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Stackings and the W-cycles Conjecture

Larsen Louder andHenry Wilton

Abstract. We proveWise’s W-cycles conjecture. Consider a compact graph Γ′ immersing into an-
other graph Γ. For any immersed cycle Λ∶ S1 → Γ, we consider the map Λ′ from the circular com-
ponents S of the pullback to Γ′. Unless Λ′ is reducible, the degree of the covering map S → S1 is
bounded above by minus the Euler characteristic of Γ′. As a corollary, any ûnitely generated sub-
group of a one-relator group has a ûnitely generated Schur multiplier.

1 Introduction

As part of his work on the coherence of one-relator groups,Wise made a conjecture
about the number of li�s of a cycle in a free group along an immersion, whichwewill
call theW-cycles conjecture. If f1∶ Γ1 ↬ Γ and f2∶ Γ2 ↬ Γ are immersions of graphs,
then the ûbre product

Γ1 ×Γ Γ2 = {(x , y) ∈ Γ1 × Γ2 ∣ f1(x) = f2(y)}

immerses into Γ1 and Γ2, and is the pullback of f1 and f2. An immersed loop Λ∶ S1 ↬ Γ
is primitive if it does not factor properly through any other immersion S1 ↬ Γ.

With this deûnition, theW-cycles conjecture can be stated as follows.

Conjecture 1.1 (Wise [Wis05]) Let ρ∶ Γ′ → Γ be an immersion of ûnite connected
core graphs and let Λ∶ S1 → Γ be a primitive immersed loop. Let S be the union of the
circular components of Γ′×Γ S1. _en the number of components of S is atmost the rank
of Γ′.

_e purpose of this note is to proveWise’s conjecture; indeed, we prove a stronger
statement. As usual, if π is a covering map, then deg π denotes its degree, the number
of preimages of a point. An immersion of a union of circlesΛ∶S→ Γ is called reducible
if there is an edge of Γ that is traversed at most once by Λ.

_eorem 1.2 Let ρ∶ Γ′ ↬ Γ be an immersion of ûnite connected core graphs and
let Λ∶ S1 → Γ be a primitive immersed loop. Suppose that S, the union of the circular
components of Γ′ ×Γ S1, is non-empty, so there is a natural covering map σ ∶S ↬ S1.
_en either deg σ ≤ −χ(Γ′) or the pullback immersion Λ′∶S→ Γ′ is reducible.
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Stackings and theW-cycles Conjecture 605

_e statement of the conjecture is a corollary of this theorem. Indeed, the inequal-
ity in the theorem is strictly stronger than the inequality in the conjecture; alterna-
tively, in the reducible case, we can remove an edge and proceed by induction.

Wise’s notion of nonpositive immersions provides a connectionwith a famous ques-
tion of Baumslag [Bau74]: is every one-relator group coherent? (Recall that a group
is coherent if every ûnitely generated subgroup is ûnitely presented.) As in the case of
graphs, an immersion of cell complexes is a locally injective cellular map.

Deûnition 1.3 (Wise) A cell complex X has nonpositive immersions (NPI) if, for
every immersion of compact, connected complexes Y ↬ X, either χ(Y) ≤ 0 or Y has
trivial fundamental group.

Presentation complexes of one-relator groups with torsion do not have non-pos-
itive immersions. Let Ck be the presentation complex of Z/kZ associated with the
presentation ⟨a ∣ ak⟩, and for l ∣ k, let Ck , l be the l–fold cover of Ck .

Deûnition 1.4 A cell complex X has not too positive immersions (NTPI) if, for every
immersion of compact, connected complexes Y ↬ X, Y is homotopy equivalent to a
wedge of subcomplexes of Ck , l s and a compact 2-complex Y ′ ⊂ Y with χ(Y ′) ≤ 0.

For k = 1 this reduces to NPI, since C1, l is a disk. Our main theorem implies that
presentation complexes associated with one-relator groups have NTPI; in particular,
in the torsion-free case, they have NPI.

Corollary 1.5 Let X be compact 2-complex with one 2-cell e2 and suppose that the
attaching map Λ∶ S1 → X(1) of e2 is an immersion. _en X has NTPI.

Proof Suppose that ρ∶Y ↬ X is an immersion of a compact 2-complex Y into X.
Let Γ = X(1), Γ′ = Y(1), and Λ′∶S → Γ′ be the pullback immersion, in the notation of
_eorem1.2. LetS′ be the union of the components S1 , . . . , Sm ofS that are realized by
boundaries of 2-cells ofY . If χ(Y) > 0, then deg(σ) > −χ(Γ′), and so, by_eorem1.2,
Λ′ is reducible. _at is, there is some edge e of Γ′ traversed by atmost one component
S of S.

If S is not contained in S′, we can remove the edge e and proceed by induction on
the size of the one-skeleton of Y .

We can therefore suppose that S is a component of S′. Suppose that Λ is realized
(up to conjugacy) by a k-th power wk in π1Γ, and that the covering map S → S1 has
degree l . _en l divides k, and Y is homotopy equivalent to awedge Dk , l ∨Y ′, where
Dk , l is a subcomplex of Ck , l and Y ′ is the subcomplex of Y with the edge e and all
2-cells attached to S removed. We now proceed by induction on the number of 2-cells
of Y .

Wise has conjectured that if a 2-complex X has nonpositive immersions, then its
fundamental group is coherent. AlthoughBaumslag’s conjecture remains open,we do
obtain a weaker statement: every ûnitely generated subgroup of a one-relator group
has a ûnitely generated Schur multiplier.
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Corollary 1.6 Let G be a one-relator group. If H < G is ûnitely generated, then

rank(H2(H,Z)) ≤ b1(H) − 1.

In his proof that three-manifold groups are coherent [Sco73], Scott introduces the
notion of indecomposable covers: If G is a ûnitely generated freely indecomposable
group, then K ↠ G is an indecomposable cover if it does not factor (surjectively)
through a free product. _e next lemma is a straightforward consequence of the ex-
istence of indecomposable covers.

Lemma 1.7 Let G = G1 ∗ ⋯ ∗ Gn ∗ Fk be the Grushko decomposition of a ûnitely
generated group G, with G i freely indecomposable. _ere is a ûnitely presented group
H = H1 ∗⋯∗Hn ∗Fk and a surjective homomorphism φ∶H↠ G such that φ∣H i ∶H i ↠
G i is an indecomposable cover.

Let X be the presentation complex of a one-relator group G, and let Y ↬ X be a
covering map corresponding to a ûnitely generated subgroup H. By a trivial gener-
alization of Stallings’ folding technique [Sta83], there is a sequence of immersions of
ûnite complexes obtained by ûrst immersing a graph Y1 in X and repeatedly adding
relations and folding

Y1 ↬ Y2 ↬ ⋅ ⋅ ⋅ ↬ Yn ↬ ⋅ ⋅ ⋅ ↬ Y

with the property that each immersion Yi ↬ Yi+1 induces a surjection on fundamen-
tal groups and such that Y = limÐ→ Yi . If H is one-ended, by Lemma 1.7, we can assume
that each Yi has one-ended fundamental group and, by Corollary 1.5, that χ(Yi) ≤ 0.

Proof of Corollary 1.6 Let Y and Yi be the spaces constructed in the previous para-
graph. By [Lyn50], both H2(G ,Z) and H2(H,Z) are torsion-free, so it suõces to
show that b2(Y) ≤ b1(H) − 1. Combining Corollary 1.5 with Lemma 1.7, we can as-
sume that H is one-ended and that χ(Yi) ≤ 0. No Yi is simply connected and so, since
X has NTPI and H is one-ended, χ(Yi) ≤ 0 for all i. Since homology commutes with
direct limits, it follows that rank(H2(Y ,Z)) ≤ b1(H) − 1, as claimed.

Our proof of _eorem 1.2 was inspired by the proof of the following theorem of
Duncan and Howie. In particular, the punch line in Lemma 2.6 is essentially their
proof of [DH91, Lemma 3.1].

_e genus of an element w in a free group F is the minimal number g so that
w = Πg

i=1 [x i , y i] has a solution in F, or equivalently, the minimal genus of a once-
holed surfacemapping into a graph representing F with boundary w.

_eorem ([DH91, Corollary 5.2]) Let w be an indivisible element in a free group F.
_en the genus of wm is at least m/2.

While this work was in preparation, we learned that Helfer and Wise have also
proved theW-cycles conjecture [HW16] and its generalization to staggered presen-
tations (see Remark 3.5).
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2 Stackings

2.1 Computing the Characteristic of a Free Group

By a circle, wemean a graph homeomorphic to S1.

Deûnition 2.1 Let Γ be a ûnite graph, let S be a disjoint union of ûnitely many cir-
cles, and let Λ∶S↬ Γ be amap of graphs. Consider the trivialR-bundle π∶ Γ ×R→ Γ.
A stacking is an embedding Λ̂∶S↪ Γ ×R such that πΛ̂ = Λ.

Although this deûnition is very simple, it leads to a natural way of estimating the
Euler characteristic of a graph.

Let π and ι be the projections of Γ ×R to Γ and R, respectively. Let

AΛ̂ = {x ∈ S ∣ ∀y /= x(Λ(x) = Λ(y)⇒ ι(Λ̂(x)) > ι(Λ̂(y)))} ,

BΛ̂ = {x ∈ S ∣ ∀y /= x(Λ(x) = Λ(y)⇒ ι(Λ̂(x)) < ι(Λ̂(y)))}

Intuitively, AΛ̂ is the set of points of Λ̂(S) that one sees if one looks at Λ̂(S) from
above, and likewiseBΛ̂ is the set of points of Λ̂(S) that one sees from below.

Henceforth, assume that Λ∶S → Γ is an immersion. _e stacking Λ̂ is called good
if AΛ̂ and BΛ̂ each meet every connected component of S. For brevity, we will call
a subset s ⊆ S an open arc if it is connected, simply connected, open, and a union of
vertices and interiors of edges.

Lemma 2.2 If Λ is an immersion, then each connected component of AΛ̂ or BΛ̂ is
either a connected component of S or an open arc in S.

Proof It suõces to prove the lemma forAΛ̂ . Let s ⊆ S be a connected component of
AΛ̂ . It follows from the deûnition that s is open. Note also that if one point p in the
interior of an edge e is contained in AΛ̂ , then the whole interior of e is contained in
AΛ̂ . _is completes the proof.

_e next lemma characterizes reduciblemaps in terms of a stacking; in particular,
reducibility is reduced to non-disjointness ofAΛ̂ andBΛ̂ .

Lemma 2.3 If Λ̂ is a stacking of an immersion Λ∶S→ Γ, thenAΛ̂ ∩BΛ̂ contains the
interior of an edge if and only if Λ is reducible. If Λ̂ is a good stacking and AΛ̂ or BΛ̂
contains a circle, then Λ̂ is reducible.

Proof _e ûrst assertion is immediate from the deûnitions. It suõces to prove the
second assertion forAΛ̂ . Let S be a component of S contained inAΛ̂ . Since S is good,
there is an edge e of S contained inBΛ̂ . _erefore, e is contained in bothAΛ̂ andBΛ̂ .
It follows that e is traversed exactly once Λ̂, so Λ̂ is reducible.

_e ûnal lemma of this section is completely elementary, but is the key observation
in the proof. It asserts that the number of open arcs inAΛ or BΛ computes the Euler
characteristic of the image of Λ.
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Lemma 2.4 Let Λ̂∶S → Γ ×R be a stacking of a surjective immersion Λ∶S → Γ. _e
number of open arcs in AΛ̂ or BΛ̂ is equal to −χ(Γ).

Proof As usual, it suõces to prove the lemma for AΛ̂ . Let x be a vertex of Γ of
valence v(x). Because Λ is surjective, exactly v − 2 edges incident at x are covered by
open arcs ofAΛ̂ that end at x. _erefore, the number of open arcs is

1
2
∑

x∈V(Γ)
(v(x) − 2),

which is easily seen to be −χ(Γ).

2.2 Computing the Characteristic of a Subgroup

As in the previous section, Γ is a ûnite graph, Λ∶S↬ Γ is an immersion, and Λ̂∶S ↪
Γ × R is a stacking. Consider now an immersion of ûnite graphs ρ∶ Γ′ → Γ, and let
S′ be the circular components of the ûbre product S ×Γ Γ′, which is equipped with
a map σ ∶S′ → S and an immersion Λ′∶S′ → Γ′. Note that if S′ is non-empty, then
σ is a covering map. In order to prove _eorem 1.2, we would like to estimate the
characteristic of Γ′ in terms of Λ̂.

_e stacking Λ̂ of Λ naturally pulls back to a stacking Λ̂′ of Λ′. More precisely,
there is a natural isomorphism

(Γ ×R) ×Γ Γ′ ≅ Γ′ ×R

and the universal property of the ûbre bundle deûnes a map Λ̂′∶S′ → Γ × R, so we
have the following commutative diagram.

Γ′ ×R

π′

��

ρ̂ // Γ ×R

π

��

S′

Λ̂′
<<yyyyyyyyy

Λ′

""E
EE

EE
EE

EE
σ // S

Λ̂
==zzzzzzzzz

Λ

!!D
DD

DD
DD

DD

Γ′
ρ // Γ

Lemma 2.5 If Λ̂ is a stacking, then Λ̂′ is also a stacking. Furthermore, if Λ̂ is good,
then Λ̂′ is also good.

Proof _e proof of the ûrst assertion is a diagram chase, which we leave as an ex-
ercise to the reader. _e second assertion follows immediately from the observation
that σ−1(AΛ̂) ⊆ AΛ̂′ and σ−1(BΛ̂) ⊆ BΛ̂′ .

_e ûnal lemma in this section estimates the Euler characteristic of Γ′ using a stack-
ing of the pullback immersion Λ′. Since all ûnitely generated subgroups of free groups
can be realized by immersions of ûnite graphs, this can be thought of as an estimate
for the rank of a subgroup of a free group; this point of viewmotivates the title of this
subsection.
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Lemma 2.6 If Λ̂ is a good stacking, then either Λ′∶S′ → Γ′ is reducible or
−χ(Λ′(S′)) ≥ deg σ .

Proof Suppose Λ′ is not reducible; in particular, Λ′ is surjective.
Let e be an edge in AΛ̂ and consider its deg σ preimages {e′j}. Since Λ′ is not

reducible, no component ofAΛ̂′ is a circle, by Lemma 2.3, and so every e′j is contained
in an open arc ofAΛ̂′ .

If −χ(Γ′) < deg σ then, by Lemma 2.4 and the pigeonhole principle, two distinct
preimages e′i and e′j are contained in the same open arc A. But then, for any f an edge
of S contained inBΛ̂ (which again exists because Λ̂ is good), A also contains an edge
f ′ that maps to f . _erefore,AΛ̂′ ∩BΛ̂′ contains f

′, and so Λ′ is reducible by Lemma
2.3. See Figure 1.

e
f

e′i

e′j

f ′

A

σ

σ(A)

S

S′

Figure 1: If −χ(Γ′) is smaller than the sum of the degrees, then Λ′ is reducible.

3 A Tower Argument

In order to apply Lemma 2.6 to prove _eorem 1.2, we need to prove that stackings
exist. _e proof here employs a cyclic tower argument of the kind used by Brodskĭı
and Howie to prove that one-relator groups are right-orderable and locally indicable
[Bro80,How82].

Deûnition 3.1 Let X be a complex. A (cyclic) tower is the composition of a ûnite
sequence ofmaps

X0 ↬ X1 ↬ ⋅ ⋅ ⋅ ↬ Xn = X
such that each map X i ↬ X i+1 is either an inclusion of a subcomplex or a covering
map (resp. a normal covering map with inûnite cyclic deck group).
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One can argue by inductionwith towers because of the following lemma ofHowie
(building on ideas of Papakyriakopoulos and Stallings) [How81].

Lemma 3.2 Let Y → X be cellular map of compact complexes. _en there exists a
maximal (cyclic) tower map X′ ↬ X such that Y → X li�s to amap Y → X′.

As in the previous, sections let Γ be a graph. To apply a cyclic tower argument, one
needs to know that the phenomena of interest are preserved by cyclic coverings. In
our case, that control is provided by the following lemma.

Lemma 3.3 Consider an inûnite cyclic cover of a graph Γ. _en there is an embedding
Γ̃ ×R↪ Γ ×R such that the diagram

Γ̃ ×R π̃ //

��

Γ̃

��
Γ ×R π // Γ

commutes where, as usual, π and π̃ denote coordinate projections onto Γ and Γ̃, respec-
tively. (Note that the embedding Γ̃ × R ↪ Γ × R is usually not natural with respect to
the coordinate projections onto R.)

Proof Elements g of the group π1Γ act by deck transformations x ↦ gx on the
covering space Γ̃. _e inûnite cyclic covering Γ̃ → Γ also deûnes a homomorphism
π1Γ → Z, which in turn allows elements g of π1Γ to act by translation on R.
Consider the diagonal action of π1Γ on Γ̃ × R. _e quotient is homeomorphic to

Γ×R. Let X = Γ̃× (−1/2, 1/2) ⊂ Γ̃×R. Distinct translates of X are disjoint, and so the
map X ↪ Γ̃×R descends to an embedding X ↪ Γ×R. Any choice of homeomorphism
(−1/2, 1/2) ≅ R identiûes X with Γ̃×R. It is straightforward to check that the claimed
diagram commutes.

We are now ready to prove that stackings exist. A very simple example of a stacking
is illustrated in Figure 2.

Lemma 3.4 Any primitive immersion Λ∶ S1 → Γ has a stacking Λ̂∶ S1 → Γ ×R.

Proof Let Γ0 ↬ Γ1 ↬ ⋅ ⋅ ⋅ ↬ Γm = Γ be a maximal cyclic tower li�ing of Λ, and let
Λn ∶ S1 → Γn be the li� of Λ to Γn . Note that Γ0 is a circle and Λ0 is a ûnite-to-one
covering map. Since Λ is primitive, it follows that Λ0 is a homeomorphism and hence
trivially stackable.

Proceeding by induction on n, let Λ̂n−1∶ S1 ↪ Γn−1 × R be a stacking of Λn−1.
If Γn−1 → Γn is an inclusion of subgraphs then it extends naturally to an inclusion
i∶ Γn−1 ×R↪ Γn ×R, and so Λ̂ = i ○ Λ̂n−1 is a stacking.

Suppose therefore that Γn−1 → Γn is an inûnite cyclic covering map, and let
i∶ Γn−1 ×R→ Γn ×R be the embedding provided by Lemma 3.3. _en Λ̂n = i ○ Λ̂n−1
is an embedding S1 ↪ Γn ×R, and a simple diagram chase conûrms that Λ̂n is a li� of
Λn . _is completes the proof.
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Remark 3.5 Note that any stacking of amap of a single circle is automatically good.
Lemma 3.4 (also implicit in [HW16]) holds for graphs and immersions associatedwith
staggered presentations.

a b

Ba
BΛ̂

ba3b AB
AΛ̂

B

Figure 2: A stacking of the word Baba3bABB.

Let L = ⟨x1 , . . . , xn ∣ w⟩ be a one-relator group, where w is a cyclically reduced
nonperiodic word w = x i1⋯x im in the x i . Duncan and Howie use right-orderability
of L to assign heights to the (distinct, by [How82, Corollary 3.4]) elements a0 = 1,
a j = x i1⋯x i j , j < m, in L in the same way we use the embedding Λ̂ to ûnd open
arcs that remain above (A) or below (B) every point of S1 with the same image in
Γ. Lemma 3.4 is equivalent to the existence of a right-invariant pre-order on L that
distinguishes between the elements a j . Lemma 3.4 is also closely related to themain
theorem of [Far76].

Our main theorem is now a quick consequence of Lemmas 2.6 and 3.4.

Proof of_eorem 1.2 Let Γ, Γ′, etc., be as in _eorem 1.2, and let Λ̂ be the stack-
ing provided by Lemma 3.4. Since S1 is connected, the stacking Λ̂ is automatically
good. By hypothesis Λ′ is not reducible, and therefore by Lemma 2.6, −χ(Γ′) ≥
−χ(Λ′(S′)) ≥ deg σ , as claimed.
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