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Abstract
Zinc (Zn) deficiency is a worldwide problem, and this review presents an overview of themagnitude of Zn deficiency with a particular emphasis
on present global challenges, current recommendations for Zn intake, and factors that affect dietary requirements. The challenges of monitoring
Zn status are clarified together with the discussion of relevant Zn bioaccessibility and bioavailability issues. Modern lifestyle factors that may
exacerbate Zn deficiency and new strategies of reducing its effects are presented. Biofortification, as a potentially useful strategy for improving
Zn status in sensitive populations, is discussed. The review proposes potential actions that could deliver promising results both in terms of
monitoring dietary and physiological Zn status as well as in alleviating dietary Zn deficiency in affected populations.
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Overview of Zn deficiency: magnitude and clinical
manifestations of Zn deficiency

In humans, Zn deficiencywas first identified in the early 1960s(1),
initially described in an adolescent Iranian male and 3 years later
in an Egyptian boy(2,3). In 1969 and 1972, Zn deficiency was
reported in young children from the United States(4,5).

The historical significance of discovering Zn as an essential
element for humans and its pronounced impact on health and
disease is nicely summarised by Prasad et al. (2013)(6).
Similarly, the circumstances leading to the discovery of human
Zn insufficiency in the Middle East are presented by
Sandstead et al. (2013)(7). Although, it was once disregarded
as a ‘global health problem’, Zn deficiency is now acknowledged
as an acute problem worldwide(8–10).

As stated by the World Health Organization (WHO),
Zn deficiency ranks as the fifth most important health risk factor
in developing countries and eleventh worldwide(8,11).

The magnitude of Zn deficiency is currently estimated based
on the National Stunting Prevalence Data (acknowledged in the
WHO Global Database on Child Growth and Malnutrition and
UNICEF’s Annual Report on the State of the World’s Children
(SWOC))(11,12), information on the amount of Zn in national food
balance supplies is derived from the Food and Agricultural
Organization of the United Nations’ food balance sheets(13),
and finally the prevalence of Zn inadequacy is based on the
evaluation of plasma zinc concentrations from national surveys.
Given, all these analyses, it is estimated that Zn deficiency affects
approximately 17–20 % of the global human population(10).

The populations at the highest risk of Zn deficiency are concen-
trated in South and South East Asia, Sub-Saharan Africa, Central
America, and the Andean region of South America where the diets
are mostly plant based and the intake of animal sourced foods is
low (Fig. 1). Additionally, in recent years, Zn deficiency has
becomeprogressivelymore apparent in developed countries(14,15).

Zn deficiency generally exists due to one or more reasons:
insufficient Zn intake, interference of other dietary factors with
the absorption and bioavailability of dietary Zn, enlarged losses
of Zn, reduced utilisation, and increased requirements for Zn
under physiological conditions such as periods of rapid growth,
pregnancy and lactation(16–18). Currently used cut-offs of plasma
Zn concentrations for assessing the risk of Zn deficiency are
presented elsewhere(19–21).

Clinical manifestations of Zn insufficiency are non-specific,
differ extensively and depend on the severity of deficiency.
The clinical features of severe Zn deficiency in humans are
growth retardation, skin lesions, diarrhoea, dermatitis, alopecia,
pneumonia, delayed sexual and bone maturation, impaired
appetite, defects in the immune system, delayed wound healing,
increased vulnerability to infections and the appearance of
behavioural changes(22–24). Zn deficiency has also been shown
to be associated with sepsis(23,24) and may be a risk factor for
developing asthma(25). Impaired growth, child morbidity and
mortality, and preterm births are manifestations most commonly
seen in populations with inadequate Zn intake in low-income
countries(18,26).

The variable estimates for Zn attributable mortality oscillate
from 97·3 in the Global Burden of Disease Study 2010, to
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116·0 in the Lancet 2013 Maternal and Child Nutrition series, to
453·2 in a previous review(27,28). An excessively high number of
avertable childhood deaths is caused by Zn deficiency(28). Poor
Zn nutrition is associated with >50 % of diarrhoea deaths(29),
10 % of malaria and 7 % of pneumonia deaths(30). The most
recent Lancet Series data point out that 4–7 % of children are
still simultaneously affected by both stunting and wasting,
possibly leading to a four- to eight-fold increase in mortality(31).
Zn deficiency is present in close to half of all children
worldwide(31). Poor growth, subclinical inflammation and
environmental intestinal dysfunction are commonly observed
in children affected by Zn deficiency(31).

The consequences of marginal or mild Zn deficiency are
less clear. The most vulnerable groups are prematurely
born babies, infants and young children, particularly those
6–23 months of age. Mild Zn deficiency is frequently seen in
healthy elderly subjects, contributing to impaired cell-mediated
immune responses(32,33).

Moderate Zn deficiency can lead to hypogonadism, delayed
puberty, reduced appetite, mental lethargy, hyperammonaemia,
dermatitis, cell-mediated immune dysfunction, delayed wound
healing and abnormal neurosensory changes(34,35).

Zn deficiency has been linked to certain health diseases in
developed countries, including cancer, diabetes, depression,
multiple sclerosis and coronary heart disease(36–38). Childhood
obesity, insulin resistance, metabolic syndrome and athero-
sclerosis are also associatedwith Zn inadequacy(39,40). Numerous
clinical risk factors and pathologies related to Zn deficiency
have been described comprehensively by Mocchegiani et al.
(2000)(41) and Roohani et al. (2013)(42).

Dietary Zn intake; food sources of Zn

Zinc is found in a wide range of foods; however, its bioavail-
ability is variable(43,44). Foods with a high protein content are rich
in Zn, while foods and diets made of carbohydrates were found
to be much lower in Zn content(45). The richest sources of
Zn include oysters (25–39 mg per 100 g), red meats

(4·5–5·2 mg per 100 g), liver (4–7 mg per 100 g), and nuts and
seeds (6·5–7·8 mg per 100 g). The highest content of Zn is
found in animal source foods, which can range from
0·40 to 6·77 mg per 100 g(46). Grains have 0·30–2·54 mg per
100 g, dairy products between 20·36 and 0·49 mg per 100 g,
vegetables from 0·12 to 0·60 mg per 100 g, and fruits
0·02–0·26 mg per 100 g(47). Moderate sources of Zn include
cheese, whole-grain cereals and legumes. Zn in animal prod-
ucts is more easily absorbedwhen comparedwith Zn absorbed
from plant foods.

Major food crops, that is, rice, wheat and maize, are relatively
poor sources of Zn (16–25 mg/kg), yet they are basic food
sources to millions of people in developing countries and,
as such, the largest potential sources of Zn(47,48). Cereal grains
are rich in phytate, a compound known to bind Zn in the intes-
tine, reducing its absorption(45,48). The first recognised cases of
Zn deficiency were linked with high-phytate-containing foods,
unleavened bread from unrefined wheat flour and beans(49).
The intake of phytate around the world has been investigated
to some degree, and omnivorous adult intakes of phytates range
from 395 to 1293 mg/d in the United States and UK(50).

The molar ratio of phytate to Zn in the diet has
been perceived as an indicator of Zn bioavailability, and ratios
>15 have been related to suboptimal Zn status(48,51).

Currently, several useful resources provide data on Zn
and phytate concentration in foods. The most complete
source for low-income countries is accessible from the World
Food System International Mini-list(13,52). Industrialised countries
mainly use the United States Department of Agriculture (USDA)
database from the Nutritional Coordinating Center, University of
Minnesota (USDA National Nutrient Database for Standard
Reference) as well as the publications by Reddy and Sathe
(2002)(50) and Wessells and Brown (2012)(10).

Dietary recommendations for Zn intake

A summary of the currently used dietary recommendations for
Zn intake (mg/d) for various life stages and sex groups as set

Fig. 1. Prevalence of Zn deficiency in developing countries. Based on data provided by Wessels and Brown (2012)(10) and Gupta et al. (2020)(88).

200 M. Knez and J. C. R. Stangoulis

https://doi.org/10.1017/S0954422421000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422421000342


by WHO, Institute of Medicine, International Zn Nutrition
Consultative Group (IZiNCG) and European Food Safety
Authority(11,53–55) is presented in Table 1.

Brief overview of dietary Zn intake assessment methods

Inadequate dietary Zn intake is usually the main cause of Zn
deficiency. The assessment of dietary intake is accepted as the
best scheme for estimating Zn exposure in individuals and
populations and is the central element in evaluating the risk of
Zn deficiency(55).

A comprehensive historical overview of the progress in the
evaluation of dietary Zn intake as an indicator of Zn status
was provided by Gibson in 2012(9).

The dietary Zn intake of individuals can be assessed by
several methods (Table 2). The details of the methods presented
here are described explicitly elsewhere(56–58).

It is important to highlight that the dietary Zn intake data
provide only an approximation of Zn exposure or Zn insuffi-
ciency. The inadequacy cannot be identified with certainty as

the actual Zn requirements of an individual are not always
known. If dietary phytate can be assessed, the bioavailability
of Zn can be defined.

Nevertheless, implications for adequacy of an individual’s
Zn intake can be made by comparing the variance among
the reported intake and the estimated average requirements(59);
however, certain conditions need to be met before the method
can be used(60), implying that the day-to-day variation in dietary
Zn intake needs to be addressed appropriately. Nowadays,
certain software programs are available for making necessary
corrections. They include the Intake Modelling and
Prediction Program (IMAPP) and the National Cancer
Institute method(26,61).

The assessment of the dietary Zn intake of populations can be
determined from the food balance sheet data provided by the
Food and Agriculture Organization(62), which indicate the total
amount of Zn accessible to populations within a country or
region. Additional research is needed to evaluate the accurate
proportion of populations affected by Zn deficiency or popula-
tions subgroups ‘at risk’ of Zn deficiency(10,55).

Table 1. Dietary recommendations for Zn intake (mg/d)

Age group/life stage

WHO IOM IZiNCG EFSA

LBA MBA HBA UL EAR RDA UL A B UL EAR UL

Infants and children
0–6 months 6·6 2·8 1·1 4
7–12 months 8·4 4·1 2·5 13 2·5 3 5 3 4 6 2·4
1–3 years 8·3 4·1 2·4 23 2·5 3 7 2 2 8 3·6 3
4–6 years 9·6 4·8 2·9 23 4·6
4–8 years 4 5 12 3 4 14 4
7–9 years 11·2 5·6 3·3 28 6·2
9–13 years 7 8 23 5 7 26 7

Adolescents
10–12, males 17·1 8·6 5·1 34
12–15, males 17·1 8·6 5·1 40 8·9
14–18, males 8·5 11 34 8 11 44 22
15–18, males 17·1 8·6 5·1 48 11·8
10–12, females 14·4 7·2 4·3 32
12–15, females 14·4 7·2 4·3 36 8·9
14–18, females 7·3 9 34 7 9 39 22
15–18, females 14·4 7·2 4·3 38 9·9

Adults
18–60, males 14·0 7·0 4·2 45
19–50, males 9·4 11 40 10 15 40 7·5 25
> 51, males 14·0 7·0 4·2 45 9·4 11 40 10 15 40 25
18–60, females 9·8 4·9 3·0 35
19–50, females 6·8 8·0 40 6 7 40 6·2 25
> 51, females 9·8 4·9 3·0 35 6·8 8·0 40 6 7 40 25

Pregnancy
14–18 years 11·0* 5·5* 3·4* 10·5 13 34 þ2 þ3 þ1·3
19–50 years 14·0† 70† 4·2† 9·5 11 40 þ2 þ3 þ1·3

20·0‡ 10·0‡ 6·0‡

Lactation
14–18 years 19·0* 9·5* 5·8* 10·9 14 34 þ1 þ1 þ2·4
19–50 years 17·5† 8·8† 5·3† 10·4 12 40 þ1 þ1 þ2·4

14·4‡ 7·2‡ 4·3‡

WHO,World Health Organization; IOM, Institute of Medicine; IZiNCG, International Zn Nutrition Consultative Group; EFSA, European Food Safety Authority. A, IZiNCGP:Zn≤ 18; B,
IZiNCG P:Zn> 18. BA, bioavailability; LBA, low bioavailability (15%); MBA, moderate bioavailability (30%); HBA, high bioavailability (50%); UL, upper limit of intake (the highest
intake likely to cause no risks of adverse health effects); EAR, estimated average requirement (meets the needs of 50% of individuals in the life stage group); RDI/RNI/RDA,
Recommended Dietary Intake/Reference Nutrient Intake/Recommended Dietary Allowance (meets the needs of nearly all individuals in the life stage group).

There are insufficient data for upper level of Zn intake for children. Estimated additional average requirement for Zn needed during pregnancy and lactation (þ).
Modified from WHO (1996)(11), IOM (2001)(53), IZiNCG (2004)(54), Lim et al. (2013)(27), King et al. (2016)(55) and Gibson et al. (2016)(26).
* First trimester.
† Second trimester.
‡ Third trimester.
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Dietary Zn intake in developed and developing countries;
challenges of monitoring Zn status

The adequacy of dietary Zn intake is assessed by comparing the
usual dietary Zn intakes with the estimated average require-
ments(59). As the assessment of Zn status by biomarkers is still
challenging, evaluation of inadequacy is typically based on
the assessment of dietary intakes, the prevalence of child
stunting and the accessibility of Zn from the food supply(62).
The US, Canada, New Zealand and Australian government
agencies have evaluated population dietary Zn intakes and
documented the main dietary sources(63–66). In Europe, the
European Micronutrient Recommendations Aligned Network
of Excellence (EURRECA; www.eurereca.org) is responsible
for tracking the projected prevalence of inadequate Zn intakes
and determining Zn requirements(67).

Results from the nutritional surveys conducted in the United
States, Great Britain, Spain and Germany concluded that
the recommended intake of Zn is not always achieved(68,69).
For example, 10 % of 1–3-year-old children from Poland had
Zn intakes below the recommendations, and 39 % of girls aged
4–10 fromDenmark had Zn intakes below the estimated average
requirement (EAR)(69–71). Similarly, the percentage of inadequate
Zn intakes for adolescents in the UK was between 3 % and 48 %,
while the percentage of inadequacy for adults was a bit lower,
between 10 % and 21 %(65,69,72). Inadequate Zn intake was
reported in 15–25 % of apparently healthy Serbian adults(73).
Likewise, 39 % of Spanish men over 60 years of age had Zn
intakes below the EAR(74), while people living in Ireland failed
to meet the EAR for Zn (13 % of the elderly, 11 % of men and
29 % of women)(75). Moreover, 83 % of the ANIBES study popu-
lation did not meet the European recommendations for dietary
Zn intake(76). Comparable findings were provided for the
United States, where data from the NHANES indicated that
11–17 % of people had Zn intakes below the EAR(77).

Similarly, the Canadian Community Health Survey from 2004
demonstrated that 10–35 % of Canadians consume Zn in inad-
equate amounts, with men over 70 years of age being most
vulnerable, 41 % being Zn deficient(63). People living in the
UK also had Zn intakes below the EAR, and girls 11–18 years
of age were at the highest risk of inadequate intakes(65). The esti-
mated prevalence of poor Zn intake among children in New
Zealand ranged from 5·4 % to 9·2 % for 5–6-year-old males to
16·4 % for girls aged between 11 and 14 years(78). An adult nutri-
tion survey from New Zealand reported that 39 % of males and
11 % of female adults were at risk of dietary Zn deficiency(79).

In addition, 52 % of men and 9 % of women consumed below
the Australia/New Zealand estimated average requirement for
Zn, while 15 % of men and 7 % of women had low serum Zn
levels(80). Likewise, low serum Zn was measured in 18 % of
men 50 years or older and 30 % of men 70 years or older(80).
Similarly, 19 % of premenopausal (age 18–50) Australian women
were susceptible to inadequate Zn nutrition(81).

Finally, 7·8 % of people living in China and approximately
10 % of people from Central and Eastern Europe consume Zn
in inadequate amounts(10). The available micronutrient intake
and status data in Europe(82), encompassing themajority of avail-
able research related to Zn intakes of people living in EuropeanT
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countries, pointed out that data on Zn intakes in Europe are
lacking for all life stages, while for certain countries, data on
Zn intakes are either outdated or do not exist(82).

The nationally representative surveys that evaluated the
adequacy of Zn intakes in low-income countries are very limited
due to the high cost and logistical challenges. The global risk of
Zn deficiency decreased from 22 % to 16 %, between 1992 and
2011, but it remains prevalent(83).

In 2011, 1·1 billion people were at risk of Zn deficiency(83).
Comparable findings were provided by Wessells and Brown
in 2012(10), when the national food balance sheet data taken from
the Food and Agriculture Organization of the United Nations
were used to estimate a country- and region-specific risk of
dietary Zn inadequacy in 188 countries. The global estimates
on the prevalence of inadequate intakes were relatively stable
over the 20 years, and there were no inter-regional variations
in Zn intake among individual countries(10). Of the world popu-
lation, 17·3 % is at risk of inadequate Zn intakes, with more than
20 % inadequacy seen in people living in South and South East
Asia and the Pacific (22 %), Sub-Saharan Africa (25 %) and South
Asia (close to 30 %). The Zn deficiency risk for Africa in 2009was
estimated to be approximately 40 %(84). Amore recent systematic
review documented that 34 % of women of reproductive age and
46–76 % of pregnant women in Kenya, Ethiopia, Nigeria and
South Africa are Zn deficient(85). Data on Zn status of certain
population groups in the Australasian region are limited;
however, the available evidence suggests that at-risk groups in
Australasia are adolescents, toddlers (Pacific and Aboriginal
ethnicities) and the elderly(86). Pacific and Māori children had
a high prevalence of low serumZn levels (21% and 16 %, respec-
tively) and were at a higher risk of developing Zn deficiency
when compared with children from other ethnicities(87). The risk
of suboptimal Zn status was particularly high among younger
boys in the Pacific region(87).

The prevalence data, based on the national plasma
zinc concentration data, are currently available for only
25 low- and middle-income countries, of which in 23 the
occurrence of Zn deficiency was above 20 % for at least one
of the physiological groups examined(88,89), which indicates that
there is an urgent need for additional assessment of Zn status in
low- and middle-income populations.

The prevalence of inadequate Zn intakes is most common
in low-income countries; however, it is also increasingly seen
in developed country populations. In addition, there are no
national data from a specific survey period that can show Zn
intakes and their adequacy. No appropriate cross-country
comparison could have been made as many countries
have no regular nutritional monitoring programmes in place
(this includes both developing and developed countries).

Comparison of data on Zn intake between countries is a chal-
lenging task because of the heterogeneity in methodologies and
study purposes being used, various assessment methods of food
intake, and no representative nutritional surveys at the national
level for all countries. Additional, up-to-date and higher-quality
studies are undoubtedly needed to address gaps in current
knowledge.

Regular follow-ups are necessary to ensure that potential
deficiencies of Zn get acknowledged and addressed on time,

particularly in countries where their existence is less expected.
More targeted measurements of population Zn status, including
biochemical and dietary assessments, are needed for countries
recognised as being at the highest risk of inadequate Zn intakes
(i.e. South Asia, Sub-Saharan Africa and Central America).

Supporting evidence and additional research on dietary Zn
intake globally would not only help in obtaining a more accurate
estimate of Zn inadequacy but also in adequately directing nutri-
tional interventions aimed at controlling Zn deficiency.

Zn bioavailability, inhibitors and enhancers

The bioavailability of Zn refers to the portion of dietary Zn intake
that can be absorbed into the blood system and used for physio-
logical functions within the body(42). Themain factors that define
the bioavailability of Zn are the total Zn content of the diet, the
individual’s Zn status and the availability of soluble Zn from the
diet’s food components(90). If the individual’s Zn status is
reduced, Zn absorption mainly depends on Zn solubility in
the intestinal lumen, which is determined by the chemical form
of Zn and the occurrence of certain inhibitors and enhancers of
Zn absorption(42).

Long-term Zn intake (i.e. Zn status) affects the absorption of
dietary Zn(91). The long-term use of Zn supplements does not
seem to down-regulate Zn absorption compared with normal,
healthy subjects not taking any Zn supplements, yet low Zn
intake and Zn status do affect Zn absorption(90). As demonstrated
in several studies, feeding low-Zn diets increases Zn absorption
in all age groups, and homeostatic mechanisms up-regulate Zn
absorption and retention(92,93). Adults on diets with higher
bioavailability are capable of regulating Zn absorption upwards
or downwards to absorb 4–5 mg of Zn per day (94,95).

Concerning the time of adjustment, the variation of Zn
absorption from the low-Zn diet took place within 4 weeks,
and the degree of adjustment was no greater after 8 weeks(95).

In conclusion, the absorption efficacy of Zn is up-regulated as
a consequence of extended low Zn intakes, and the major
predictors of Zn absorption are daily Zn and phytate intakes.

Phytate, the main Zn inhibitor in plants

Phytate is the key dietary component known to limit Zn
bioavailability, and it does this by strongly binding Zn in the
gastrointestinal tract(96–98). Phytate is the calcium, magnesium
or potassium salt of phytic acid (myo-inositol hexakisphos-
phate, IP6) and is present in cereal grains, nuts, seeds and
legumes(99).

In cereal grains, it is concentrated in the bran. The anti-
nutritive effect of phytic acid is attributable to its molecular
structure. At complete dissociation, the six phosphate groups
of phytic acid transport twelve negative charges which, in weak
acidic to neutral pH conditions, bind to various di- and trivalent
cations (Ca, Mg, Fe, Zn, Cu, Mn) into a stable complex.

The phytate:Znmolar ratio of a diet is used to assess the quan-
tity of Zn available for absorption. In general, unrefined cereal
grains have very high phytate:Zn molar ratios (ranging from
22 to 88). Diets with a molar ratio >15 have poor Zn
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bioavailability and are linked to biochemical Zn insufficiency in
human subjects(54,95,100). The IZiNCG separates diets into high
and low phytate:Zn molar ratios, with a cut-off of 18(54). The
inhibitory effect of phytate on Zn absorption was originally
demonstrated by Lonnerdal et al. (1988)(101) via a radioactive
isotope study in suckling rat pups and infant rhesus monkeys.
The results indicated that the negative effect of phytate
followed a dose-dependent response and that Zn absorption
can be enhanced in humans by decreasing the phytate content
of the diet. Similar findings were provided by others(102,103).

Dietary Zn intake that is needed to meet the Zn requirements
of an adult doubles with every 1000 mg of phytate
consumed(104). With a phytate:Zn ratio of more than 15–20,
any amount of Zn available for absorption is insufficient to
up-regulate Zn absorption(95), so the goal for the phytate:Zn
molar ratio should be less than 12 so that sufficient amounts of
Zn are absorbed with unsupplemented diets(95,105). Additionally,
only the higher inositol phosphates (i.e. hexa- and penta-inositol
phosphates) suppressed Zn absorption,whereas the lower inositol
phosphates had no negative effect(101,106).

Humans have a negligible capacity to adaptively increase Zn
absorption from diets high in phytic acid(95,107). In humans,
unlike in rats, hydrolysis of the higher inositol phosphates does
not happen in the gastrointestinal tract because of the absence of
phytase enzymes(108).

Lower inositol phosphates are formed during certain food
preparation and processing procedures such as soaking, germi-
nation and fermentation that stimulate enzymatic hydrolysis
of phytic acid in whole-grain cereals (i.e. wheat, rice, barley,
oats) and legumes (i.e. soybean, cowpea, common beans) by
increasing the activity of exogenous or endogenous phytate
enzyme(100,109).

Similarly, non-enzymatic methods, such as milling, have also
been shown to successfully lower the amount of phytic acid in
plants as the aleurone layer of cereal grains, rich in phytates,
is usually removed during the process(110).

Other dietary factors known to affect Zn bioavailability

In addition to phytate, some other dietary ingredients can also
reduce Zn absorption (i.e. polyphenols, fibre, oxalate, tannin
and lignin)(98,111). Polyphenols, a class of antioxidant mainly
found in berries, herbs, nuts, flaxseeds, vegetables, coffee and
tea, reduce Zn bioavailability by forming complexes between
the hydroxyl groups of the phenolic compounds and Zn(98).
Generally, the bioavailability is inversely related to the
condensed polyphenol content(112).

Calcium (Ca) is a dietary ingredient for which there is no defi-
nite evidence regarding the effect it has on Zn absorption and Zn
bioavailability. Some believe that Ca inhibits Zn absorption and
that it additionally enhances the inhibition of Zn absorption by
phytate(87), while others have shown no effect on Zn retention
or balance. In animals, a high level of dietary Ca, present in dairy
products, soy, beans, lentils and nuts, was shown to
impair Zn absorption(113,114); however, it is unclear if this also
happens in humans, with inconsistent results being reported(98).
Increased Ca intake of post-menopausal women by 890 mg/d in

the form of milk or Ca phosphate (total Ca intake; 1360 mg/d)
diminished Zn absorption and Zn balance in post-menopausal
women(115).

However, increasing the Ca intake in adolescent girls by
1000 mg/d (total Ca intake, 1667 mg/d) did not disturb Zn
absorption or balance(116). Similarly, a study with ten healthy
women (21–47 years old) demonstrated that a high intake of
dietary Ca (∼1800 mg/d) did not further impair Zn absorption
from a high-phytate diet(117). The effect of Ca is not significant,
and an enhancing effect is only observed in the diets with
low phytate levels(116). On the other hand, Sandström et al.
(1989)(51) showed that the presence of Ca enhanced Zn absorp-
tion by the addition of dairy products to a high-phytate bread
meal, but no change in absorption was evident in a low-phytate
white bread meal(51).

The positive effect of Ca on Zn absorption was also shown
when a soy formula was consumed with the addition of
Ca(118). The authors explained this effect by hypothesising that
Ca is forming complexes with phytate in the gut, thus making
phytate unavailable to bind Zn.

Miller et al. (2013)(119) based their mathematical model of Zn
absorption on this hypothesis, stating that Ca has a positive effect
on Zn absorption.

The inconsistent findings of the Ca studies on Zn absorption
clearly show that complex nutrient interactions exist (beyond
that with phytate) and that further research is needed to clarify
the effect of Ca on Zn availability and absorption.

The effect of dietary protein on Zn absorption is also
ambiguous. Dietary protein and protein digestion products
(i.e. casein phosphopeptides) have been shown to increase
Zn absorption(90,106), inhibit absorption(120) and have no
effect(120,121). The protein source, from animal or plant, can also
have an effect(90). Likewise with Ca, inconsistencies in research
outcomes were explained through nutrient interactions where
the phytate content has a central role.

Besides being affected by dietary components, Zn bioacces-
sibility and bioavailability depend on physiological luminal
and basolateral factors(122). The gastrointestinal mucus layer
enhances luminal accessibility, leading to improved Zn
bioavailability(101). An important serosal factor is serum albumin,
which operates as a basolateral Zn acceptor(20,123,124). Finally,
systematic factors also play a role. Hepcidin, a humoral
factor, was shown to affect the export of Zn by intestinal cells,
demonstrating the role of the liver in regulating intestinal Zn
absorption(125). These are all important aspects that require
further investigation to enhance the current knowledge on
intestinal Zn bioavailability and absorption of dietary Zn.

Methods for evaluating the intake of bioavailable Zn

There are currently three algorithms that can be employed for
assessing the intake of bioavailable Zn. The initial algorithm,
produced by Murphy et al. (1992)(126), was created on the
semi-quantitative classification system of WHO for diets in
low-income countries with a low content of animal protein,
a moderate to low content of Ca, and a moderate to high content
of phytate.
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The second model was developed in 2004 by the IZiNCG
group and used a regression to calculate bioavailable dietary
Zn(54). Zn and the phytate:Zn molar ratios were involved in
the final model, and both were very important predictors of
the percentage of Zn absorption(19,127).

Hambidge et al. (2011)(105) calculated the effect of different
levels of phytate on Zn absorption and intestinal excretion
of endogenous Zn by using staple isotope studies(104,128) and
developed a new physiologically based mathematical model
of Zn absorption based on the amounts of dietary Zn and
phytate. The new tri-variate model is the most commonly used
nowadays and accounts for >80 % of the discrepancy in the
amount of Zn absorbed(55,119).

Biofortification: a useful strategy for improving Zn
status in sensitive populations

Since there is no efficient reserve or body store for Zn,
appropriate consumption of dietary Zn is required on a regular
basis(127). Staple diets in low-income countries are primarily
plant-based, and the consumption of animal products that
contain a higher levels of Zn, for instance, red meat, fish and
poultry, is often low for various reasons, including economic,
cultural or religious restrictions(129). Consequently, the amount
of bioavailable Zn from such diets is low and often the main
source of Zn insufficiency(87). Severe Zn deficiency is seen in
people whose diets are mainly based on cereal grains produced
on Zn-deficient soils, for instance in India, Pakistan, China,
Iran and Turkey(19,130).

This relationship of poverty with micronutrient malnutrition
leads to the reality that it is not simple to accomplish adequate
intake of Zn by dietary modifications (e.g., more fish, poultry
and meat consumption), which would in theory provide an
answer to undernutrition(131). Furthermore, changes in dietary
habits require primarily the availability of alternative foods at
affordable prices, as well as individual and social acceptance.
Alternatives to this approach are supplementation by an oral
provision, such as Zn salts in the form of tablets, or the fortifica-
tion of staple food such as flours through the addition of Zn(131).
Supplementation with pharmaceutical Zn preparations can be
efficient in the alleviation of Zn deficiency on an individual basis;
nevertheless, this strategy is often shown as unsuccessful at a
population level in developing countries, due to the absence
of suitable infrastructure and education(131–134). Similarly, food
fortification can be implemented promptly at a national level
without personal contact and change of delivery habits by
consumers, but its successful application into society involves
the existence of safe delivery systems, steady policies, suitable
social infrastructures and constant financial support(100). All these
strategies have limited success in developing countries as they
were often difficult to sustain or were too expensive(135,136).

Taking all these aspects into account, biofortification, that is,
the development of crop plants with greater levels of bioavail-
able Zn, is seen as the most manageable method for developing
countries as it does not involve changes in customary diets
and can reach rural families with very restricted access to
infrastructure(21,131,137). Besides, it may provide a significant

increase in plant growth and the extra benefit of considerable
yield increases on Zn-deprived soils(131,134,138).

Increased bioavailability of Zn in plant foods can be accom-
plished by plant breeding (conventional and agronomic) or
genetic engineering approaches that either increase the
concentration of Zn, reduce the content of inhibitors (primarily
phytate) or increase the expression of compounds that
augment Zn absorption (i.e. amino acids)(139–141). Zn biofortifi-
cation through Zn fertiliser application is also encouraged to
increase grain Zn concentration(132,134,142) and Zn bioavail-
ability(143). This fertiliser route is identified as agronomic
biofortification, and this is achieved by the application of
minerals to the soil or by foliar application of fertilisers directly
to the leaves of the plants. Foliar Zn application was shown to
be effective in improving both Zn concentration and bioavail-
ability of Zn in grains without changing the phytic acid
concentrations(136,142,144).

Biofortification through Zn fertiliser application has been
shown as a very effective method for improving the Zn
content of major crop plants, while modern biotechnology
tools are more and more often used for the development
of Zn biofortified crops(142,145–150). For example, through
molecular breeding and genetic engineering, ‘high zinc rice’
varieties have been produced and are used to fight against
hidden hunger(151).

The HarvestPlus Fertilizer and HarvestZinc project
(www.harvestzink.org) established that foliar application
of Zn fertilisers to crops can increase grain Zn concentration
by 28–68 %(131,152,153). Target Zn concentrations set by the
HarvestPlus programme are 38 ppm of Zn in wheat(135). The
success of agronomic biofortification has been already reported
for many crop varieties(138,154,155).

The agronomic biofortification strategy of breeding nutrient-
rich staple food crops is anticipated to be of special benefit to
poor rural populations affected by dietary Zn deficiency(156–
159). Several review papers highlighted the noteworthy increase
in daily dietary Zn intake in people consuming Zn-biofortified
crops, demonstrating the positive prospect of Zn biofortification
interventions in lowering the risk of Zn deficiency in developing
countries(160–164).

Economic analyses demonstrate that biofortification is
the most concrete, cost-effective and durable strategy for
increasing dietary Zn intake of vulnerable populations(127,137,165).
Certain economic analyses propose that genetic approaches
towards biofortification are more cost-effective than
dietary diversification, supplementation or food fortification
programmes(131,166,167).

The likely influence of Zn biofortification has been calculated
as the saving of disability-adjusted life years(21). The annual
burden of Zn deficiency in India was shown to be 2·8 million lost
disability-adjusted life years, and it was predicted that Zn biofor-
tification of rice and wheat could cut this burden by 20–51 %(21).

In conclusion, the improvement of Zn concentration in crop
plants via conventional breeding and genetic engineering
procedures represents the core biofortification strategy.
Zn biofortification of grains by genetic and agronomic
approaches is commonly suggested to resolve the Zn deficiency
problem in people dependent on cereals as a main food

Zn deficiency: potential solutions 205

https://doi.org/10.1017/S0954422421000342 Published online by Cambridge University Press

http://www.harvestzink.org
https://doi.org/10.1017/S0954422421000342


source(131,135). Relevant actions have been organised in the past
10 years, many of them initiated by the HarvestPlus programme.

The biofortification strategies, application of Zn fertilisers
and modern biotechnologies have the potential to produce
Zn-enriched crop varieties. Advanced technologies should be
continuously employed to enhance genotypes used in bioforti-
fication programmes, to develop high-Zn biofortified crops and
to further develop techniques for faster breeding, dissemination
and implementation of Zn-enhanced cultivars. Additional
research is certainly needed to assess various variables that will
determine the ultimate success of biofortification of staple crops
with Zn.

The effectiveness of Zn biofortification strategies,
animal and human studies

As mentioned previously, methods to increase dietary diversifi-
cation, mineral supplementation and food fortification have not
always been effective in alleviating the problem of Zn deficiency
in developing countries.

The biofortification of crops by either plant breeding or
by using mineral fertilisers has been suggested as a potential
strategy that could solve the Zn deficiency problem(131,168).

Biofortification strategies must focus on the staple food that
dominates people diets, that is, wheat and rice, which are the
staple food for almost half of the world’s population(134,154).

In developing countries, a minimum of 60 % of Zn in
human diets is derived from grain and legumes(169). Wheat is
one of the three major cereal crops worldwide(135,170) and is a
major source of calorie and mineral intake in many developing
countries(140,141). Global wheat production goes beyond
720 million tonnes per year, most of it being used as food for
humans(13,170). The concentration of Zn in wheat plants is low
(20–35 mg/kg of whole grain), due mainly to the low content
of Zn in the soils where wheat is grown(132,142). More than
40 % of wheat plants grow on low-Zn soils(130). In addition, a
significant amount of Zn in grain is lost during wheat
processing (i.e. removal of aleurone layer and embryo during
milling)(171).

The concentration of Zn in refined wheat flour is less than
15 mg/kg(172). However, the percentage of Zn retained in flour
after milling is anticipated to be 60 %(173). Furthermore, besides
being naturally low in Zn, wheat is rich in phytic acid, which is
known to limit Zn bioavailability to a great extent(132,174). The Zn
concentration in wheat grain needed to prevent Zn deficiency in
humans is estimated to be 45 mg/kg(167,174). Daily net absorption
of approximately 3 mg of Zn from 300 mg of wheat flour is
necessary for human health(53,157).

Theoretical studies indicate that the agronomic biofortifica-
tion strategy of staple crops would increase the delivery of Zn
to human diets and improve the nutritional status of susceptible
populations in developing countries(131). The HarvestPlus group
has recommended a target for added Zn in biofortified crops
of 30 % of the estimated average dietary requirements for
humans(19,154). Wheat and rice varieties with enhanced Zn
concentration have been produced, but before they can be

introduced into the food supply, their efficiency in improving
the Zn status of consumers requires confirmation.

Over the years, both in vitro and in vivomethods (animal and
human studies) have been used to assess the efficacy of biofor-
tified crops in improving the nutritional status of consumers.
In vitro studies (mainly using Caco-2 cells) are suitable for
preliminary screening of biofortified crops, but these studies
do not provide data that are necessarily applicable to humans.
Similarly, a protein that can be used as an indicator of Zn uptake
and is specific for Zn only is still missing(175), making this
approach unsuitable for merely assessing Zn absorption.

Human studies certainly provide the most valuable results, as
they are capable of investigating host factors and physiological
changes during digestion. However, they are time-consuming
and very expensive(176).

An alternative approach to in vitro and human studies are
animal models, which can provide a whole-body assessment
of absorption as dissection of individual tissue parts is
possible(176,177). The faster output, the ability to assess an exten-
sive range of physiological and molecular parameters thor-
oughly, and the cost-effectiveness are features that make the
use of animal models appealing for testing dietary Zn
bioavailability of staple crops. In recent years, the chicken
(Gallus gallus) model has often been used for evaluating the
effectiveness of biofortified crops(178–181).

The Gallus gallus model has been shown to be appropriate
for Zn-related studies(182–184). Lately, a good correlation
between the results acquired through this animal model and
via human efficacy trials was established, additionally
confirming the suitability of the model in investigating mineral
bioavailability(180).

The usefulness of biofortified wheat products to improve the
Zn nutritional status of subjects has been tested. Welch et al.
(2005)(156) were the first to show the favourable effect of
Zn-biofortified wheat on the Zn status of rats. The wheat geno-
typeswith increased grain Zn concentrations provided increased
amounts of bioavailable Zn, thereby supporting the hypothesis
that breeding for Zn-enhanced wheat grain may contribute to
decreasing Zn deficiency in target human populations(156).

In a 2009 human trial, Zn absorption from biofortified versus
conventional wheat (as 95 % and 80 % extraction flours) was
compared(157). Adult women were given 300 g of the high-
or low-extraction flours (made into tortillas) for two
consecutive days using either biofortified (41 mg Zn/g) or
control (24 mg Zn/g) wheat. Zn intake from the biofortified
wheat meals was 5·7 mg/d (72 %) higher at 95 % extraction
(P< 0·001) and 2·7 mg/d (68 %) higher at 80 % extraction when
compared with the corresponding control wheat (P= 0·007).
The absorption of Zn from the Zn-biofortified wheat remained
significantly higher than that of the control wheat.

Mean total Zn absorption from biofortified wheat was
2·1 ± 0·7 mg/d and 2·0 ± 0·4 mg/d for 95 % and 80 % extraction,
respectively, 0·5 mg/d higher than for the control wheat
(P< 0·05)(157). The higher absorption was maintained with
moderate extraction of the grain, even though substantial quan-
tities of Zn were lost with extraction (80 %), which indicates that
benefits of Zn-biofortified wheat are not lost with a moderate
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degree of milling. Zn absorption is greater from biofortified
wheat than from typical wheat with lower Zn concentration,
from the same quantities of each type of wheat flour
consumed(157).

Carlson et al. (2012)(185) investigated the bioavailability of
three wheat varieties using a pig as a model by collecting urine
and faeces samples for 7 d.

The soluble Zn concentration of the three wheat samples was
9·9, 12·8 and 21·7 mg/kg. The Zn excretion in the urine of pigs
was very low (below 1 mg/d) for all treatments.

The daily Zn intake fluctuated between all dietary groups
(P< 0·001), with the highest intake in pigs fed the high-Zn diet
(57·5 mg/d) and the lowest intake in pigs fed the low-Zn diet
(7·3 mg/d). Accordingly, the net Zn absorption in milligrams
per day differed (P< 0·001) among the dietary groups(185).

Furthermore, the efficacy of Zn-biofortified wheat in
improving the Zn status of consumers was examined by using
an in vivo (Gallus gallus) model of Zn absorption(186). Two
groups of birds (n= 15) were fed two different diets, a ‘high-
Zn’ diet (46·5 ppm Zn) and a ‘low-Zn’ diet (32·8 ppm Zn), for
6 weeks. Dietary Zn intake, serum Zn, body weight and the
erythrocyte fatty acid profile were evaluated. Concentrations
of serum Zn were lower in the low-Zn group (P< 0·05).
Correspondingly, the concentration of Zn in tissues (feather
and nail) was lower in the low-Zn group of birds as opposed
to the birds fed a high-Zn diet (P< 0·05). Duodenal mRNA
expression of several Zn transporters (i.e. Zip4, Zip6, Zip9,
ZnT1, ZnT5 and ZnT7) confirmed a lower mean value in the
tissues collected from the birds fed a high-Zn diet (n= 15,
P< 0·05). The higher amount of Zn in the biofortified wheat
leads to a greater Zn uptake(186). The wheat genotypes with
enhanced grain Zn concentrations had increased amounts of
bioavailable Zn, supporting the idea that breeding for Zn-
enriched wheat grain may lead to reducing the Zn deficiency
problem in target populations. This study demonstrates that
the additional Zn present in the biofortified wheat is freely
available for absorption; the higher amount of Zn in biofortified
wheat contributed to a greater uptake of Zn by the intestinal
enterocytes.

The efficacy of biofortification strategies of major staples
in improving human health was lately confirmed by Sazawal
et al. (2018)(187), Haas et al. (2016)(188) and Mehta et al.
(2018)(189).

Recently, a systematic review (meta-analysis) examined the
effect of the dose and duration of Zn interventions on the risk
of developing type 2 diabetes and cardiovascular diseases, signi-
fying that low-dose, long-duration Zn interventions (i.e. possible
Zn biofortification strategies) can be very beneficial in reducing
the risk of developing these diseases(190).

The measurement of Zn absorption from biofortified crop
varieties is a crucial first step in demonstrating the efficacy of
these products in improving Zn status of consumers. The avail-
able evidence shows that new biofortified varieties of staple
crops may be useful in improving the Zn status of individuals.
Nevertheless, it is still required to precisely determine the
bioavailability of added Zn in plants and to explore if the addi-
tional Zn is at least equally absorbable as the native Zn content,

and if Zn-enriched grain varieties can be used to effectively
improve the Zn status of Zn-deficient people in developing
countries dependent on cereals as a basic food source. It would
be beneficial to investigate the potential beneficial role of
Zn biofortification strategies in the prevention of certain
non-communicable diseases.

Finally, an appropriate assessment of Zn bioavailability
and absorption from Zn-biofortified crops is fundamental in
estimating the efficacy of related breeding programmes.

Monitoring physiological Zn status in sensitive
populations and dietary approaches for alleviating
dietary Zn deficiency – prospective activities towards
promising results

Information on Zn intake and status data for several countries is
limited or outdated, or does not exist at all(80,82,83). Similarly, the
Zn intake and Zn status in healthy population subjects has not
been regularly monitored. Monitoring of the prevalence and
severity of Zn deficiency and development of Zn intervention
strategies is not performed regularly besides the well-known
consequences of Zn deficiency. Therefore, more current
measurements of Zn intake and status data for a number of both
developed and developing countries are needed. Regular moni-
toring of mineral intake and status for various population cohorts
is necessary to make sure that deficiency of Zn is recognised and
addressed promptly.

In many developed countries, micronutrient deficiencies are
not linked to the quantity of food consumed, but rather to the
quality of the diet(191,192). Inadequate dietary intakes of Zn that
failed to meet the high physiological demands were seen in
different countries for various age groups (i.e. adolescent girls
in Australia and New Zealand; non-pregnant premenopausal
women from Seattle, Washington, United States)(56,127,191,193).
Dietary decisions made by individuals may lead to Zn
deficiencies. Similarly, lifestyle changes taking place over the last
few decades in many developed countries are characterised by
increased dietary intake of low-cost but energy-dense foods and
by reduced physical activity levels(59,194,195). Finally, with the
current global trend of people in developed countries eating less
meat and increasing intake of grains(196,197), there is a tendency
that more individuals may end up consuming inadequate intakes
of many important nutrients. Therefore, regular monitoring
of Zn intake and status data for various age groups is of crucial
importance.

Lack of a reliable biomarker of Zn status is another major
factor contributing to the paucity of international-level data on
Zn deficiency. Plasma/serumZn status and assessment of dietary
Zn intake are currently the most employed methods, each with
its well-acknowledged limitations(55,129). New biomarkers have
been suggested over the last few years, some of them being
tested to a certain degree; however, additional work is necessary
before any of these biomarkers can be employed as an accom-
panying biomarker of Zn status.

Several studies have demonstrated that the ratio of blood fatty
acids (linoleic acid:dihomo-γ-linolenic acid ratio) could be a
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more appropriate biomarker of Zn status able to respond to
dietary Zn manipulations and to differentiate between the
various Zn deficiency/adequacy states(178,198).

The proposed biomarker has also been evaluated in
humans(186,198–200). Nevertheless, further work is needed to fully
determine the efficacy of this newly proposed indicator.

Overweight and obesity are worldwide health problems
present in both developed and developing countries(201,202).
The prevalence of obesity has tripled since 1975(202).
Currently, 650 million people are estimated to be overweight
or obese worldwide(195). However, even the excess dietary
intake of energy and macronutrients does not ensure that
people are taking the recommended intakes of micronutrients.
Several national epidemiological surveys performed in some
developed countries described the concurrence of obesity with
inadequate intakes for certain vitamins and minerals, particu-
larly Ca, Fe, Zn, and vitamins B1, B2, B6, D and folate(203–205).
Lower Zn status was documented in overweight/obese
individuals, in comparison with those who were normal
weight(206–208). Moreover, the double burden of malnutrition,
that is, the coexistence of both over- and undernutrition, is
nowadays seen not only in developed but also in middle-
and low-income countries(190).

In addition to inappropriate intakes, impaired bioavailability
and utilisation of micronutrients is frequently a major factor
contributing to the inadequate micronutrient status in obesity.
Zn is particularly important in this context as the low-level
inflammation that accompanies obesity is contributing to
decreased Zn absorption, which further on can result in impaired
immune competence(46). Furthermore, the links between Zn and
the pathophysiology of non-communicable diseases have been
noted over the years(190,209,210). Zn affects insulin homeostasis
and inflammatory response and plays a role in lipid metabo-
lism(209,210). All these factors should be taken into account when
the adequacy of Zn intake in a population is evaluated.

Furthermore, other factors influence the daily intake of Zn:
the amount of food consumed, Zn concentration in food, and
consumption of dietary ingredients that delay Zn absorption,
that is, polyphenols and phytate(90,100,105). Food composition
databases need to be updated, as many of them do not contain
information on the content of phytate.

There is a need to update dietary Zn recommendations based
on the recent advances in the determination of trace elements
requirements. Bioavailability, dietary practices andmineral inter-
actions should all be taken into account when setting and
updating dietary recommendations. Inflammatory confounders
should be considered when assessing and reporting the number
of people affected by dietary Zn deficiency to ensure data
accuracy and to support policy-making decisions. Adjustment
methodologies for inflammation should be improved. The
causal relationship between Zn status and inflammation and
the potential of Zn to modulate and improve the immune system
requires additional investigation.

Additional up-to-date and higher-quality studies are needed
to address gaps in current knowledge. Regular follow-ups are
necessary to ensure that potential deficiencies of Zn are
acknowledged and addressed in a timely manner, predomi-
nantly in countries where their existence is less expected.

The introduction of Zn-biofortified crops is suggested as an
approach for addressing nutritional Zn deficiency in people
dependent on cereals as a basic food source(131,138). As such, a
comprehensive understanding of its effectiveness in improving
the Zn status of consumers is needed. Additionally, an appro-
priate assessment of Zn bioavailability and absorption from
Zn-biofortified crops is essential in estimating the efficacy of
related breeding programmes and the health impacts of biofor-
tified products. The effect of the consumption of Zn-biofortified
crops on the risk of developing non-communicable diseases
should also be examined.

The nutritional benefits of Zn-biofortified crops are known;
however, people do not eat flour raw, and processing and
baking are common practices worldwide. There is increasing
evidence that food processing, including milling, fermentation
and heat treatment during baking, can change the nutritional
content and nutraceutical properties of cereal-based prod-
ucts(153,211–214). The effect of bread-making processes on the
concentration and availability of Zn and phytate in biofortified
bread made of different wheat varieties should be evaluated
and compared as variable responses with different wheat culti-
vars may be observed. The same applies to other Zn-bioforti-
fied crops.

Knowledge of the favourable effects of food processing tech-
niques on Zn bioavailability from plant-based diets could be an
effective food-based strategy to maximise their Zn content.
Currently available evidence suggests that the levels of Zn do
not change, while the concentration of phytate declines during
fermentation and baking procedures(153,213,215), which in theory
would mean that the bioavailability and absorption of Zn from
baked products should be additionally augmented due to the
lower phytate:Zn ratio. Zn absorption is considerably increased
when the phytate:Zn molar ratio is below 15(100). Therefore, the
magnitude of this increase and its consequences on the
availability of Zn and its absorption from processed Zn-bioforti-
fied products of various crop varieties need to be explored
further.

In addition, it is still not entirely known how the rheological
properties of flour are affected by Zn biofortification procedures.
The effect of foliar agronomic biofortification of plants with
Zn on the concentration of health-promoting compounds
(i.e. phytate and polyphenols) and other minerals (i.e. Fe, Cu)
has undergone limited testing and shown contrasting results.
The estimated bioavailability of Fe, Mn and Cu was unaffected
by Zn biofortification(174), and antagonism between Zn bioforti-
fication and content of other important minerals in wheat grains
has been shown(216), so further research in this area is required to
clarify these discrepancies.

The efficacy of Zn-biofortified wheat (and other staple crops)
products in improving the Zn status of consumers should be
tested for various biofortified wheat varieties available across
the globe as each wheat variety may not necessarily produce
an identical effect. Moreover, great variability in the number
of traits and properties between the wheat/grain varieties has
been observed(153,216–218).

Subsequently, different wheat cultivars need to be examined
to reach biofortification targets aimed at enhancement of Zn
content and its maximal possible bioavailability in grains.
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A large number of samples may be tested simultaneously
using the high-throughput Caco-2 cell model. Duodenal entero-
cytes modulate their nutrient absorption in response to dietary
intake, so the model can predict availability, uptake of Zn into
the enterocytes, and sometimes even the absorption(219). The cell
model is less expensive, is quicker and allows several crop
varieties to be compared simultaneously(220,221). In addition,
awell-developed cell model could diminish the need for isotopic
labelling of the foods to measure Zn uptake(220,221).

However, there is mixed evidence of the efficacy of cell
monolayers in predicting Zn absorption from food. When the
formation of metallothionein, a cytoplasmatic protein that stores
Zn, was tested as a proxy for Zn absorption, it was shown that the
measurements of the cellular Zn and metallothionein concentra-
tions are less reliable as their expression is often affected not only
by Zn but also by other dietary components (i.e. phytate, casein,
other metals)(220–222). On the other hand, Caco-2 cells were
successfully used for assessing Zn uptake into the cells(175,220,223).

The Caco-2 cell technique provided results comparable to
those of certain in vivomethods and is suggested as a technique
for preliminary screening of a large variety of Zn-biofortified
cereal lines(176,220). Nevertheless, a protein that can be used as
an indicator of Zn uptake and is specific for Zn only is still
missing(175,221), and the conditions for the in vitro digestion
should be measured and selected cautiously, making this
approach imperfect, so further improvement and optimisation
of Caco-2 cells as amodel for estimating Zn absorption from food
is recommended.

Zn-biofortified crop varieties are developed primarily for
resource-poor populations dependent on plants as a basic food
source. They are meant to reach malnourished rural popula-
tions with restricted access to supplements and commercially
fortified foods(224). While these populations would certainly
benefit the most from the consumption of Zn-biofortified
plants, the use of the newly developed product could also
be helpful to people in industrialised countries. Zn biofortifica-
tion could be a suitable solution to the problem of inadequate
Zn intakes in developed country populations where wheat
bread is a staple. Short-term intervention with foliar application
of Zn fertilisers and/or a long-term breeding programme to
augment the Zn concentration of major bread wheat/maize
cultivars should be considered to alleviate the problem of Zn
inadequacy in these settings.

Recently, the gut microbial environment has been recognised
as an important organ in the absorption and utilisation of Zn from
the diet(165,209,210). The gut microbial environment is fundamental
to Zn homeostasis, and it is undesirably affected by suboptimal
Zn status(225–227).

As the intake of Zn-biofortified staple food crops is antici-
pated to grow considerably due to the increasing implementa-
tion of population-wide biofortification strategies(131,181,228,229),
characterisation of potential modifications in the gut microbiota
following consumption of Zn biofortified cereal-based diets
needs to be investigated.

Supplemental Zn alters the composition of the gut
microbiome(227). Zn deficiency deleteriously changes the
composition of the gut microbiota through global reductions

in taxonomic richness and diversity, a decrease in beneficial
short-chain fatty acids, and changes in expression of bacterial
micronutrient pathways(227).

Additionally, the protective effects of therapeutic Zn
supplementation, including modifying intestinal permeability
(via proliferation of the absorptive mucosa), influencing the
immune response, reducing villous apoptosis, and reducing
pathogenic infections and subsequent diarrheal episodes, are
documented(181,227,230). Further studies should evaluate how
the consumption of Zn-biofortified plant-based diets modify
the gut microbiota and whether a Zn-biofortified diet influences
the metabolic and functional capacity of the host microbiome.
The utilisation of some recently developed simulators of the
human gut microbiome should be considered. Artificial gut
models could be used to study dynamics of human-associated
microbiota to dietary intake of Zn-biofortified foods(231).

Finally, with the current intention of stimulating the consump-
tion of Zn-biofortified diets worldwide, exploring the role of gut
microbiota in Zn biofortification remains important to further
improve the nutritional outcomes provided by biofortification.
The efficacy of biofortified staple food crops in improving
the Zn status of humans should be measured directly. Thus,
human studies are desirable to confirm the positive impact of
Zn-biofortified plants on Zn status and support the further
release of Zn-biofortified crops.

To conclude, the biofortification strategies based on plant
breeding and application of Zn fertilisers have the potential to
alleviate Zn malnutrition, both in developing and industrialised
countries.

Additional research is certainly needed to assess various
variables (i.e. health impacts of biofortified products, product
acceptance by farmers, by consumers and decision-makers,
recognition of the product by regulatory agencies, integration
into development policies and private sector entities) that will
determine the ultimate success of biofortification of relevant
crops with Zn.

Conclusions

Zn deficiency remains an important malnutrition public health
problem worldwide with numerous negative impacts on human
health, lifespan and productivity. The number of people affected
by dietary Zn deficiency has increased over recent years both in
developed and developing countries. Regular updates with suit-
able assessments of the prevalence of dietary Zn deficiency at an
international level are needed. A more accurate biomarker of Zn
status is still missing, so further work towards identifying one is
required. Biofortification is a strategy that can improve human
Zn nutrition on a global scale. Agronomic Zn biofortification
of staple plant foods is regarded as a highly effective strategy
for increasing dietary Zn intake. Zn-biofortified crops are a
feasible tool for addressing nutritional deficiencies, and under-
standing their efficiency in improving the Zn status of consumers
is fundamental and needs to be appropriately verified. The food
preparation and food processing techniques with a tendency to
improve Zn bioaccessibility and bioavailability from plant-based
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diets should be effectively evaluated and promoted. Challenges
associated with undernutrition, overnutrition and dietary
practices are important considerations when setting dietary Zn
recommendations and trying to reduce the risk of diet-related
diseases of multiple aetiologies.
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