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Peristaltic pumping down a porous conduit
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A theoretical analysis is presented of peristaltic pumping down a narrow conduit with
permeable walls, motivated by the flushing action of lugworms and other marine
organisms in sandy burrows. Flow in the conduit is dealt with using lubrication theory;
the leakage into the surrounding medium is taken into account by exploiting slender-body
theory to solve the associated Darcy problem. By adopting a model for the local force
balance on the pumping surface, we bridge between the limits in which the pump operates
with either fixed load or displacement. In the latter limit we characterize peristaltic
waves with either fixed form or ones that partially collapse the conduit. We construct
pump characteristics (the relation between the mean flux and net pressure drop) when the
burrow wall is impermeable and pressures are fixed at each end, and compare the results
with existing laboratory experiments performed on lugworms. We then consider how the
peristaltic dynamics is changed when the wall is made permeable. Last, we consider
pumping along an impermeable burrow into a leaky head shaft. The results reveal that
the permeability of the conduit wall or end can greatly impact the direction and strength
of the recirculating flow.

Key words: peristaltic pumping, porous media

1. Introduction

A number of organisms exploit peristalsis to pump water through sediments on
the seafloor, sometimes to the degree that irrigation and mixing of passive tracers
(and notably oxygen) can become significant on a much grander environmental scale
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Figure 1. Sketches of the geometry of the (a) burrow (with a plot of the worm inlaid) and (b) gallery
cross-section of a lugworm, based on sketches by Wells (1945) and Riisgård, Berntsen & Tarp (1996),
respectively. In this paper, these visions are distilled into the idealized geometry shown in (c,d). A dimensional
Cartesian coordinate system (x̃, ỹ, z̃) describes the geometry overall, but two dimensionless coordinate systems
are needed for the model: for the flow in the surrounding porous medium (cf. panel (c)), the burrow acts like
a line source, and we set (ỹ, z̃) = L( y, z), where 2πL is the wavelength of peristalsis. For the peristaltic flow
within the burrow (cf. panel (d)), the natural length scale is D, a characteristic distance between the worm and
burrow wall, and we set (ỹ, z̃) = D�(cosϑ, sinϑ). In both cases x̃ = Lx, owing to the long-wave character of
the peristaltic waves and the relatively small burrow radius RB (2πL � (D,RB)).

(Riisgård & Banta 1998; Riisgård & Larsen 2005). In some settings, the organisms perform
this function in a sandy burrow, circulating water from the opening at the sediment surface,
down past the pumper, then beyond into either a continuation of the hole or the surrounding
porous sediment. Because water can therefore leak through the burrow wall, this feature
motivates an extension of the conventional analysis of peristaltic pumping (e.g. Shapiro,
Jaffrin & Weinberg 1969; Esser, Masselter & Speck 2019) to account for the presence of
a porous wall. Peristaltic pumping through a conduit with a porous wall has also been
suggested to be relevant in the fluid mechanics of the intestine (Miyamoto et al. 1983;
Mishra & Rao 2005) and the perivascular space of the brain (Romanò et al. 2020; Gan
et al. 2023).

A commonly quoted example of a biological pumper in sediment is the lugworm
(Arenicola marina), often dug up on beaches in Northern Europe by fishermen. These
worms inhabit a mucus-lined burrow and peristaltically pump water over their gills in
order to respire and aerate the sediment in their vicinity to nourish micro-orgranisms that
the worms subsequently feed upon (Just 1924; Wells 1945, 1966; Krüger 1971; Hüttel
1990). The geometry of a typical burrow, based on the discussion of Wells (1945), is
sketched in figure 1.
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Leaky peristaltic pumping

Other examples include the innkeeper worm Urechis caupo (Lawry 1966; Pritchard &
White 1981), the peacock worm Sabella pavonina (Mettam 1969) and the spoon worm
Bonellia viridis (Schembri & Jaccarini 1977), which differ from the lugworm in their style
of peristalsis: these worms pump water axisymmetrically through an annular gap left open
around their bodies, whereas the lugworm has been portrayed as pumping along a conduit
spanning only a fraction of the burrow’s circumference (see figure 1).

Although burrows lie in sandy porous sediments, the organisms creating them can also
modify the wall by compaction or impregnation with mucus secretions. For the lugworm,
this armouring of the wall is significant, allowing the tube-like wall to become exposed at
low tides and stand up vertically against gravity (Wells 1945). Porous leakage through the
wall then becomes limited, and a good fraction of the water pumped through the burrow
is instead returned to the surface through a ‘head shaft’ filled with more porous sediment
that has been loosened by the digging of the worm and the passage of water (Wells 1945,
1966; Hüttel 1990; Volkenborn et al. 2010). Peristaltic pumping therefore competes against
either local leakage through the burrow wall or the pressures built up at the end of the flow
conduit within a headspace or ‘feeding pocket’.

The purpose of the present work is to provide a mathematical model describing the
fluid mechanics of peristaltic pumping through a conduit in which fluid may leak through
the walls or end. In line with the observation that lugworms armour the burrow wall,
we assume that the surrounding sediment does not deform under the pressures generated
by the peristaltic waves, and therefore behaves like a porous medium with fluid leakage
described by Darcy’s law. For fluid motion inside the conduit, we follow the strategy
adopted by Shapiro et al. (1969), based on Reynolds lubrication theory, but generalize
this approach to account for the permeable walls, as well as a more complicated geometry
of the conduit. Shapiro et al.’s assumption that the peristaltic waves are relatively long
leads us further to employ a slender-body approximation to solve for any porous leakage
through the walls (Handelsman & Keller 1967; Hinch 1991).

In addition, a number of biological pumpers appear to generate peristaltic waves of
sufficient amplitude that the conduit almost closes over finite sections of the peristaltic
waves (e.g. Lawry 1966; Mettam 1969; Schembri & Jaccarini 1977; Pritchard & White
1981; Riisgård et al. 1996; Riisgård & Larsen 2005). A fixed-displacement model
(e.g. Shapiro et al. 1969) is then problematic unless one arbitrarily adjusts the shape
to prevent any contact between the pumper and wall. Presumably, however, the near
closures result because the surface of the biological organism is relatively soft and
deforms under lubrication pressures whenever the conduit is constricted. Here, we resolve
this issue by considering the local force balance on the wall of the organism, driving
peristaltic waves with a prescribed force, and allowing the organism to deform (Takagi
& Balmforth 2011a,b). Near closures of the conduit are then self-consistently dealt with
in the lubrication theory. The resulting pattern of isolated peristaltic waves separated by
constrictions is reminiscent of some other thin viscous film problems (O’Brien & Gath
1998; Ashmore, Hosoi & Stone 2003; Benilov, Benilov & Kopteva 2008; Balmforth,
Coombs & Pachmann 2010), and there are applications to soft robotics (Esser et al. 2019).

We formulate the model mathematically in § 2. As part of this formulation, we suggest
forms for how the forcing from the pumper might prompt surface motions to drive
peristalsis. Some earlier papers (e.g. Riisgård et al. 1996) depict lugworms as residing at
the bottom of their burrows (pinned by gravity or the friction from a narrow fit), flushing
water over their gills along the upper surface. The conduit for peristaltic waves is then
an eccentric annulus if the pumper maintains a circular body section. Minor adjustments
are needed to describe a conduit with a cross-section in the form of a concentric annulus,
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which might be more suitable to the innkeeper, peacock and spoon worms. In either case,
assuming that the gap between the pumper and the burrow wall is relatively narrow, we
arrive at a simple model for the flow within the conduit consisting of an evolution equation
for the maximum gap at each position along the conduit.

To explore the dynamics captured by the model, in § 3 we first omit any leakage through
the burrow wall and consider peristalsis down a conduit of finite length. We analyse the
dynamics by combining numerical solutions with asymptotic solutions relevant to certain
limits of the physical parameters. Key differences arise when the downstream end of
the conduit is taken to be either open, allowing a long-term transport, or closed, which
demands that a back pressure must build up to prevent any net flux. Following Shapiro
et al. (1969) and conventional engineering principles, we catalogue ‘pump characteristics’,
which are used to interpret past experimental data on lugworm pumping (Riisgård et al.
1996). In § 4, we then reconsider the dynamics when either the burrow wall is permeable or
there is a ‘feeding pocket’ at the downstream end of the conduit from which fluid leaks out.

2. Model equations

2.1. Mathematical formulation
The organism peristaltically pumps viscous fluid down a gap between its body and a rigid,
potentially porous, wall, as sketched in figure 1(c,d). The axis of the conduit along which
fluid is pumped lies in the x̃ direction; the conduit begins at x̃ = 0, then ends at x̃ = Lb. The
peristaltic motion is described by a propagating wave with speed c that travels along the
lugworm’s body surface that forms one border of the conduit. The outer border (the burrow
wall) is taken as a cylinder of radius RB. The (radial) gap normal to the burrow wall is
DΞ , where D denotes a characteristic conduit thickness and the dimensionless shape of
the peristaltic waveform is encapsulated in Ξ . The peristaltic waves have a characteristic
wavelength of 2πL � D, and travel from the tail to the head. We take the burrow radius
RB to be much less than 2πL. The length of the burrow occupied by the worm is Lb >
2πL; the ratio � = Lb/L, modulo 2π, fixes the number of peristaltic waves travelling
down the conduit at any instant. Note that in this geometry the viscous fluid completely
envelopes the worm; there is always a gap between the burrow wall and pumper, although
it may be small to one side, as pictured in figure 1.

The governing equations for the viscous fluid within the conduit are

ρ(ũt̃ + ũ · ∇ũ) = −∇p̃ + μ∇2ũ, (2.1)

∇ · ũ = 0, (2.2)

where ũ = (ũ, ṽ, w̃) denotes the velocity, p̃(x̃, ỹ, z̃, t̃) is the pressure, and ρ and μ denote
the fluid density and viscosity. Assuming that fluid pressures are insufficient to deform the
porous medium surrounding the conduit, fluid flow there satisfies Darcy’s law,

φũ = −K
μ

∇p̃, (2.3)

with porosity φ and permeability K (both taken as constant), and the velocity field again
satisfies the incompressibility condition. As a further simplification, we have also ignored
the effect of gravity on motion in the burrow (beyond the constant hydrostatic pressure
introduced by the sediment overburden; cf. § 4.2).

At the boundaries, we must apply the usual kinematic and no-slip conditions. As
discussed in more detail below, we assume that the peristaltic motion takes place purely
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Leaky peristaltic pumping

normal to the inner wall, and consider the normal force condition on that surface, balancing
the local fluid normal stress with an imposed prescribed force, less any resistance to
deformation. At the stationary wall, the normal velocity and pressure must match with
that in the porous medium. Assuming that the top surface of the sediment (i.e. the
sediment–water interface in figure 1a) is infinitely far way, the flow field should decay for
(x̃, ỹ, z̃) → ∞; we revise this condition in § 4.2. We state the relevant boundary conditions
explicitly later, but in a simplified form, after applying a long-wavelength reduction of the
governing equations.

2.2. Scaling and reduction
We remove dimensions from the equations by defining the new variables

(x, y, z) = 1
L(x̃, ỹ, z̃), (ỹ, z̃) = D�(cosϑ, sinϑ), t = c

L t̃, (2.4a–c)

u = ũ
c
, (U,V,W) = L

cD (ũ, ṽ, w̃), p = (p̃ − pB)

P , P ≡ 12μcL
D2 . (2.5a–d)

The new variables (� sinϑ,� cosϑ, u) are suitable for the thin gap of the conduit,
exploiting local polar coordinates in which the angular variable ϑ is measured
anticlockwise from the z-axis (see figure 1c). On the other hand, the new triplet ( y, z,U)
is relevant in the surrounding porous medium; x and the rescaled velocities V and W are
relevant for both. The pressure in the burrow behind the lugworm is denoted by pB; this is
used as a gauge in formulating the dimensionless pressure p. In terms of the dimensionless
axial length x and time t, each peristaltic wave has a length and period of 2π.

2.2.1. Narrow conduit
Substituting the new variables into the momentum equations for the narrow conduit gives,
to leading order in ε = D/L � 1,

∂p
∂�

= ∂p
∂ϑ

= 0, 12
∂p
∂x

= 1
�

∂

∂�

(
�
∂u
∂�

)
+ 1
� 2

∂2u
∂ϑ2 . (2.6a,b)

In these equations, we have neglected inertia, assuming that ρcD2/(μL) ≡ ε2Re �
1 (Re = ρcL/μ). The physical scales listed in table 1 suggest that ε2Re = 0.5, indicating
that inertial effects may not be negligible, but are unlikely to be key. Hence,

p = P(x, t), u = −∂P
∂x
ψ(�, ϑ), (2.7a,b)

where
1
�

∂

∂�

(
�
∂ψ

∂�

)
+ 1
� 2

∂2ψ

∂ϑ2 = −12, (2.8)

with ψ = 0 at the instantaneous position of the conduit boundary (introducing an implicit
dependence on x and t via the conduit geometry), in view of the mismatch between the
scaling of speed along the conduit u and that in the porous medium (c and εc, respectively).
That boundary is given by an outer circle of radius � = RB = RB/D and the inner,
moving wall at a radius � = RB −Ξ .
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Wavelength, 2πL 4–5 cm L 1 cm
Conduit area, Ap 0.05 cm2 D (conduit thickness) 1 mm
Wave speed, c 0.5–2 cm s−1 c 5 mm s−1

Burrow diameter, 2RB 0.5–1 cm RB 3.5 mm
Permeability, K (0.2–6)× 10−11 m2 K 5.5 × 10−11 m2

Burrow depth, hB 10–20 cm hB 0.2 m
Pump pressures 100–1000 Pa P = 12μcL/D2 0.6 Pa
Volume flux, cAp (0.002–0.05)× 10−6 m3 s−1 cAp 0.025 × 10−6 m3 s−1

Worm length, Lb 10–15 cm ε = D/L 0.1
Number of waves 2–3 ε2Re = ρcD2/(μL) 0.5

κ∗ = 12KL/D3 0.0036
RB = RB/D 3.5

κ = −κ∗/[εRB ln(εRB)] 0.01

Table 1. Physical scales (left) for lugworms taken from existing literature (Just 1924; Wells 1945; Trueman
1966; Foster-Smith 1978; Toulmond & Dejours 1994; Riisgård et al. 1996; Meysman, Galaktionov &
Middelburg 2005; Wethey et al. 2008; Volkenborn et al. 2010). The worm length discards the tail, which
does not participate in peristalsis. For the representative characteristics scales and dimensionless parameters
given on the right, we mostly use the data based on Riisgård et al. (1996), and the density and viscosity of
water, ρ = 103 kg m−3 and μ = 10−3 Pa s.

Rather than explicitly solve the incompressibility condition over the conduit, we instead
quote conservation of mass integrated over each cross-section (scaled by 2πRB):

(A[Ξ ])t = (Ψ [Ξ ]Px)x − L. (2.9)

Here

A[Ξ ] = 1
RB

∫ 2π

0

(
RB − 1

2
Ξ

)
Ξ

dϑ
2π
, (2.10)

Ψ [Ξ ] = 1
RB

∫ 2π

0

∫ RB

RB−Ξ
ψ� d�

dϑ
2π

; (2.11)

the leakage term,

L =
∫ 2π

0
r̂ ·
(

V
W

)∣∣∣∣
�=RB

dϑ
2π
, (2.12)

with unit radial vector, r̂, accounts for drainage into the surrounding porous medium. In
(2.9) the x and t subscripts denote partial derivatives.

The normal force on the pumper’s surface is dominated on the fluid side by the pressure
in the usual manner of lubrication theory. This must be countered by the applied normal
force exerted by the worm (either muscular or hydraulic), less any stiffness force along the
length that acts to return the surface to an equilibrium position given by Ξ = H(ϑ). In
particular, we adopt the model,

P = AF(ϑ, x, t)+ S(Ξ − H), (2.13)

where the stiffness is measured by a dimensionless modulus S, A denotes the amplitude
of the applied force per unit area, scaled by P , and F(ϑ, x, ξ) describes the shape of the
forcing. In particular, that shape has a time dependence prescribed by the phase variable
ξ = x − t in order to generate peristaltic waves (and we leave open a further dependence on
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Leaky peristaltic pumping

x to capture any dependence of the envelope of the force with position along the conduit).
In other words, we drive peristalsis with a normal force on the pumper’s surface with a
magnitude gauged by A and a waveform prescribed by F(ϑ, x, ξ).

The tangential force balance on the pumper’s surface is less significant than (2.13)
owing to the fact that the fluid shear stresses are smaller than the lubrication pressure
by a factor of order of the aspect ratio. Consequently, the stiffness of that surface can
effectively suppress any sideways deformation. Displacements are then primarily driven
transverse to the wall, in the direction of the forcing AF(ϑ, x, t). The final stiffness term in
(2.13), S(Ξ − H), provides a simple representation of how elasticity in the surface resists
the normal displacements. However, should those displacements become large, implying
significant distortions in surface shape, a nonlinear stiffness law may be more appropriate
(an extension of the model that we set aside in the present work).

To close (2.9)–(2.11) and (2.13), we must relate L to the local conduit pressure P, which
is accomplished by considering the flow in the porous medium (unless the burrow wall is
taken to be impermeable).

2.2.2. Porous medium
For the porous medium, on the other hand, we solve Laplace’s equation for the pressure,

∂2p
∂x2 + ∂2p

∂y2 + ∂2p
∂z2 = 0, (2.14)

with ∇p → 0 for r → ∞, where r =
√

y2 + z2 is the ‘outer’ radial variable,

p|r=εRB = P(x, t), r̂ ·
(

V
W

)∣∣∣∣
�=RB

= − κ∗
∂p
∂r

∣∣∣∣
r=εRB

, (2.15a,b)

and the leakage parameter,

κ∗ = 12KL
D3 . (2.16)

Note that the permeability K is of the order of square of the pore scale in the porous
medium. This is likely rather smaller than D, rendering κ∗ small in practice (although the
conspiracy with 12L/D may raise its value), corresponding to the physical situation in
which flow through the porous medium is harder than through the open conduit.

Equations (2.14) and (2.15a,b) can be attacked using slender-body theory
(e.g. Handelsman & Keller 1967; Hinch 1991), which builds a solution that treats the
burrow as a line source of length � with

p(x, y, z, t) = − 1
4π

∫ �

0

Δ(x̂, t) dx̂√
(x − x̂)2 + r2

, (2.17)

where Δ denotes the distribution of sources. Applying the boundary condition p = P(x, t)
at r = εRB delivers the integral equation,

P = − 1
4π

∫ �

0

Δ(x̂, t) dx̂√
(x − x̂)2 + ε2R2

B

, (2.18)

with leading-order solution, Δ ∼ 2πP/ln(εRB). Therefore, near the burrow,

p → − Δ

4π
ln
[

4x(�− x)
r2

]
, (2.19)
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and so

∂p
∂r

∣∣∣∣
r=εRB

∼ P
εRB ln(εRB)

. (2.20)

Awkwardly, this solution diverges logarithmically at x = 0 and �, and the asymptotic series
for Δ is organized by ln(ε−1), which can converge prohibitively slowly (see Handelsman
& Keller 1967; Hinch 1991). Persevering with (2.20) regardless implies that

L = −κ∗ ∂p
∂r

∣∣∣∣
r=εRB

∼ − κ∗P
εRB ln(εRB)

≡ κP. (2.21)

In other words, in this limit, water is pumped through the burrow wall as though it were
a membrane, satisfying a local Darcy law with a permeability dictated by κ . The scales
offered in table 1 suggest that κ = 0.01 (κ∗ = 0.0036) in the lugworm environment, unless
the burrow is armoured by mucus and the wall is correspondingly less permeable.

The issues with the leading-order solution in (2.19) can be avoided by adjusting the
endpoints of the distribution of singularities and solving the full integral equation in
(2.18) (Handelsman & Keller 1967; Hinch 1991). The local relation between the pressure
and leakage in (2.21) is then replaced by a more convoluted, non-local one. Within the
framework of the slender-body analysis, one could also account for a curved centreline for
the burrow and the sediment–water interface (with a suitable image). Here, in the interest
of simplicity, we use the approximation (2.21).

2.3. Pumping strategies for a circular worm
If we assume that the worm remains circular during peristalsis, then the gap always
takes the form of an eccentric annulus. In this case, we may devise various strategies
that broadly mimic those adopted by real worms, as shown in figure 2. The lugworm
is pictured as residing to one side of its burrow (Riisgård et al. 1996), leaving what we
take to be an eccentric annular gap that is almost closed over its narrowest section, then
moves its surface to cyclically compress the wider side (figure 2a). The worms Urechis
caupo, Sabella pavonina and Bonellia viridis exploit motions more like axisymmetric
waves (Lawry 1966; Mettam 1969; Schembri & Jaccarini 1977; Pritchard & White 1981),
as shown in figure 2(b).

The modes in figure 2 can be described geometrically by manipulating the radius RW =
RB − h(ξ) and position (0,−Λ(ξ)) of the inner cylinder (see figure 2). The results for the
lugworm-like mode in figure 2(a) are obtained by setting h(ξ) = 1 + σ sin ξ andΛ = β +
γ h, with parameters (σ, β, γ ), along with the choices β � 1 and γ ≈ 1 (more precisely,
the parameters (σ, β, γ ) = (0.7, 10−3, 0.9) with RB = 6). For the axisymmetric mode in
figure 2(b), we take the same parametric form for h, but with σ = 0.55 and Λ = 0. For
both examples, in the limit of a small gap, the modes correspond to setting

Ξ(ϑ, ξ) = h(ξ)+Λ(ξ) cosϑ. (2.22)

In our pumping model, the modes of figure 2 are not directly prescribed, but must result
from imposing a suitable forcing function F(ϑ, x, ξ) in (2.13). Nevertheless, because P
is independent of the angle in the current approximation, the angular average of (2.13)
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RW

(0, Λ)

(a)

(b)

Figure 2. Sample sinusoidal peristaltic motions in which the pumper maintains a circular cross-section. Shown
is a surface plot of the worm surface enclosed in the cylindrical burrow and a sequence of snapshots during
a wave cycle (red circles) in an axial cross-section (the burrow is shown by the thicker blue circle). In (a) the
motion of the surface is eccentric (with respect to the centre of the burrow) and reminiscent of the lugworm.
For (b), peristaltic waves are axisymmetric.

implies that

P = Af + S

(∫ 2π

0
Ξ

dϑ
2π

− 1

)
, f (x, ξ) =

∫ 2π

0
F(ϑ, x, ξ)

dϑ
2π
, (2.23a,b)

since D is the characteristic thickness of the gap, which can be taken to be the angular
average of H(ϑ). In other words, the non-axisymmetric part of F(ϑ, x, ξ) maintains the
circular cross-section of the worm. In the limit of a thin gap, and for (2.22), we emerge
with

P = Af (x, ξ)+ S(h − 1). (2.24)

Suitable selections for f (x, ξ) can now be introduced to drive modes like those in figure 2.
In particular, if conduit pressures are relatively low, h ≈ 1 − αf with α = A/S, in place of
h = 1 + σ sin x.

2.4. The narrow-gap approximation
For eccentric annular geometry, Poisson’s equation (2.8) can be solved using bipolar
coordinates (Snyder & Goldstein 1965), and the area and flux functions, A[h] and Ψ [h],
computed numerically for given h and Λ. When the gap is relatively narrow, we find that

ψ ∼ 6(RB −�)(� − RB +Ξ), (2.25)

A ∼
∫ 2π

0
Ξ

dϑ
2π

≈ h (2.26)

and

Ψ =
∫ 2π

0
Ξ3 dϑ

2π
≈ h

(
h2 + 3

2
Λ2
)
. (2.27)

Figure 3 demonstrates that the departure of A[h] and Ψ [h] from these limits is not large,
even when the gap is not that narrow. Consequently, we adopt this thin-gap approximation
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Figure 3. The area and flux functions A/h and Ψ/[h(h2 + 3
2Λ

2)] plotted against scaled maximum gap h/RB

(red and blue, respectively) for Λ = β + γ h with β = 10−4RB and γ = 0.9. With these parameter settings,
A and Ψ are functions only of h/RB. Three sample solutions for ψ are displayed by the density plots,
corresponding to the values of h/RB indicated by the stars. The dashed line shows the corresponding result
for the flux for the axisymmetric mode of figure 2(b), for which Λ = 0.

henceforth. In this case, along with (2.24), (2.9) furnishes

ht = {[h3 + 3
2 h(β + γ h)2]Px}x − κP (2.28)

for the first two modes in figure 2.
For the axisymmetric mode, with β = γ = 0, the first term on the right-hand side of

(2.28) reduces to (h3Px)x. Similarly, in the case of the lugworm-like mode (with β � 1
and γ ≈ 1), we find a reduction to 5

2 (h
3Px)x. These two versions of the model have no

essential differences, as the differing factor of 5
2 can be removed by a simple rescaling of

the parameters (κ,A, S). In the next section and beyond, we therefore set ht = (h3Px)x −
κP. In either case, h(x, t) corresponds to the maximum size of the gap (in radius) at each
axial position x.

3. Pumping without leakage

Without any leakage into the porous wall (κ = 0), the model equations for the maximum
gap h(x, t) and conduit pressure P(x, t) become

ht = −qx = (h3Px)x, (3.1)

P = Af (x, ξ)+ S(h − 1), (3.2)

where q(x, t) is the pumped flux in the (stationary) frame of the lugworm. We adopt the
inlet and initial conditions,

P(0, t) = 0 and h(0, t) = h(x, 0) = 1, (3.3a,b)

along with a forcing such that

f (x, ξ) = a(x) sin ξ, ξ = x − t, a(x) = 1 − e−x2 − e−(�−x)2 . (3.4)

The envelope a(x) suppresses wave motion at the ends of the conduit but leaves a uniform
amplitude elsewhere (as noted by Wells (1945), the segments at the head and tail of a
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Figure 4. Snapshots (blue) and envelope (red) for the model forcing function f (x, ξ) in (3.4) with
dimensionless conduit length � = 6π.

lugworm do not participate in peristalsis). The forcing function is illustrated in figure 4
for � = 6π. Provided the fluid pressure P remains small in (3.2), this forcing generates
between two and three peristaltic waves with the same shape as f (x, ξ). The model has
three key dimensionless parameters: the forcing strength A, stiffness S and the conduit
length �. Leakage, as considered in § 4, adds a fourth parameter κ .

3.1. Sample numerical solutions for open and closed conduits
Except at the ends of the conduit, the forcing is almost sinusoidal, implying that a regular
train of propagating waves of peristalsis would be generated in the manner of figure 4 in the
absence of any back reaction from fluid flow. However, depending on the conditions at the
ends, x = 0 and x = �, large-scale pressure gradients may build up to limit transport. When
the ends are open, with P(0, t) = P(�, t) = 0 or h(0, t) = h(�, t) = 1, such gradients are
not expected and transport takes the form of a pulsing flux. But when the end at x = � is
closed (q(�, t) = 0), pressure gradients must build up to terminate any transport over long
times, once the peristaltic action has driven fluid into the conduit from the open end at
x = 0 and inflated it.

These scenarios are illustrated in figure 5 for two solutions (one with h(�, t) = 1, the
other with q(�, t) = 0) with moderate forcing amplitude and stiffness (A = S = 1) and
for a conduit length of � = 6π. The figure demonstrates how both solutions converge to
temporally periodic states in which peristaltic waves grow from the left end, then reach a
roughly constant amplitude whilst propagating steadily to the right, and finally disappear
on colliding with the right end of the conduit. Also plotted are the averages over the final
cycle of the peristaltic waves, 〈h〉 and 〈P〉, where

〈G(x, t)〉 = (2π)−1
∫ t+π

t−π

G(x, t̂) dt̂, (3.5)

the time series of the mean conduit thickness,

h̄(t) = �−1
∫ �

0
h(x, t) dx, (3.6)

and the flux at the left end, q(0, t), together with its running average, 〈q(0, t)〉.
When the conduit has an open right-hand end, a steady flux is maintained through

the conduit in the final, temporally periodic state. As indicated by the plots of the mean
thickness, however, peristalsis can lead to a net constriction of the conduit (with 〈h〉 > 1),
which reduces that flux in comparison to the spatially periodic version of the problem
(considered in Appendix A). For the closed right-hand end, the outcome of peristalsis is
the build up of a net pressure rise that opposes pumping and switches off any net transport.
In the model, the form of the force law ensures that the pressure rise at the closed end is

987 A22-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

38
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.386


D. Takagi, N.J. Balmforth and S.G. Llewellyn Smith

1.5 3

2

1

2

1

0

1.0

0.5

0

–1

0.4

0

–0.4

1.0

0.5

0

0

0 0 50 100 150 20010 20 30 40 50 60 70

q(0, t), 〈q(0, t)〉

t t

x x

q(0, t), 〈q(0, t)〉

h̄ – 1

h (x, t) h (x, t)

P (x, t)

P (x, t)

h̄ – 1

5 10 15 0 5 10 15

0 5 10 15 0 5 10 15

(a) (d )

(b) (e)

(c) ( f )

Figure 5. Snapshots of numerical solutions for (a,d) conduit thickness h(x, t) and (b,d) pressure P(x, t) at
a succession of times during the final cycle (spaced by 0.1π), for � = 6π, and the amplitude and stiffness
parameters A = S = 1. Panels (c, f ) show corresponding time series of the change to the mean conduit thickness
h̄(t)− 1 (blue) and the flux at the left end q(0, t) (red); the dashed red line shows the running average of
lefthand flux over a wave period, 〈q(0, t)〉. For (a–c), the conduit has impermeable walls and an open end
(P(�, t) = h(�, t)− 1 = 0); in (d–f ) the right-hand end is closed (q(�, t) = 0). The dashed blue lines in (a,b)
and (d,e) show time averages, 〈h(x, t)〉 and 〈P(x, t)〉 over the final cycle. The insets to the right of (c, f ) display
h(x, t) as a density on the (x, t) plane for t < 80 and t < 160 (respectively).

associated with unrestricted inflation, which is unlikely to be biologically relevant and
could be avoided by a suitable modification to (3.2).

3.2. The limit of fixed displacement
In the limit A � 1 with S/A = O(1), the force balance on the wall (3.2) reduces to

h ≈ 1 − αa(x) sin ξ, α = A
S
. (3.7)

If we ignore the modulation of the peristaltic waves in h due to the envelope a(x) at the
ends of the conduit, we may set ht ≈ −hξ and then solve (3.1) for the pressure gradient:

Px = 1 − Q(t)
h3 − 1

h2 . (3.8)

Here, Q(t) denotes the flux in the frame of the peristaltic waves, which can be found
by integrating (3.8) over the conduit and introducing the end pressures, P(0, t) = 0 and
P(�, t) = PR, in the instance that PR is known. Alternatively, if there is a net pressure drop
of 2πΓ across each wave then

Q = 3α2

2 + α2 − 2Γ (1 − α2)5/2

2 + α2 , (3.9)

if we set a = 1 and h ≈ 1 − α sin ξ (cf. Shapiro et al. 1969).
In figure 6 the predictions of (3.7)–(3.9) with Γ = 0 and a = 1 are compared against a

numerical solution to the full problem with an open conduit (PR = 0), 3
2 S = A = 10 and
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Figure 6. Numerical solutions for an impermeable conduit near the fixed-displacement limit with (a–c) an
open end (P(�, t) = PR = 0) and (d–f ) a closed end (q(�, t) = 0); (A, S) = (10, 15) and � = 6π. Shown are
snapshots of (a,d) h(x, t) and (b,e) P(x, t) at the times t = 0.62 + 2πj, j = 0, 1, 2, . . . (from red to blue), and
(c, f ) time series of the mean conduit thickness change h̄(t)− 1 (blue) and the instantaneous and cycle-averaged
flux at the left end, q(0, t) and 〈q(0, t)〉 (red solid and dashed). The dashed blue lines in (a,b) and (d,e) show
averages, 〈h〉 and 〈P〉, for the final cycle. The black dashed lines in all panels show the predictions from (3.7)
and (3.8). In (d,e) the dotted (green) line shows the results of the short-wavelength analysis of Appendix B.
Insets to the right of (c, f ) display h(x, t) as densities on the (x, t) plane for t < 100.

� = 6π. Figure 6 also shows the corresponding solution with a closed end. In this case,
the solutions converge initially to the predictions (3.7)–(3.9) with Γ = 0. The solution
then drifts as a large-scale pressure gradient builds up. With Q = 0, (3.9) implies that
a constant background gradient of Γ = 3α2/[2(1 − α2)5/2] ≈ 3 must build up, which
is some way off the spatially varying mean gradient that is actually encountered in the
numerical solution (see figure 6d). Similarly, the fixed displacement in (3.7) cannot capture
the associated mean inflation of the conduit generated by the back pressure (figure 6c).
Both shortcomings can be addressed by using the short-wavelength analysis presented in
Appendix B (although the solutions in figure 6 do not possess sufficiently large � to render
that analysis quantitatively accurate; see figure 6d,e).

3.3. Fixed displacement with near closure
The fixed-displacement solution makes sense only if α < 1. Otherwise, the conduit
is predicted to close at certain positions along the conduit and we cannot ignore the
contribution of the pressure to (3.2). Sample numerical solutions corresponding to this
situation for both an open and closed conduit are illustrated in figure 7. For the conduit with
the open end, the solution rapidly converges to a quasi-steady train of localized peristaltic
waves. Within each wave, the pressure is low and almost constant; in between them, the
conduit becomes constricted and pressures become higher. The case of a conduit with a
closed end is a little different, as discussed in more detail below, primarily because of the
back pressure that builds up. Only at the beginning of the computation, before that back
pressure is established, do isolated peristaltic waves appear.
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Figure 7. Numerical solutions for an impermeable conduit with (a,b) an open end and (c,d) a closed end, for
� = 6π, S = 1

2 A = 10. Shown are (a,c) snapshots of h(x, t) and (b,d) P(x, t)/S at the times t = 1.26 + 2πj, j =
0, 1, 2, . . . (from red to blue). In (e), time series of h̄(t)− 1 (blue), q(0, t) (red solid) and 〈q(0, t)〉 (red dashed)
are plotted for the solution in (c,d); that from (a,b) is plotted upto t = 29 with thicker (black) dashed lines. The
dashed blue lines in (a–d) show averages over the final cycle, and the (green) dots in (c) show (3.14). The insets
display density plots of h for the open (left) and closed (right) conduits.

Any near-closure of the conduit demands the revision of the analysis in § 3.2. In
particular, although (3.7) and (3.8) remain relevant over the peristaltic waves (if there are
no background pressure gradients), we must reinstate the pressure and take the limit h � 1
to solve the problem over the constricted sections. Importantly, because flow is largely
impeded over those constrictions, Q ≈ 1. Away from the ends, the isolated peristaltic
waves then have the solution,

h ∼ 1 − α sin ξ and Pξ ∼ −(1 − α sin ξ)−2. (3.10a,b)

On the other hand, the constrictions are described by

h = S−1/2η(ξ), P = SΠ(ξ) and Q = 1 − S−1/2Υ, (3.11a–c)

where
Π = α sin ξ − 1 and αη3 cos ξ + η = Υ. (3.12a,b)

The solutions for the constrictions and isolated waves must be pieced together as described
in Appendix C. One consequence of these matchings is the condition

Υ = 2/[3
√

3(α2 − 1)1/4]. (3.13)

The predictions in (3.10a,b)–(3.12a,b) are compared with numerical solutions of the
full model for an open conduit with S = 1

2 A = 10 and 100 in figure 8. The convergence
to isolated waves and constrictions in the middle of the conduit is particularly clear in
this example, with the various pieces of the profile matching well with the predictions
in (3.10a,b)–(3.12a,b). Note that the constrictions substantially increase peak pressures
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Figure 8. Further details of the solution from figure 7(a,b) (blue) and a similar solution, but closer to the
fixed-displacement limit with S = 1

2 A = 100 (green). Shown are snapshots of (a) h and (b)Π = P/S at sixteen
successive times during the final cycle (spaced by 0.1π), plotted against the travelling wave coordinate ξ =
x − t. Magnifications of h over a constriction and P over an isolated peristaltic wave are shown in (c) and (d).
The dashed lines show the predictions from (3.10a,b)–(3.12a,b).

during peristalsis, up to dimensional values of order AP � P . This feature indicates how
one might resolve the discrepancy between the expected peristaltic pressure P = O(1) Pa
and the range of experimental measurements for lugworms (102–103 Pa) listed in table 1:
the conduit must nearly close during peristalsis for these organisms.

In the case of the conduit with a closed end shown in figure 7(c,d), the increasing back
pressure causes an inflation of the right end of the conduit. This inflation slowly ‘peels’
the constrictions off the impermeable wall, leaving a state with

h ∼ 〈h〉 − αa(x) sin ξ. (3.14)

A single constriction remains over part of the wave cycle at the left end of the conduit
when the forcing initiates a local collapse; otherwise the conduit remains open.

3.4. Pump characteristics
Steady-state fluxes predicted for peristaltic pumping with an open end (PR = 0) are shown
in figure 9 as a function of forcing amplitude A for several values of α = A/S. In the
non-dimensionalization of the model, the two parameters A and S result from scaling the
characteristic imposed force and body stiffness by the pressure measure P . Their ratio, α,
is independent of P and, therefore, the wave speed c, representing a parameter that reflects
the force exerted by the wall, the stiffness and geometry. Varying A at fixed α can therefore
be interpreted as varying the wave speed, holding fixed those quantities. Also shown in
figure 9 are corresponding results for the perfectly spatially periodic version of the problem
discussed further in Appendix A (for which calculations are more straightforward). In line
with § 3.2, the flux becomes independent of A for sufficiently high values owing to the
convergence to the fixed-displacement problem. The results for the large values of α are
also then similar to those for spatially periodic peristaltic waves. For lower values of α,
discrepancies arise mostly due to the mean constriction or inflation of the conduit.
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Figure 9. Mean steady-state fluxes 〈q〉 for (a) an open conduit and (b) spatially periodic peristaltic waves
(Appendix A). The fluxes are plotted against A for the values of α = A/S indicated. Also shown in (a) are the
mean thickness of the conduit, 〈h̄〉. In (b) the stars indicate the flux in the fixed displacement limit (3.9) for
α < 1, and the dashed line shows the large A, α > 1 prediction in (3.11a–c) and (3.13).

It is common to express pump performance in terms of the ‘pump characteristic’:
the relation between the mean flux and a net pressure drop applied along the conduit
PR. Sample dimensionless pump characteristics, computed by imposing P(�, t) = PR, are
illustrated in figure 10 for α = 2

3 and in figure 11 for α = 2, with several values for A and
� = 6π. Nearer the fixed-displacement limit for α < 1, the relation between the net flux
and pressure drop is linear, as expected from (3.9), but this relation becomes nonlinear
as the conduit becomes constricted for lower A or α > 1. In particular, as illustrated by
the sample snapshots in figure 11(c), when the conduit becomes occluded, the peristaltic
waves become shielded from the back pressure by any downstream constrictions. Only
when the back pressure becomes sufficient to fully inflate the conduit and peel away all the
constrictions does the flux become modified. This shielding effect is absent in the spatially
periodic version of the problem (for which each peristaltic wave is forced to be identical),
although the relation between the net flux and pressure drop also becomes nonlinear for
constricted conduits (figure 11b).

If a peristaltic wave is not shielded from the back pressure by a downstream constriction,
the wall displacement there is again described by (3.10a,b); see figure 11(c). Once those
constrictions are peeled off, however, the conduit profile is modified to h ∼ 1 − α sin ξ +
S−1PR. The back pressure therefore must begin to peel the lugworm off the constrictions
when PR > S, as observed in figure 11(a).

Riisgård et al. (1996) report measurement of the fluxes generated by lugworms enclosed
in tight glass tubes, indicating that the flux is mostly a linear function of the frequency of
the peristaltic waves. Assuming that wavelengths and amplitudes are fixed, the frequency
corresponds to wave speed. Moreover, in the fixed-displacement regime, the dimensional
flux per unit width cD〈q〉 depends linearly on wave speed, suggesting that the lugworm is
operating as a fixed-displacement pump. Riisgård et al. also suggest that conduits become
constricted by peristalsis and the degree of backflow is limited. Thus, the lugworm pump
may operate in a limit like that shown in figure 11.

Riisgård et al. (1996) introduce hydrostatic back pressures to limit the peristaltic flux
and empirically record the pump characteristic, observing that transport is eliminated
for pressure drops of order 2 kPa; see figure 12(a). Other studies have suggested that
lugworm peristalsis is associated with pressures of O(102) Pa (see table 1). But, in our
model, the pressure scale, 12μcL/D2 = O(1) Pa, is relatively small, and figure 10 implies
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Figure 10. (a) Mean fluxes and conduit thicknesses as a function of back pressure P(�, t) = PR for α = 2
3

with A = 1, 2, 4, 8, 16, 64 and 256 (from red to blue); � = 6π. The dashed line shows the flux in the
fixed-displacement limit, computed directly from (3.8). In (b) we plot the corresponding fluxes for spatially
periodic peristaltic waves subject to an adverse pressure gradient Γ (see Appendix A); the dashed line indicates
the prediction in (3.9). Panel (c) shows final snapshots (solid) and cycle average means (dashed) of h and P, at
the back pressures SR indicated by the stars in (a).

that the introduction of an order-one dimensionless back pressure, P(�, t) = PR, is usually
sufficient to arrest pumping. Only if the conduit becomes significantly constricted at high
forcing amplitude A and stiffness S (the limit taken in § 3.3) can dimensionless peristaltic
pressures rise sufficiently to rationalize these observations (figure 11a).

The measurements of Riisgård et al. (1996) are replotted in figure 12(b), scaling the
data as in the theoretical model. However, a Riisgård et al. also note that adding back
pressure reduces wave frequency and thereby the flux, suggesting an adaptive peristaltic
action. To partly account for this effect, only the measurements with higher frequency
(5–7 cycles/minute) are replotted in figure 12(b). This replotted data does suggest a
relatively flat pump characteristic, as seen in figure 11(a) for PR < S.

4. Leaky pumping

4.1. Permeable burrows
Now we add a leakage through the burrow wall into the (non-deforming) porous half-space
beyond (κ /= 0), but otherwise consider the same problem as above for a conduit with a
closed end (q(�, t) = 0). The system to solve is

ht = (h3Px)x − κP, (4.1)

P = Aa(x) sin ξ + S(h − 1), (4.2)
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Figure 11. (a) Pump characteristics (mean conduit thickness 〈h̄〉 and flux 〈q(0, t)〉) against back pressure
P(�, t) = PR for A = 2, 4, 8, 20, 200 (from red to blue); (α, �) = (2, 6π). Corresponding fluxes for the spatially
periodic problem are shown in (b). Panel (c) shows final snapshots (solid) and cycle average means (dashed)
of h and P, at the back pressures SR indicated by the stars in (a,b). The dotted lines show h = 1 − α sin ξ ,
h = 1 − α sin ξ + PR/S and P = α sin ξ − 1.
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Figure 12. (a) Experimental measurements of flux and back pressure for three lugworms, as presented by
Riisgård et al. (1996). Pumping frequency is indicated by the colour and symbol (see the legend). In (b) the
data for frequencies of 5, 6 and 7 cycles/minute (i.e. the redder triangles) are scaled in the manner of our
theoretical model (adjusting c = 0.04f m s−1 according to frequency f cycles/s).
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Figure 13. Solutions for a leaky conduit with κ = 0.0333 and a closed end (q(�, t) = 0), for (a–c) (A, S) =
(1, 1) and (d–f ) (A, S) = (10, 15); � = 6π. Shown are final snapshots (dashed) and cycle averages (solid) of
(a,d) h(x, t) and (b,e) P(x, t), and (c, f ) time series of h̄(t)− 1 (blue), q(0, t) and 〈q(0, t)〉 (red solid and dashed).
The (green) dotted lines in (d–f ) show the short-wavelength predictions of Appendix B. The insets to the right
of (c, f ) show h(x, t) as densities on the (x, t) plane (for t < 80).

which implies that, in any temporally periodic state,

〈q(0, t)〉 = κ

∫ �

0
〈P(x, t)〉 dx. (4.3)

Sample numerical solutions, corresponding to those in figures 5(d–f ) and 6(d–f ), but
with κ > 0, are shown in figure 13. Again, the peristaltic waves pump fluid into the
conduit. This time, however, due to a net leakage of water through the burrow wall, the
pressure gradient no longer builds up to the same degree. The deformation of the pumper’s
surface and the inflation of the conduit are thereby reduced, and a finite flux at the left end
in the steady state is maintained over long times. Also, because of the spatially oscillating
pressure of each peristaltic wave, water can be drawn back out of the porous wall during
the times that the pressure reaches its minima, offsetting the leakage occurring during the
pressure maxima. This short circuit by the leakage is illustrated by the snapshots and cycle
averages of P(x, t), which sets the degree of drainage through −κP in (4.1). As a result,
the net flux into the porous wall is partly suppressed. In the final steady state, the net flux
increases towards the right end of the conduit where pressures are highest, but there is a
net drainage from the half-space into the conduit over the first wavelength (see the final
cycle average of P in figure 13b).

Increasing the permeability parameter κ reduces the inflation and pressure gradient still
further, as illustrated in figure 14. For small κ , the net flux through the left end of the
conduit can be determined by substituting the pressure solution P = P0(x, t) for κ = 0
into the constraint (4.3), to give the linear prediction

〈q(0, t)〉 = κ

∫ �

0
〈P0〉 dx, (4.4)
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Figure 14. Final cycle averages (solid) of (a,c) h(x, t) and (b,d) P(x, t) for four values of κ (increasing from
blue to red), with (a,b) (A, S) = (1, 1) and (c,d) (A, S) = (10, 15); � = 6π. The final snapshots are also plotted
(dashed) for the solutions with the smallest value of κ . In panel (e) we show the final, cycle-averaged values
of the flux at x = 0 against κ for a larger set of computations. The values of κ for the solutions shown in
(a–d) are indicated by stars and circles. The dashed lines show the approximation in (4.4). The dotted lines in
(c), (d) and (e) show the short-wavelength predictions of Appendix B.

which is also shown in figure 14. However, the most interesting feature of the suite of
computations shown in this figure is how the net leftward flux first increases as κ is first
raised above zero, but then reaches a maximum and finally declines once the short circuit
through the porous medium exacts its toll. Consequently, there is a distinguished value of
κ for which the transport through the burrow is maximized.

Solutions at higher forcing amplitude, S = 1
2 A = 10, are shown in figure 15. These

parameter settings match those for the solutions with an impermeable wall in figure 7, for
which isolated peristaltic waves separated by constrictions appear before back pressures
force the conduit to remain open along its length. In figure 15 the back pressures become
limited for increasing leakage, and some of the constrictions are then no longer peeled
away from the wall. In fact, because the leakage term −κP in (4.1) does not vanish when
h → 0 (unlike the flux), the integration of (4.1) can permit h to become unphysically
negative during pumping. Such closures do indeed arise over the constrictions for the
largest values of κ in figure 15. To avoid unphysical solutions with h < 0, one can add a
switch on the right-hand side of (4.1) that sets ht = 0 if both h ≤ 0 and (h3Px)x − κP < 0.
This switch prevents h from becoming negative and instead holds the conduit at zero
thickness (at least to within numerical errors), whilst allowing the worm surface to become
pulled back off the porous wall from an existing closure if forced to do so. The solutions
shown in figure 15 with higher κ incorporate the switch. However, these solutions cannot
maintain the constraint in (4.3), and the pressure solution from (4.2) has no meaning if
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Figure 15. (a) Final snapshots of h(x, t) and P(x, t) for larger-amplitude numerical solutions with κ = 0 and
κ > 0 (with κ increasing from blue to red), for A = 20, S = 10 and � = 6π. The dot-dashed line shows
A sin ξ − S, and the pressure is not plotted where h ≤ 0. Density plots of h(x, t) for the five solutions are
displayed in (b) (for t < 80). Panel (c) shows the final net lefthand flux 〈q(0, t)〉 against κ for a larger suite
of computations. The stars indicate the values of κ for the solutions shown in (a), the dashed line shows the
approximation in (4.4), and over the shaded region the conduit closes during peristalsis.

h ≤ 0 (the contact force being omitted from this relation), obscuring how fluid must flow in
the porous medium (§ 2.2.2). Overall, although we may avoid negative conduit thicknesses
by adding the switch to (4.1), the physical significance of these solutions is not clear and
they must be viewed with some caution.

The parameter κ was estimated earlier to be O(10−2) for typical lugworm conditions.
One might therefore conclude from figures 14(e) and 15(c) that the lugworm may pump
optimally for transport. However, the lugworm burrow is armoured by mucus to make it
less permeable over the gallery, and the burrow usually continues beyond the head into a
feeding pocket. This leads us to consider a different problem in which the burrow wall is
impermeable, but fluid is pumped into a leaky headspace beyond.

4.2. Pumping into a feeding pocket
In the ‘normal cyclical pattern’ proposed by Wells (1945, 1966) the wall of the gallery
is impermeable and all the fluid escapes through a cylindrical head shaft. More recently,
it has been suggested that water escapes from the feeding pocket in a more distributed
fashion (Meysman et al. 2005; Wethey et al. 2008; Delefosse et al. 2015), although the
motivating observations have not always been in situ. Indeed, Wells and other studies
(e.g. Hüttel 1990; Volkenborn et al. 2010) offer persuasive evidence to suggest that a
significant fraction of the water leaves through the head shaft.

When all the water is lost through a cylindrical head shaft, a one-dimensional version
of Darcy’s law applies, setting the flux,

cApq = K( pR − pB)Ah

μhB
, (4.5)

as exploited by Riisgård et al. (1996), where hB and pR denote the depth and pressure of
the feeding pocket, and Ah is the effective area of cross-section of the head shaft. Scaling
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as before, we find the dimensionless boundary condition,

p(�, t) = PR = λq(�, t), λ = hBD2Ap

12LAhK
, (4.6)

where Ap is the cross-sectional area of the conduit. This condition, which can be applied
on numerical solutions to (3.1) and (3.2) at the right of the conduit, corresponds to the
selection of the ‘operating point’ for lugworms employed by Foster-Smith (1978) and
Riisgård et al. (1996). Adopting an area for the head shaft of Ah = 3 cm2 (a radius of about
a centimetre) and taking hB = 20 cm and K = 5.5 × 10−11 m2, leads to the parameter
estimate, λ = O(103). Nevertheless, this permeability assumes that the head shaft has
the same resistance to flow as the surrounding sediment, in conflict with the implied
channelization along it. If the sand in the head shaft is loosened by the worm, then fluidized
by flow, as described by Wells (1945), then K must be orders of magnitude larger, rendering
λ correspondingly smaller. Indeed, if smaller particles become carried away by the current,
in the manner of the piping failure of dams, λ may be smaller still. If we revise the value
of the permeability within the head shaft to K = 10−9 m2 (a value typical for loose sand),
then we arrive at the estimate, λ ≈ 28.

Alternatively, for an opposite extreme, we assume that the porous medium is
homogenous and fluid escapes uniformly from a spherical feeding pocket of radius RB in
the manner of a point source. Ignoring the burrow, the pressure surrounding the pocket is
then, on adding an image to account for the boundary condition p̃ = pB − ρghB at z̃ = hB,

p̃(r̃, z̃, t̃) = pB − ρgz̃ + RB( pR − pB)

[
1√

r̃2 + z̃2
− 1√

r̃2 + (2hB − z̃)2

]
, (4.7)

where r̃ is a (cylindrical-polar) radial coordinate centred at the feeding pocket. The
dimensionless flux through the seafloor (the sediment–water interface) at z̃ = hB is

− 2πK
μcAp

∫ ∞

0
[p̃z̃(r̃, hB, t̃)+ ρg]r̃ dr̃ = 4πKRB

μcAp
( pR − pB) = 12πKLRB

ApD2 PR, (4.8)

which must match q(�, t). Thus, we again arrive at the boundary condition in (4.6), but
this time with parameter

λ = ApD2

12πKLRB
, (4.9)

which can be estimated to be about 32 if K = 5.5 × 10−11 m2.
Either way, we may compute solutions to (3.1) and (3.2) with the revised right-hand

boundary condition in (4.6), taking λ to be an order-one parameter. For λ→ 0, (4.6)
enforces the zero-pressure condition P(�, t) = PR = 0 and the solutions approach those
for an open end, whereas no flux is implied for λ→ ∞, as for a closed end; parameter
settings in between bridge across these limits. Results for the final mean conduit thickness
h̄(t), right-hand average pressure 〈P(�, t)〉 and flux 〈q〉 are displayed in figure 16.

Solutions computed with the boundary condition in (4.6) differ from those employing
the right-hand pressure condition P(�, t) = PR, as used earlier in § 3.4, primarily near the
right-hand end of the conduit. However, once one arrives at the final, temporally periodic
state, this former condition implies that 〈P(�, t)〉 = λ〈q(�, t)〉. Thus, if one reinterprets λ as
PR/〈q(�, t)〉, one can translate data from solutions with P(�, t) = PR to the feeding-pocket
problem. This translation is illustrated in figure 16, where data from solutions with fixed
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Figure 16. (a,c) Average righthand pressures 〈PR〉, and (b,d) 〈q〉 and 〈h̄(t)〉 − 1 against leakage parameter λ
for solutions to (3.1) and (3.2) with the boundary condition in (4.6) (stars). Solutions with (A, S) = (16, 24)
(α = 2

3 ) are shown in (a,b), and for (A, S) = (16, 8) (α = 2) are shown in (c,d); � = 6π. The dashed and
dot-dashed lines show the limits derived using the solutions for open (PR ∼ λ〈q〉) and closed (〈q〉 ∼ 〈PR〉/λ)
conduits, respectively. The solid lines translate data from computations with the boundary condition P(�, t) =
PR, taking λ = PR/〈q〉.

right-hand pressure are added to the plots. In other words, the pump characteristics
discussed in § 3.4 remain relevant with (4.6).

For the fixed-displacement cases in figure 16(a,b), the transition between the limits of
open and closed conduits is relatively gradual, taking place when λ is of O(10). If there
are constrictions (figure 16c,d), the passage away from the open-conduit limit takes place
abruptly when λ > 15 (for the parameter settings shown). This abrupt change results from
the constrictions that again shield pumping from the downstream boundary condition. Our
estimates for the magnitude of λ based on typical conditions for the lugworm environment
suggest that pumping would occur over that transition.

5. Discussion

At low Reynolds number, long-wave peristaltic pumping corresponds to a lubrication
problem in which a forced, flexible wall cyclically drives fluid down a conduit. Sections
of the conduit may collapse over part of the wave cycle for sufficiently strong forcing,
leading to isolated peristaltic waves transporting fluid close to the wave speed. In this
paper we provided an analysis of this situation, capturing consistently any near-closures
of the conduit by coupling lubrication theory for the fluid with a law encompassing the
force balance on the flexible wall. The coupled model captures the limit in which the
wall displacement becomes fixed, except where any constrictions arise, and can be used to
predict ‘pump characteristics’ (the relation between flux and net pressure drop).

Motivated by peristaltic pumping of marine worms, we considered pumping down a
conduit with the form of a narrow annular gap. We also included the leakage of fluid
through the outer wall into a surrounding porous medium, using slender-body theory to
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solve the associated Darcy problem. In this situation, when the wall is impermeable and
the downstream end of the conduit is closed, an adverse back pressure is set up to prevent
any net flux. If the wall is permeable, however, the back pressure is relieved, allowing
transport. But for very leaky walls, the flow through the porous medium short circuits
that in the conduit, again eliminating any net flux. Maximum transport therefore arises at
an optimal rate of leakage. Some marine worms use mucus to armour the wall of their
burrows, rendering them less permeable, and instead pump water into a feeding pocket or
head shaft at the end of the burrow. A variation of the model accounts for this alternative
situation by employing a boundary condition at the burrow’s end that permits leakage
there.

For fixed-displacement peristaltic waves, lubrication theory predicts pumping pressures
that are dictated by the fluid viscosity, the pump wavelength and speed, and the conduit
thickness (Shapiro et al. 1969). Measurements for lugworms in glass tubes (Riisgård
et al. 1996), however, suggest pumping pressures that are two orders of magnitude higher.
This discrepancy can only be explained by arguing that the conduit nearly closes during
peristalsis. Pressures can then be achieved that are much greater than the expected
lubrication pressure (P in our analysis). In other words, these pumpers must operate
close to a fixed-displacement limit with constrictions. Armed with that insight, the pump
characteristics observed for lugworms can be plausibly reproduced by the model. However,
the model cannot account for the change in pump frequency with net pressure drop also
noted experimentally (which suggests that peristalsis adapts to ambient conditions). Our
exploration of the effect of leakage, either through the burrow wall or from a head shaft
or feeding pocket, confirms that the loss of water into the surrounding porous sediment
is significant, as demanded by the inferred bioturbative action of marine worms on their
environment.

All that said, our model is idealized and several improvements are needed for
any connection to an application. For example, closer comparison of the model with
observations of lugworm activity requires stronger constraints on pumped waveforms; we
activated peristalsis here by applying a sinusoidal force to the worm’s surface, assuming
that its cross-section remains circular. However, detailed reports of the shape of the
lugworm’s peristaltic waves are lacking in the literature: in some cases, the lugworm is
portrayed as residing along the bottom of the burrow, sending waves along its upper surface
(e.g. Wells 1966; Toulmond & Dejours 1994; Riisgård et al. 1996); other illustrations
picture a centrally located position with more symmetrical waves (Just 1924; Krüger
1971; Delefosse et al. 2015). Were observations available for realistic wave shapes, then
one might attempt an inverse problem to establish the forcing activating peristalsis.
Alternatively, one might consider optimization problems to determine the best wave shape,
given certain objectives (cf. Walker & Shelley 2010).

Our use of the leading-order slender-body theory to account for the leakage through
the burrow wall also has its limitations (Handelsman & Keller 1967; Hinch 1991),
with better approximations rendering leakage dependent non-locally on conduit pressure.
These refinements could also be used to account for the geometry of a curved burrow
centreline, a varying permeability of the burrow wall (mucus armouring) and the overlying
sediment–water interface, without necessarily solving a three-dimensional Darcy flow
problem (cf. Meysman et al. 2005). Another major simplification that we adopted was
to assume that the sediment does not deform under peristalsis. When the burrow wall
is armoured with mucus, this is perhaps a fair approximation (Wells 1945 and others
report how the gallery wall can become exposed and stand up against gravity when water
levels recede; if the exposed length of burrow wall is several centimetres, as needed to
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make the feature noteworthy, this implies a yield stress exceeding 103 Pa, which is at the
upper end of the pumping pressure range measured for lugworms, suggesting an armoured
burrow wall will indeed not deform under peristalsis). But when the sediment is more
loosely packed, lubrication pressures will compact that medium. A poro-elastic model
(e.g. Detournay & Cheng 1993) may then be more suitable, which complicates the leakage
dynamics by adding the diffusion of the pore pressure. Lugworms certainly fluidize the
head shaft through a combination of through flow and mechanical activity (Wells 1945;
Hüttel 1990), raising the interesting question of what dictates the shape of that conical,
more loosely packed feature.

Perhaps the most important biological aspect of peristaltic pumping through a sandy
burrow is how lugworms and other organisms achieve bioturbation by flushing oxygenated
water and nutrients through the surrounding sediment. Previous models of this process
prescribe a burrow pressure to drive flow through the sediment (cf. Meysman et al. 2005;
Wethey et al. 2008). This pressure, however, follows from the detailed fluid dynamics of
the pump, which is a key ingredient in our model. The spatially varying pressure field that
develops during peristalsis can drive fluid out of a leaky conduit near the head and back
into the burrow nearer the tail. Overall, the net recirculation is sensitive to the peristaltic
dynamics, and can force flow through the sediment even if permeabilities are relatively
small, or when there is minimal net transport down the burrow.
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Appendix A. Periodic pumping with leakage

For the steadily propagating, purely periodic problem, after transforming into the frame of
the forcing and expressing all variables in terms of ξ , we have

(h3Pξ )ξ = κP − hξ , (A1)

P = A sin ξ + S(h − 1). (A2)

Note that, for any finite κ , the spatial average of (A1) implies that 〈P〉 = 0, and so 〈h〉 = 1
from (A2). In other words, there can be no net constriction or inflation of the conduit. One
can further add a constant adverse pressure gradient Γ to (A1) (to give an additional term
−3Γ h2hξ on the left). This gradient suppresses the flux, eventually reversing the direction
of net flow, as illustrated in figures 10 and 11 of the main text.

Without leakage (κ = 0), and in the limit S � 1 with α = A/S < 1, the displacement
of the wall is fixed, and

h ∼ 1 − α sin ξ and Q = 3α2

2 + α2 , (A3a,b)

as in Appendix B. For α > 1, a constriction must form. In this case, the fluid largely
collects into an isolated wave with constant pressure Pb spanning periodic extensions of

987 A22-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

38
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-9738-1414
https://orcid.org/0000-0002-9738-1414
https://orcid.org/0000-0002-1534-9104
https://orcid.org/0000-0002-1534-9104
https://orcid.org/0000-0002-1419-6505
https://orcid.org/0000-0002-1419-6505
https://doi.org/10.1017/jfm.2024.386


D. Takagi, N.J. Balmforth and S.G. Llewellyn Smith

0

1

2

h(ξ)

P(ξ)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

–1

0

1
h(ξ)

P(ξ)

0 1 2 3 4 5 6

0

1

2

1 2

10–2 100
0

0.1

0.2

0.3

0.4

0.5
κ↑

A = S = 1

ξ

A = 10, S = 15

ξ

h(ξ)

P(ξ)/S

A = 20, S = 10
0

0.1

κ

〈Q〉

A = 10, S = 15

A = S = 1

(a)

(b)

(c)

Figure 17. Steadily propagating periodic solutions for (a) (S,A) = (1, 1) (top) and (S,A) = (15, 10) (bottom),
with κ = 0 (dashed), 0.2, 0.6, 1.6 and 4.8. The black dots show 1 − S−1A sin ξ . The corresponding mean flux
〈Q〉 for a wider set of solutions is shown in (b); the dashed lines show the prediction in (A6a,b). Solutions
with (S,A) = (10, 20) are plotted in (c) for κ = (0, 1, 2, . . . , 6)× 10−3; the inset shows a magnification of the
constriction and the dots show the predictions in (A4a,b) and (A5).

the interval 3
2π − χ < ξ < 3

2π + χ , where

h ∼ 1 + Pb

S
− α sin ξ, Pb = −1 − α cosχ, π − α sinχ + αχ cosχ = 0, (A4a,b)

(given that 〈h〉 = 1 and the constriction has h ≈ 0). Pressure gradients become restricted
to the constrictions intervening between the isolated waves, with

P ∼ A sin ξ − S. (A5)

Sample solutions for three pairs of values for (S,A) are shown in figure 17. As κ is
increased for fixed (S,A), more water drains into the porous medium, reducing the pressure
gradient and allowing the conduit to become more constricted. For sufficiently high κ ,
the short circuit introduced by the flow through the porous half-space eventually throttles
the flux and P becomes small, giving h ∼ 1 − α sin ξ , as illustrated in figure 17(a). This
further implies that

P ∼ −(κS)−1A cos ξ and Q ≡ 〈h3Pξ 〉 → 3
8κ

−1α2(4 + α2). (A6a,b)

At the highest amplitudes and leakages (figure 17c), the conduit again closes over the
constrictions, terminating the branch of solutions computed from (A1) and (A2). The
solutions for the narrow window of values of κ below this limit vary primarily over the
constrictions, as illustrated in figure 17(c). Elsewhere, the solutions match up with the
predictions from (A4a,b) and (A5).
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Appendix B. Peristaltic waves along a slowly varying conduit

When � � 1, the peristaltic waves have a relatively short wavelength and we may
asymptotically reduce the model equations. Note that the analysis in this appendix can
further be used to take account of any longer-scale variations in physical conditions along
the length of the conduit, and could be applied to other problems of peristalsis.

For the impermeable conduit, we take (S,A) = O(�), and set

ε = �−1, X = εx, P = ε−1Π(X)+ P̂(ξ,X)+ · · · , h = Θ(X)+ ĥ(ξ,X)+ · · · .
(B1a–d)

Here, we ignore the variation of a(x) near the ends and any ambiguity in the
decompositions of h and P is removed by demanding that ĥ(ξ,X) and P̂(ξ,X) have no
net average over ξ . Equation (3.1) then becomes

− hξ = −qξ − εqX, q = −(Θ + ĥ)3(ΠX + P̂ξ )+ · · · . (B2a,b)

Averaging the first relation over ξ implies that QX = 0, where Q = 〈q〉; i.e. the wave-cycle
average of q must be independent of X. To leading order in ε, and in combination with
(3.2), we then find that

− ĥξ = [(Θ + ĥ)3(ΠX + P̂ξ )]ξ , Π = Ŝ(Θ − 1), ĥ = −αa sin ξ, (B3)

where Â = εA, Ŝ = εS and α = Â/Ŝ. Integrating the first of these relations now gives

Q = −ĥ − (Θ + ĥ)3(ΠX + P̂ξ ). (B4)

That is,

ΠX + P̂ξ = Θ − Q
(Θ − αa sin ξ)3

− 1
(Θ − αa sin ξ)2

, (B5)

and so averaging over ξ furnishes

ΠX = ŜΘX = 3α2a2Θ − Q(2Θ2 + α2a2)

2(Θ2 − α2a2)5/2
, (B6)

assuming that the envelope of the forcing a is a function of the longer-scale variable X.
Equation (B6) can be integrated from (X,Θ) = (0, 1) out to X = 1, taking Q as

a parameter. If a = 1 and Q = 3α2/(2 + α2), the solution is Θ = 1 and Π = 0,
corresponding to the conduit with an open left-hand end. For Q = 0 and the conduit with
a closed right end, the integration of (B6) leads to the results included in figures 6(d,e) and
14(c–e), and shown further in figure 18 for solutions closer to the short-wavelength limit.
The short-wavelength analysis successfully incorporates the back pressure resulting from
the closed end and the resulting mean inflation of the conduit, but becomes inaccurate near
the ends owing to the form of the envelope of the forcing a(x) in (3.4) that is too short to
be adequately captured by the long-scale variable X.
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Figure 18. Final snapshots (dashed) and cycle averages (solid) of (a) h(x, t) and (b) P(x, t) for solutions with
κ = 0, 10−3, 1

4 × 10−2, 10−2 and 0.1 (increasing from blue to red); (A, S, �) = (10, 15, 20π) and the right end
of the conduit is closed. The dots show the predictions of the short-wavelength analysis.

With a leaky conduit, taking the same multiple-scale limit as before, but with κ = ε2κ̂ ,
we develop (4.1) and (4.2) into

ĥξ = qξ + εqX + εκ̂ Ŝ(Θ − 1)+ · · · , (B7)

h = Θ − αa sin ξ + · · · , P = Ŝ
ε
(Θ − 1)+ P̂ + · · · . (B8a,b)

Hence, taking the ξ average,

QX = −κ̂ Ŝ(Θ − 1), (B9)

where Q(X) = 〈q〉 as before. Repeating the analysis now couples (B6) to (B9). The
solutions of this coupled system for Θ(0) = 1 and Q(1) = 0 are included in figures 14
and 18.

Appendix C. Matching isolated peristaltic waves and constrictions

The solutions for the isolated peristaltic waves and constrictions of § 3.3 must be matched
together over narrow regions of width S−1/2 surrounding the points, ξ = ξ±∗ , where
α sin ξ±∗ = 1 (or α cos ξ±∗ = ±√

α2 − 1). Setting ξ = ξ∗ + S−1/2ζ and h = S−1/2Θ(ζ)
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Leaky peristaltic pumping

over the matching layers, the leading-order solution there satisfies

Θ ′ ∼ Υ −Θ

Θ3 − α cos ξ, (C1)

with ξ = ξ±∗ . This gives Θ ′ → −α cos ξ±∗ and a match to the wider conduit for Θ � 1,
and Υ → Θ + αΘ3 cos ξ±∗ to the other side, effecting a match with the constriction.

In fact, (C1) can be applied throughout the entire region containing the constriction
and matching layers, provided ξ is interpreted as a slower spatial scale (in comparison to
ζ ). To the left of the constriction, where this combined region begins, ξ ≈ ξ−∗ and the
solution to (C1) captures the rapid thinning of the conduit from the isolated wave to the
constriction, which corresponds to a stable fixed point satisfying Υ → Θ + αΘ3 cos ξ−∗ .
On progressing into the constriction, the solution to (C1) remains at the corresponding
quasi-stationary fixed point as ξ slowly varies. Eventually, the constriction terminates at
ξ = ξ+∗ , where the fixed point disappears, prompting the rapid transition to the beginning
of the next isolated wave. The disappearance of the stable fixed point demands that Θ ′ =
Θ ′′ = 0 for ξ = ξ+∗ , which furnishes (3.13). Note that this construction is different from
that selecting the flux in Takagi & Balmforth (2011b) (see also O’Brien & Gath 1998;
Ashmore et al. 2003; Benilov et al. 2008).
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