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BOUNDARY INTERPOLATION FOR CONTINUOUS 
HOLOMORPHIC FUNCTIONS 

WILLIAM S. COHN 

Let Bn denote the unit ball in Cn with boundary S. We will be concerned 
with spaces of holomorphic functions on Bn and will use much of the notation 
and terminology found in W. Rudin's book [16]. Thus, if/ is holomorphic in 
Bn and has homogeneous polynomial expansion 

f(z) = J2f^ 
k=0 

the radial derivative off is given by 

oo n -x ~ 

Rf(z) = Y/kfk(z) = J^Zj£(z). 

Following and Beatrous and Burbea [6], for /? G 9t, we define 
oo 

D"/(z) = X)(l+*//*(z). 
* = 0 

If (3 > 0 then D@f may be interpreted as a fractional derivative of/, and, of 
course, D = 1 + /?. 

Let dV denote the volume Lebesgue measure on Cn and, following [6], for 
p,q>0 let Ap

q = A^(£„) be the space 

Ap
q = {/ : / holomorphic on Z?w and ||/||A^ < oo} 

where 

with 

J\f\PdVq 

UP 

dVq(z)=I^^(l-\z\2)^dV(z). 

As <7 —> 0+, the probability measures dVq converge in the weak* sense to the 
normalized surface measure da on S. Therefore let AP

Q = Hp, where Hp is the 
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770 W. S. COHN 

usual Hardy class of functions holomorphic on Bn\ see [16]. For (3 G SK and 
q^O define Ap

q3 = D~0Ap
qJ i.e., 

A^ = { / : ^ / G A ; } 

and set 

11/11,,̂  = ll̂ /IU,-
For (3 > 0 and ^ = 0 we will also use the notation HZ = A^Q\ HZ can be 

thought of as a Sobolev space of holomorphic functions [6]. 
Our main results concern the Sobolev spaces //£ and the Besov spaces B^ — 

Ap
pl+g. It will be important to know that 

(1) K=AUa-&\« *<*«>/?, 

with equivalent norms. For n — 1 this may be found in [9]. For n > 1 the result 
follows by slice integration; see [6]. 

If one allows a = /3 then (1) must be replaced by the well known continuous 
inclusions 

(2) BpÇHp, 0<p^2 

and 

(3) H%QB$, 2^pSoo. 

In particular, Ho = Bl with equivalent norms; see [6] and [18]. 
To motivate the problem studied here, consider the case where n = 1 so 

B\ = U, the unit disk in the complex plane. Let C(K) be the Banach space 
of functions continuous on a compact Hausdorff space K equipped with the 
supremum norm || • \\K- If ft is a Banach space of holomorphic functions on U 
one may consider the space 

<B = ft nA(D) = ft nC(T) 

where A(D) is the classical disk algebra of holomorphic functions continuous 
on the closed disk 0 whose boundary is the circle T. 

We can make *B a Banach space by using either one of the following norms: 

11/11* = max(| |/ |U, H/IIT) (the "max norm") 

or 

ll/ll* = ll/IU + ll/llr (the "sum norm"). 
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If K is a compact subset of T let RK denote the restriction operator RK : (B —> 
C(K) which sends a function/ to its restriction on K. 

Definition 1. K is called a boundary interpolation set (B.I. set) for # if RK 

maps # onto C (K). 

Definition 2. * is called a strong boundary interpolation set (S.B.I, set) for 
<B if RK maps the unit ball of # onto the unit ball of C(K). 

The model for boundary interpolation theorems is the following result proved 
independently by Rudin and Carleson which considers the case where Jl = 
A(0); see [16], Chapter 10. 

THEOREM A. Let A = A(0) and give *B the max norm. Then the following 
conditions on a compact subset K Ç.T are equivalent: 

G) |* | = 0. 
(ii) K is a B.I. set for <B. 

(iii) K is a S.B.I, set for <B. 

Here, \K\ denotes the one dimensional Lebesgue measure of*. 
The next theorem we state on boundary interpolation motivates our own re

sults. It should be considered in the following context. 
Iff is holomorphic on £>, let us say that the exceptional set off is the set 

E(f) = {C : C € T and/ does not have a finite non-tangential limit at £}. 

If 1 < p < oo and 1 — (3p ̂  0, it is well known that the compact sets K 
arising as exceptional sets for //? and BZ functions are those sets for which 
Cpp(K) = 0. Here, Cx

p^ denotes a particular (one dimensional) Bessel capacity 
defined by means of potentials on T. See [5] and [17] for a discussion of this fact 
as well as [2] for a discussion of the equivalence of the zero sets of corresponding 
Bessel and Besov capacities. 

THEOREM B. (Peller and Khruschev [15] and Sjôdin [17]) Let <B = Bp
l/pnC(T) 

have the sum norm. If K is a compact subset ofT then the following conditions 
are equivalent: 

(i) C^l/p(K) = 0. 
(ii) K is a S.B. I. set for # . 

(iii) K is a B.I. set for <B. 

Actually, in [15], Peller and Khruschev showed that (i) implies (ii). The im
plication (iii) implies (i) had been established earlier by Sjodin and so Theorem 
B follows. 

We turn now to our main results. The reader should have no trouble in ex
tending Definitions 1 and 2 to the context of Cn. 

First, let < G S and 6 > 0. Define the Koranyi ball 

B(CS) = {r] : v e S md\l - (r),0\ <è}. 
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For 0 < m ^ n and K a compact subset of S let 

(4) Hm(K) = inf^T 

where the infimum is taken over all covers {Z?(^,£JO} of K. If n > 1, since the 
Koranyi ball is "non-isotropic", Hm is called (non-isotropic) Hausdorff capacity 
of dimension m. See [1] for a discussion of (isotropic) Hausdorff capacity. 

In [4] and [8] the compact subsets K of S arising as exceptional sets for 
H£(Bn) (and actually BpJBn)) functions were characterized as the ones for which 
Hm(K) — 0 where m — n — (3p, provided 0 < p ^ 1 and n — /3p > 0. These 
results were new even for n = 1. See [4] and [8] for the precise definition of 
"exceptional set", if n > 1. 

We can now state our main result. 

THEOREM 1. Let 0 < n - (3 < 1 and give Blp(Bn) n C(S) and Hl
p(Bn) n C(S) 

the sum norms. If K is a compact subset of S then the following conditions are 
equivalent: 

(i) Hn-p(K) = 0. 
(ii) K is a S.B.I, set for Bl

0C\C(S). 
(iii) K is a S.B.I, set for H^HC(S). 

If n > 1 then easy examples show that Theorem 1 is false if n — (5 > 1. 
It should be pointed out that we do not know whether the notions of S.B.I, set 

and B.I. set coincide for the spaces considered in Theorem 1, even in the case 
n = 1. However, we do have the following result which points in that direction. 

THEOREM 2. Let0<n-f3<\. Suppose K C S is a B.I. set for / / j H C(S). 
Then H^K) = 0 for any increasing concave downward defining function UJ on 
[0, oo) satisfying the condition u(t) = o(tn~P). In particular, Hn-p+t(K) = 0 for 
all e > 0. 

Here H^K) is defined by replacing 6™ by u{8k) in (4). 
We are also able to provide new information concerning boundary interpola

tion for the case n = 1, 1 < / ? < o o , and 1 - /3 /7^0 . Sjodin, [17], has shown 
that a necessary condition for K to be a B.I. set for Bp^ PI C(T) or H$ Pi C(T) is 
that Cpp(K) = 0. (See also [19].) As has already been remarked, Peller and Khr-
uschev established that the condition C1

 x/P(K) — 0 was sufficient for K to be 
a S.B.I, set for Bp

/pnC(T). Koosis, [12], simplified Peller's and Khruschev's 
proof for the special case B\i2 and left open the question of whether or not 
Clp(K) = 0 implies that K is a B.I. set for Bj H C(T) when 0 < (5 < 1/2. We 
answer this in the affirmative. More generally, we have the following fact. 

THEOREM 3. Let 1— / 3 p ^ 0 , \ < p < oo and suppose (B = B^nC(T) is 
given the sum norm. If K is a compact subset ofT and C^JK) = 0 then K is 
a S.B.I, set for <B. 
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When combined with Sjodin's results, Theorem 3 shows that the notions of 
S.B.I, and B.I. coincide for B? H C(T\ 1 < p < oo and 1 - (3p ^ 0. 

If 0 < p S 2 the inclusion B% Ç Hfi and the proof of Theorem 3 will show 
that one may replace BZ by //£ in Theorem 3. However, we do not know if this 
is still true when p > 2. 

For n > 1 the problem of characterizing exceptional sets for HZ, 1 < p < 
oo, is unresolved; see [4] for some interesting examples. While our methods 
yield some results, it seem premature to consider boundary interpolation in that 
context. 

The proof of Theorems 1 and 2 require the following lemma based on a 
construction similar to the one in [8]. In the sequel, the letter C will denote a 
constant whose value may differ at each new occurrence. 

LEMMA 1. Let 0 < n — (3 < 1 and suppose K is a compact subset of S for 
which Hn-p(K) = 0. Then there exists a sequence {fk} of holomorphic functions 
on Bn satisfying the following conditions: 

(i) Refk is positive and continuous in the extended sense on Bn, the closed 
ball. 

(ii) Re/* = oo on K. 
(iii) fk is continuous on Bn\K. 
(iv) limfk(z) = 0forzeBn\K. 

k—xx) 

(v) exp(-/t)efijnC(S). 
(vi) l im | | l - exp( - / t ) |L , = 0. 

Proof. Since Hn-g{K) = 0, for each y = 1,2,... we may find a cover of 

KMi,hkj)}NiU such that 

(5) XX,)"-" ^ 2">. 
/=! 

Choose e so 0 < e < 1 — (n — (3) and set z/j = (1 — SIJXIJ, I — 1? • • -,Nj. 
Define 

NJ (S )1_e 

Since for \z\ ̂  1 and |w| < 1 

X l - e ) 
cos 

R e - , ,,, ^ 
( l - ( z , w » 1 - « | l - ( z , w ) | ' - e 

it is clear that/^ has positive real part on Bn. If z is any point in B(QJ,8IJ) then 

1 > ! 
I 1 - ( z > z / , . / ) l M ' , y 
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and since every point z G K lies in infinitely many balls B(Qj,6ij) it follows 
easily that (i) and (ii) hold. If z G Bn\K then each term (1 — (z, z/j))e_1 is 
continuous and uniformly bounded on a neighborhood of z, for j large. Therefore 
(hi) follows from (5) and the Weierstrass M-test since n — f3< 1 — e. Condition 
(iv) is verified in the same fashion. 

To verify that (v) and (vi) hold we need two additional lemmas. 

LEMMA 2. Let g be a non-negative function on a positive measure space 
(£2, p). For k\,..., k\ > 0 and m\,...,m\ ^ 1, define 

i i 

Then 

m = 2_] kjmj and L = ^ J mj — I. 
7=1 7=1 

filfg^dX^ifg^d^if gdp 

Proof Observe that nijkj ^ m and so m/kj =t m}=^ 1. It follows from Holder's 
inequality that 

f g^dfi ^ \[ gm+ld» 
Un 

kj/m 

[/ gdp 
i-kj/m 

and thus 

n [//'*' dp, f gm+Xdn 
iY,kim> 

L gdp 
Y^mJ-mJ2kJmJ 

which is the desired result. 

LEMMA 3. Let 0 < e < 1 — (n — /3) < 1. Suppose \ZJ\ < 1, j = 1,.. .N and 

set 

K* = £ 
l - e 

j=l 

(1 ~ \zj\) 
( l - ( z , z y » i - -

r/ien there exists a constant C depending only on (3 and e such 

l-e -F\\ âc[iii-e-i,^+E;a-Nr 

Proof Since B\ = A} 1+* = ^i_tf n with equivalent norms, it follows that 

11 ,«-/?• |1 - ^ - F L i ^ C||D"(1 - ^ H i , ^ - C||l - D V " F ' 
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If h is holomorphic on Bn, we may calculate Dnh(z) by letting hz(X) be the slice 
function 

hz(\) = h(\z), xeu 

and then 

where 

/Î yields the equality 

is the operator —- • A iterated n times. Using e F in place of 
aA 

<** 
(DV-F)(z) = e"™ + J ] c(k, ny—e-F-(l) 

k=\ 

where c(£, n) are positive integers depending only on k and n. Therefore 

dk 

\D"{\ - e-F)(z)\ ^ C \l-e-F^\ 
k=l v J J 

We show how to obtain the estimate 

(6) (£•"•") (,)Lsc£<'-wr": 

the lower order terms in the sum can be handled in a similar way. For each 
dn 

\z\ < 1, —— e~FzW is dominated by a constant times a sum of terms of the form 
1 ' dXn J 

(7) 

where 

-F(\z) 

7=1 

dki 

dX*j 
FZ(X) 

y ^ ^m7 = «, my > 0 and 0 < kj• ^ n. 

Estimate that 

(1 - IZyl)1 

i^-F (A) £ c V U ~ ' jU  

d\ktAA)\-Cl^\\-\{z,zj)\
i-^k 

C f gk+\Qdn(Q 
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where 

* ( 0 | l -A(z ,C) | 

and [i is the sum of point-masses 

(i - M)1"' wo = E if •MO-
\(z,Zj)\~ 

If no kj = n, we may apply Lemma 2 and get that (7) is dominated by 

(8) \e-F(^)\ f g(Qn+ldn] 
-JBn J 

[ g(Qd» 
UBn 

Since 

ReF(Az)^cy ,1
(1~|Z;"|)1,"' 

^\l-\(z,Zj)\i-< 

JBn 

I 

it follows that (8) is less than a constant times 

(9) 
JBn I 1 A(z,Zy)| 1— e+« ' 

For the single term where / = 1 and k\ — n the fact that (7) is less than a multiple 
of (9) is immediate. To obtain (6) use the integral estimate ([16], 17-18) 

L (1 \n-3-l 

'„ I 1 -(zizj)\ 
-dV ^ c 

(i - N)(1" e)~(n-l3) 

and the triangle inequality. 
The same reasoning will give a stronger pointwise estimate on the lower order 

terms and the proof is therefore complete. 

We can now complete the proof of Lemma 1. Property (v) follows as a 
consequence of (5) and Lemma 3 since 1 — |z/j| = Sij. Property (vi) follows 
similarly in conjunction with Lemma 3, (5), properties (i) and (iv), and the 
dominated convergence theorem. 

To prove Theorem 3 we will need an analogue of Lemma 1 for the spaces 
BP(B{). 

LEMMA 4. Let 1 < p < oo, I— (3p ^ 0 and suppose K is a compact subset of 
T for which C^^K) = 0. Then there exists a sequence of holomorphic functions 
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{fk} on U = B\ such that conditions (i)-(vi) of Lemma 1 hold, with U in place 
ofBni T in place of S, and B^ — B^(U) in place of Blp. 

Proof For p = 2 and f3 = 1/2 the functions {fk} were constructed explicitly 
in [7] and the same procedure works, if p — 2, for 0 < (3 < \. The method is 
essentially the same for the general case of non-linear capacities, but the details 
are more technical. We will try to sketch the basic idea. 

Since C^(K) = 0, K C f|~i Kj, where Kj C Kj-U and each Kj is a finite 
union of closed arcs whose one dimensional Besov capacity can be chosen to 
be arbitrarily small; see [5]. If we use the fact that the two dimensional Bessel 
capacity C^+ljp9 when restricted to the one dimensional set T, is equivalent to 
the above mentioned Besov capacity, [13, p. 114], it follows that we may find 
an equilibrium potential for Kj of the form 

hj(z) = f 
Ju 

8'{0 -dA 
.£12-03+1//?)' 

where dA is area measure on Cl and 

<"» war1-Ju-$&>»• 
where pj is supported on Kj and 

(11) f \gj\"dA = 11^= C2
p<0+l/p(Kj); 

Ju 

see [14]. Note that we may make \\pj\\ arbitrarily small. 
Since hj is the equilibrium potential for Kj, 

hj(ew) ^ 1 for all eid e Kj 

except for a set of capacity zero. We now modify hj to get a holomorphic BPQ 
function. Since /3 > 0 we may choose 0 < 7 < 1/p', where p' = p/(p — 1), so 
2 - ( /3+ l / /7 + 7 ) < 1. For \z\ S 1 let 

<12) m=f ««<_'-.*T,a*. ™-L£ zQ2-tf+l/p+l) 

Then Re Fj(z) ^ 0. We will show later that Fj G B^ and this means that Fj is 
the Poisson integral of its boundary function. Since 

ReFj(ei9)^Chj(ei9) 

it follows that 

ReFj(eie)^C fore* e A), 
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where C > 0 is independent of j . Now set 

It follows that (i) and (ii) hold. To establish (iii) and (iv), let z G Û\Kj and 
suppose N is a small closed neighborhood containing z which does not intersect 
Ki for / ^ j . 

Estimate that 

| F / ( z ) | ^ / i + / 2 

where I\ is the integral over N of the absolute value of the integrand in (12) 
and h is the integral over U\N. To estimate I\, use (10) to get the inequality 

where C depends only on the distance of N to Kj. Since 

(i - I4r7 

X JA ^ C 
/ a |l_£z|2-(0+l/p+7) 

where C does not depend on z G £/ it follows that 

/.^ciMI"'"1. 

To estimate h, notice that 

/2 ^ c /" |ft(oi(i - Klr 7 ^ 
JU\N 

where, again, C depends only on the distance from N to Kj. Thus 

h£c{J\gtfdA} "( jTd-KI)-^ " 

SC| |M , | | 

since 7// < 1. We now have the estimate 

|F,(z)|^C[|| /x ; | |"'-1
 + ||M;||] 

valid for z G Û\Kj and / ^ 7. By choosing Cpi/3+l/p(Kj) sufficiently small and, 
to insure continuity, replacing Fi(z) by a dilation Fi(nz) where 77 is sufficiently 
close to 1, we will obtain (i)-(iv). 

https://doi.org/10.4153/CJM-1989-035-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-035-9


HOLOMORPHIC FUNCTIONS 779 

To verify (v) and (vi) it is necessary to estimate ||Fy||j5P. We will be very 
sketchy here. Since BE = Ap

 Uf3 = Ap
{ {, ~ this amounts to estimating the Ap

x 

norm of 

HJiz) = l "'T's.Z-, dA-g/(Od - ICI)"7 

(1-Cz)2"7 

Since 7 < l/p' it follows from a theorem of Fbrelli and Rudin, [16] Chapter 7, 
that 

\\Hj\yPtl£C [\gtfdA 

= c\\vj\r. 

Verifying (v) and (vi) is now routine: 

l l l -^IU^CUDkl-^IUi-^) 
= C\\\-e-f'+e-*f'k\\p,p(l-p) 

^c[\\l-e-f%^^) + \\fk\\BP0] 

^C \l-e-f%,P(i-p) + Y,hj\\ 
j^k 

If H/iyll is chosen sufficiently small then both terms will go to zero as k —• oo. 
This completes the proof. 

Remark. We have been unable to obtain a version of Lemma 4 for the Sobolev 
spaces HZ(B\) when p > 2. There is no problem in using potential theory to 
find {fk} satisfying (i)-(iv). The difficulty arises when one tries to prove that 
exp ( - / , )G / / | . 

We now prove Theorem 1, by showing that (i) implies (ii), (ii) implies (iii), 
and (iii) implies (i). 

The proof that (i) implies (ii) is based on the duality argument used by Peller 
and Khruschev in [15] as outlined by Koosis in [12]. Suppose K is compact in 
S and Hn-p(K) = 0. Let Us be the unit ball in Blp D C(S) and UK be the unit 
ball in C(K). It is enough to show that the closure in C(K) of RK(Us) contains 
UK. 

Suppose this is false. Then the Hahn-Banach theorem gives a v E M(K), the 
set of complex Borel measures supported on K, such that \\i/\\ = 1 and 

Hs (13) / fdv £ A < 1 

https://doi.org/10.4153/CJM-1989-035-9 Published online by Cambridge University Press

file:///gtfdA
https://doi.org/10.4153/CJM-1989-035-9


780 W. S. COHN 

for a l l / G Us. Reasoning as in [15], we identify BpC\C(S) with the diagonal A 
in the product space Bp x C(S). Thus 

A = { ( / , / ) : / G ^ n C ( S ) } 

and, since B\ HC(S) has the sum norm, the map which sends/ to ( / , / ) is an 
isometric isomorphism of Bp D C(S) onto A. It follows that the dual space of 
Bo HC(S) is isometrically isomorphic to the quotient 

(BlpTxM(S)/A1. 

Here, Ax is the annihilator of A in (Bjfi* x Af (5), and, if (A, /x) G (Bfi* x Af (S) 
then 

(A,rt(f,g) = A(f) + Jgdn 

for ( / ,g) € Bp x C(S). Inequality (13) asserts that the quotient norm of the 

coset [(0, i/)] is less than 1. It follows that there is a pair (A, /i) G A1 such that 

(14) max(| |A|| ( l> , r , | | i/-Mll)^A. 

Let E be a compact subset of K and apply Lemma 1 with E in place of K. 
Since (A, \i) G A-1 and 1 - exp(-/*) belongs to B\ n C(5) it follows that 

A(l - e~fk) = - j ( l - e-fk)d[i 

and therefore 

|A(l-é?- /A)| = f(l-e-fk)dfjL 

which yields the inequality 

(15) \J(l-e-f')dn ^ I IAIIIU 

Properties (i)-(iv) of Lemma 1 assert that 1 — e~fk converges boundedly to the 
characteristic function of E, while property (vi) says that, as k —+ oo, the right 
hand side of (15) goes to zero. The dominated convergence theorem implies 
therefore that 

|/x(£)| = 0. 
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Since E was an arbitrary compact subset of K, it follows that /i is singular with 
respect to v G M(K). Thus 

| | i / - /x | | ^ ||i/|| - 1 

which contradicts (14). Thus (i) implies (ii). 

Remark. The preceding argument together with Lemma 4 provides the proof 
of Theorem 3. 

To see that (ii) implies (iii), let K be a S.B.I. set for B^C\C(S)9 F e C(K) and 
\\F\\K = 1. If 0 < t < 1 it follows that there exists/ in the unit ball of Bl^nC(S) 
such that RKf = tF. Thus | | / | | s ^ r and since | | / | |5 + \\f\\Bi < 1 it follows that 

\\f\\B\ < 1 — t. From inclusion (2) there exists a constant C independent of t 

such that H/Htfi < C(l - t). Thus 

and if 

1 

l + C ( l - r ) 

it follows that g is the unit ball of H^ D C(S) and 

tF 
*Kg = 

l + C ( l - 0 " 

As r varies from 0 to 1, so does t/(l + C(1 — 0) and it follows that # is a S.B.I. 
for//jnC(S). 

To prove that (iii) implies (i) we need some results which can be found, 
essentially, in [4] and [8]. First, for 0 < m ^ n and /x a positive measure on S 
define 

|||/x|||m-sup/i(B(c^))rw 

where the supremum is taken over all £ G S and 8 > 0. 

THEOREM C. (Ahern, [4]). Let 0 < p ^ 1 a^d m = n — (3p > 0. Then there 
is a constant C such that 

1 \ffd^c\M\\m\\f\t PM 

forallf eH$nC(S). 

THEOREM D. Let K be a compact subset of S. Then Hm(K) > 0 if and only if 
K supports a positive measure \i such that |||/x|||m < oo. 
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For n ~ 1 Theorem D is due to Frostman, [10]. A proof for n > 1 is contained 
in [8]. 

Suppose now that (iii) of Theorem 1 holds. By Theorem D it is enough to 
show that if /i is a positive measure in M(K) satisfying |||/x|||n_^ < oo then 
/i = 0. Let \i be such a measure. Denote by <j> the function in C(K) which is 
identically 1 on K. By (iii) there is a sequence of functions {/*} in the unit ball 
of Hp n C(S) (with the sum norm) such that 

Since 

ll/.IU 2 ^ 

it follows that 

||/*||l,0,/ï< Y^l' 

Now \i is a positive measure with support on AT, so 

H(.K) = j(j>dn 

l+k 

k Ifkd» 
l+k 

k 
J \fuW 

^ci^llMIUIIAIIw 

< CIHMIIU-/? 

k 

Therefore /JL(K) — 0. This completes the proof of Theorem 1. 

We now prove Theorem 2. Suppose RK maps HlnC(S) onto C(K). Standard 
duality theory says then that the adjoint map 

R*K:M(K)^[Hl
pnC(S)T 

is bounded below. Thus, there exists a constant C such that 

(16) ||/i|| ^Csup / w J 

whenever // G M(K) and the supremum is taken over all functions F in the 
unit ball of / / j C\C(S). If a; is increasing and concave downward on [0, oo) 
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then a simple modification of the proof of Theorem D given in [8] shows that 
Hu{K) > 0 if and only if there exists a positive measure v supported on K such 
that 

(17) v(B((,8)) = 0(u(8)) 

for all £ G S and è > 0. Theorem 2 will therefore be proved if we show that 
no inequality of the form (16) can hold for all measures dfj, = ijjdi/, where v 
satisfies (17) and 1/; is a unimodular function. 

To this end, find unimodular functions fa such that d[ik — x^kdv converges 
weak* to zero in M(K). (See [12] for a way to do this when n— 1; the general 
case presents no difficulty because the key point is that, by (17), v can have 
no point-masses since uj(t) — 0{tn~^).) Now let F G H p. It follows that / = 
D?F G H\ and thus F = D~Pf with/ G H\ and, of course, ||F|| w = | |/ | | l j0. 
By definition (see also [4] and [6]), for every z G B, 

1 rl 

F(z) = D-Pf(z) =-— / [logl/tf-{f(tz)dt. 1 \P) Jo 

We make the additional assumptions that/, and hence also F are continuous on 
the closed ball and that the representation above holds for z EdS; this will not 
invalidate our argument. It follows that 

- l I 

f(tz)dtfa(z)di/(z)\. (18) |r(/?) [Fdnk\ = \[ [ [logi 
I ^5 I \Js JO I l 

We will show that the right hand side of (18) goes to zero as k —• oo at a rate 
depending only on ||/||i,o and this will suffice to contradict (16). 

Break the right hand side of (18) into two integrals, / = l\ +12 where, in 
/ i ,0 ^ t ^ ro and in h,r$ ^ t Û 1, for some ro,0 < ro < 1. Consider I\. 
For fixed r0 < 1 it is easy to see that, as / ranges over the unit ball in Hl, the 
functions 

fro(z)= [\\ogl/tf-lf(tz)dt 
Jo 

lie in a compact subset of C(S). Since fadv converges weak* to zero it is also 
easy to see that, given e > 0 there is an Af = Af(ro, e) such that 

\ll\ = \[fr0(z)fa(z)dis(z) 
\Js 

< Wfho 

for a l l / e Hl, provided k^N. 
We must therefore consider h- Estimate that 

| / 2 | S C f f (\-tf-l\f{tz)\dtdv(z) 
J S Jro 

= C f \f\dX 
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where Aro = {tz : z G S and r0 < t < 1} and A is the measure on Bn defined by 

d\{t,z) = (\-tf-xdtdv{z). 

The two conditions 

v(B&S)) = 0(uK8)) 

and 

uKS) = o(6n~P) 

easily imply that if S(ÇS) is the "Carleson region" 

S(t,8) = {rri:TieB(Ç,8),l-8<r<l} 

then 

\(S(Ç8)) = o(6n) as<5^0. 

In other words, À is a vanishing Carleson measure. From this it follows without 
difficulty that 

lim i supjT \f\d\ = 0 

where the supremum is taken over all functions / in the unit ball of Hl ; this is 
well known for n = 1 and we refer to [11, p. 33 and 63]. A proof for the general 
case can be easily devised using the atomic decomposition of the modulus of 
an Hl function described in [3]. 

If we now fix e > 0 and choose r0 so close to 1 that 

sup / \f\dX <t 

then with k ^ N = N(r0,e) it follows that the right hand side of (18) is less 
than (2e)||/||i7o. This completes the argument. 
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