weight space of i\(LK3(Tσ1 , 0)).

(iii) i\(LK3(Tσ3 , 0)): the weights in CK3(σ3, 0) are β ∈ Z2 with Eσ3(β) 3 0 and E{0}(β) = ∅,
shown in Figure 4.

Figure 4. The weight space of i\(LK3(Tσ3 , 0)).

(iv) i\(LK3(Tσ3 , (1, 0)T)): the weights in CK3(σ3, (1, 0)T) are β ∈ Z2 with Eσ3(β) 3 (1, 0)T,
shown in Figure 5.

Figure 5. The weight space of i\(LK3(Tσ3 , (1, 0)T)).

(v) i\(LK3(T{0}, 0)): the weights in CK3({0}, 0) are β ∈ Z2 with E{0}(β) = {0}; hence the
weight set is NA, shown in Figure 1.

Let β ∈ Z2. By Corollary 7.5, the irreducible quotients of MK3(β) are precisely the above
LK3(Tτ , λ) such that β appears in the weight set of i\(LK3(Tτ , λ)).
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Recall that MK3(β)'MK3(β′) if and only if β ∼ β′ (see [Sai01, Theorem 2.1]). There are
eight equivalence classes in {MK3(β) : β ∈ Z2}. The following table lists the irreducible quotients
for each equivalence class.

MK3(β) Irreducible quotients

MK3((0, 1)T) LK3(T{0}, 0), LK3(Tσ3 , (1, 0)T)
MK3((−1, 1)T) LK3(Tσ3 , 0), LK3(Tσ3 , (1, 0)T)
MK3((0, 0)T) LK3(T{0}, 0)
MK3((1, 0)T) LK3(Tσ1 , 0), LK3(Tσ3 , (1, 0)T)
MK3((−1, 0)T) LK3(Tσ3 , (1, 0)T)
MK3((−2, 0)T) LK3(Tσ3 , 0)
MK3((0,−1)T) LK3(Tσ1 , 0)
MK3((−1,−1)T) LK3(TA, 0)

8. The irreducibility of MKn(β)

If β = βempty, then, by Corollary 7.6, there exists a surjective homomorphism

MKn(β)→ LKn(TA, β). (38)

In this section, we analyze the kernel of (38) and prove that MKn(β) is irreducible if and only
if β is non-resonant.

Given a facet (maximal proper face) σ of R>0A, we denote by Fσ the primitive integral
support function of σ; that is, Fσ is the uniquely determined linear form on Rd satisfying:

(i) Fσ(R>0A)> 0;
(ii) Fσ(σ) = 0;
(iii) Fσ(Zd) = Z.

Then, by [Sai01, Proposition 2.2] and Remark 6.3, we know that β = βempty if and only if
Fσ(β) /∈ Fσ(NA) for all facets σ of R>0A.

Let β = βempty, and let

v−β := t−β dTA ⊗ 1 ∈ LKn(TA, β)−β.

Then, by Theorem 6.4,

AnnD(Kn)(v−β) = IAD(Kn) +D(Kn) ∩ 〈Aθ − β〉D((K×)n).

Let

N := AnnD(Kn)(v−β)/(IAD(Kn) + 〈Aθ − β〉D(Kn)). (39)

Then N is the kernel of (38). By (11) and Proposition 5.2, for a ∈ Zd we have

N−β−a = t−a(I(Ω̃(−a)) ∩ 〈Aθ − β − a〉)/t−a(I(Ω̃(−a))〈Aθ − β − a〉). (40)

Since {u ∈ Nn :Au ∈ a+ NA} is Nn-stable, there exists a finite set {(u(j), Ij) : j ∈ J} of pairs
made up of a u(j) ∈ Nn and a subset Ij of {1, . . . , n} (the set of so-called standard pairs of
{u ∈ Nn :Au ∈ a+ NA}; see, e.g., [SST00, § 3.2]) such that:
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– the ith coordinate of u(j) is 0 for each i ∈ Ij ;
– for all i /∈ Ij , (u(j) + NIj∪{i}) ∩ {u ∈ Nn :Au ∈ a+ NA} 6= ∅;
– Ω̃(−a) = Nn\{u ∈ Nn :Au ∈ a+ NA}=

⋃
j∈J(u(j) + NIj ).

Lemma 8.1. Let a ∈ Zd, and let {(u(j), Ij) : j ∈ J} be the set of standard pairs of
{u ∈ Nn :Au ∈ a+ NA}. Then for each j ∈ J there exists a face τ (j) of R>0A such that
Ij = {k ∈ {1, . . . n} : ak ∈ τ (j)}, and either τ (j) is a facet with Fτ (j)(Au(j)) /∈ Fτ (j)(a+ NA) or
Fσ(Au(j)) ∈ Fσ(a+ NA) for all facets σ � τ (j).

Proof. Put Sc = {d ∈ Zd : Fσ(d) ∈ Fσ(NA) for all facets σ}. Then there exist finitely many pairs
(bi, τi) of bi ∈ Sc and a face τi such that

Sc\NA=
⋃
i

(bi + Z(A ∩ τi)) ∩ Sc

(see [ST04, proof of Proposition 5.1]). Then

Ω(−a) =
( ⋃

facets σ

⋃
m∈Fσ(NA)\Fσ(a+NA)

F−1
σ (m) ∩ NA

)
∪

⋃
bi+a∈NA+Z(A∩τi)

(bi + a+ Z(A ∩ τi)) ∩ NA.

Since Ω̃(−a) = {u ∈ Nn :Au ∈ Ω(−a)} by definition, the assertion follows. 2

Lemma 8.2. Let β = βempty and a ∈ Zd.

(i) If β + a∼ β, then N−β−a = {0}.
(ii) Suppose that there exists a facet σ such that Fσ(β + a) ∈ Fσ(NA) and Fσ′(β + a) /∈

Fσ′(NA) for every facet σ′ 6= σ. Then N−β−a 6= {0}.

Proof. (i) Suppose that β + a∼ β. Then I(Ω(−a)) 6⊆mβ+a or I(Ω(−a)) + mβ+a =K[s].
Hence I(Ω̃(−a)) + 〈Aθ − β − a〉K[θ] =K[θ]. Therefore I(Ω̃(−a)) ∩ 〈Aθ − β − a〉K[θ] = 〈Aθ −
β − a〉I(Ω̃(−a)), or N−β−a = {0} by (40).

(ii) Since Fσ(β + a) ∈ NA, there exist u ∈ Nn and γ ∈Kσ such that β + a=A(u+ γ).
Then, for any v ∈ Nσ, A(u+ v) ∈ NA\(a+ NA) = Ω(−a) since Fσ(A(u+ v)) = Fσ(β + a−
Aγ +Av) = Fσ(β + a) /∈ Fσ(a+ NA). Hence u+ Nσ ⊆ Ω̃(−a). Put ξ := u+ γ. Then Aξ = β +
a and ξ +Kσ = u+Kσ ⊆ ZC(Ω̃(−a)). By Lemma 8.1 we have

ZC(Ω̃(−a)) =
⋃
j∈J

(u(j) +Kτ (j)
),

and we see that, by the assumption, ξ +Kσ is the unique irreducible component of ZC(Ω̃(−a))
containing ξ. Hence, by localizing at ξ, to prove the assertion it is enough to show that
I(ξ +Kσ) ∩ 〈Aθ − (β + a)〉 6= I(ξ +Kσ).〈Aθ − (β + a)〉 (see (40)) or, upon translating by ξ,
that I(Kσ) ∩ 〈Aθ〉 6= I(Kσ).〈Aθ〉. Since it is clearly true that

Fσ(Aθ) =
n∑
j=1

Fσ(aj)θj ∈ I(Kσ) ∩ 〈Aθ〉\I(Kσ).〈Aθ〉,

we have finished the proof. 2
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Theorem 8.3. MKn(β) is irreducible if and only if β is non-resonant, i.e. Fσ(β) /∈ Z for all
facets σ of R>0A.

Proof. Suppose that β is non-resonant. Then β + a∼ β for all a ∈ Zd. Hence, by Lemma 8.2(i),
MKn(β)' LKn(TA, β).

Suppose that β is resonant and that Fσ(β) ∈ Z. If β = βempty, then, by Corollary 7.6, there
exists a surjective homomorphism

MKn(β)→ LKn(TA, β). (41)

Since σ is a facet of R>0A, there exists b ∈ Zd such that Fσ(b)< 0 while Fσ′(b)> 0 for every facet
σ′ 6= σ. Hence, for a sufficiently large n ∈ N, Fσ(β − nb) ∈ Fσ(NA) and Fσ′(β − nb) /∈ Fσ′(NA)
for every facet σ′ 6= σ. Thus the homomorphism (41) has a non-trivial kernel by Lemma 8.2(ii).

Let β 6= βempty. Then there exists a minimal (τ, λ) ∈ E(β) (see (37)) with τ 6= R>0A. Hence,
by Corollary 7.6, LKn(Tτ , λ) is a quotient of MKn(β). Since the support of LKn(Tτ , λ) is strictly
contained in the support of MKn(β), the kernel of the homomorphism MKn(β)→ LKn(Tτ , λ) is
non-trivial. 2
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