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In turbulent Rayleigh–Bénard (RB) convection with regular, mono-scale, surface
roughness, the scaling exponent β in the relationship between the Nusselt number
Nu and the Rayleigh number Ra, Nu∼ Raβ can be ≈1/2 locally, provided that Ra is
large enough to ensure that the thermal boundary layer thickness λθ is comparable to
the roughness height. However, at even larger Ra, λθ becomes thin enough to follow
the irregular surface and β saturates back to the value for smooth walls (Zhu et al.,
Phys. Rev. Lett., vol. 119, 2017, 154501). In this paper, we prevent this saturation
by employing multiscale roughness. We perform direct numerical simulations of
two-dimensional RB convection using an immersed boundary method to capture the
rough plates. We find that, for rough boundaries that contain three distinct length
scales, a scaling exponent of β = 0.49 ± 0.02 can be sustained for at least three
decades of Ra. The physical reason is that the threshold Ra at which the scaling
exponent β saturates back to the smooth wall value is pushed to larger Ra, when the
smaller roughness elements fully protrude through the thermal boundary layer. The
multiscale roughness employed here may better resemble the irregular surfaces that
are encountered in geophysical flows and in some industrial applications.

Key words: Bénard convection, turbulent convection

1. Introduction

Rayleigh–Bénard (RB) convection (Ahlers, Grossmann & Lohse 2009; Lohse &
Xia 2010; Chillà & Schumacher 2012; Xia 2013), a flow in a container heated
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from below and cooled from above, is a paradigmatic system in thermally driven
turbulence. The key control parameters are the Rayleigh number and Prandtl number,
which are respectively defined as Ra = αg∆L3/(νκ) and Pr = ν/κ , where α is the
thermal expansion coefficient, g the gravitational acceleration, ∆ the temperature drop
across the container, L the height of the fluid domain, ν the kinematic viscosity, and
κ the thermal diffusivity of the fluid. The most relevant response of the system is the
heat transfer, which in dimensionless form is expressed as the Nusselt number Nu.

Over the years, much attention has been paid to the scaling relation between Nu
and Ra, i.e. Nu∼ Raβ . Two of the early attempts were made by Malkus (1954) and
Priestley (1954), both of whom independently proposed β = 1/3, which reflects their
assumption that the heat flux is independent of the distance between the two plates
and controlled only by the boundary layers (BLs). Grossmann & Lohse (2000, 2001),
based on an analysis and decomposition of the kinetic and thermal energy dissipation
rates into bulk and BL contributions, proposed that there are no pure scaling laws
but rather a superposition of various ones. For extremely large Ra, Kraichnan (1962)
predicted a so-called ultimate regime with turbulent shear BLs, which led to the
relation Nu ∼ Ra1/2(ln Ra)−3/2, where the logarithmic correction becomes negligible
with increasing Ra (Spiegel 1963). Yet there are still debates on the various claims of
evidence for this regime. With a low-temperature helium RB experiment, Chavanne
et al. (1997, 2001) found that β increases to 0.38 for Ra= (2×1011,1014). Taking into
account the effects of turbulent BLs, Grossmann & Lohse (2011) derived a scaling
law with a different logarithmic correction as compared to Kraichnan (1962) and
formulated this relation as an effective power law with a locally determined effective
scaling exponent β. In particular, they derived that β should be approximately 0.38
when Ra is approximately 1014. This was demonstrated experimentally by He et al.
(2012a,b). For more information on general aspects of RB convection, we refer
the readers to the reviews by Ahlers et al. (2009), Lohse & Xia (2010), Chillà &
Schumacher (2012) and Xia (2013).

To avoid the influence of the BLs, and therefore to avoid the logarithmic corrections,
several successful model systems have been proposed throughout the years. In
numerical experiments with periodic boundary conditions in all directions, Lohse &
Toschi (2003) and Calzavarini et al. (2005) proposed ‘homogeneous’ RB turbulence;
Gibert et al. (2006) and Pawar & Arakeri (2018) performed corresponding RB
experiments in a ‘cavity’; Lepot, Aumaître & Gallet (2018) proposed radiative
heating convection, in which heat is input directly inside an absorption layer. When
this absorption length is thicker than the BLs, radiative heating is allowed to bypass
the BLs and heat up the bulk turbulent flow directly. In all these cases a scaling
exponent of 1/2 was achieved, because the BLs no longer played a role. We call this
regime the ‘asymptotic ultimate regime’.

For conventional RB convection, in which BLs close to the bottom and top plate
are formed, wall roughness has been introduced in an attempt to trigger an earlier
onset of a turbulent BL; see the reviews Ahlers et al. (2009), Chillà & Schumacher
(2012) and Xia (2013) for detailed discussions. The results for three-dimensional (3-D)
simulations and experiments can be divided into two main categories. First, there are
studies which show that roughness can increase the scaling exponent β from a value
slightly below 1/3 to a value between 1/3 and 1/2 (Roche et al. 2001; Qiu, Xia
& Tong 2005; Stringano & Verzicco 2006; Tisserand et al. 2011; Salort et al. 2014;
Wei et al. 2014; Xie & Xia 2017). Shen, Tong & Xia (1996), Du & Tong (2000),
Wei et al. (2014) and Xie & Xia (2017) found that the scaling exponent β remains
roughly the same when roughness is introduced. Whether an increase in the scaling
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exponent is observed or not depends on the roughness configuration and the explored
Ra and Pr regime. Roche et al. (2001) designed the first experiment to possibly
reach the ultimate regime without the logarithmic correction (asymptotic ultimate
regime) using a cylindrical cell with grooved roughness in both plates and in the
sidewall. They observed a scaling exponent β of 0.51 in the Rayleigh number range
Ra = (2 × 1012, 5 × 1013). Wagner & Shishkina (2015) showed in direct numerical
simulations (DNS) for rectangular roughness that the scaling exponent β increases
compared to the smooth case for low Ra before it saturates back to the smooth wall
value at large Ra. For RB with pyramid-shaped roughness, Xie & Xia (2017) varied
the roughness aspect ratio λ, which they define as the height of a roughness element
over its base width, from 0.5 to 4.0. With increasing Ra they identified three regimes.
The transition between regime I and II occurs when the thermal BL becomes thinner
than the roughness height and the transition between regime II and III occurs when
the viscous BL thickness becomes smaller than the roughness height. They found that
in regime II the scaling exponent β increases from 0.36 to 0.59 when λ is increased
from 0.5 to 4.0. In regime III they found that these scaling exponents saturate to
0.30 to 0.50, respectively, with increasing λ. Rusaouën et al. (2018) performed RB
experiments with water in cylindrical containers for Ra up to 1012. They performed
a set of measurements using smooth and rough plates with cubic roughness elements
in a square lattice. In these experiments several regimes were identified for the rough
case. With increasing Ra they first observed a regime in which the heat transfer
is similar to the smooth case, followed by a regime in which the heat transfer is
enhanced by a modification of the Nu versus Ra number scaling, before a third
regime is obtained in which the heat transfer scaling is similar to the smooth case,
but with a larger prefactor.

For all the rough wall RB studies that we mentioned above, a 3-D geometry of the
cell has been adopted. Recently, using DNS of two-dimensional (2-D) RB convection
with roughness of varying heights and wavelengths for Pr = 1, Toppaladoddi, Succi
& Wettlaufer (2017) observed the existence of β = 0.483 by fitting the data in the
range Ra = (4.6 × 106, 3 × 109) and interpreted this exponent as an achievement of
the ultimate regime. In contrast, Zhu et al. (2017) showed that: (i) there is no pure
scaling exponent in that Ra range; (ii) although β can locally reach 1/2 in the range
Ra = (108, 3 × 109), this should not be interpreted as the attainment of the ultimate
regime, because a further increase of Ra leads to another regime where a thin thermal
BL uniformly follows the rough surfaces, and thus the classical BL-controlled regime
is recovered, causing the scaling to saturate to the classical effective Nu versus Ra
scaling exponent close to 1/3.

The main question we want to address in this paper is: can the range of Ra where
the effective 1/2 scaling exponent manifests be extended? We note that in all the
studies mentioned above, uniform roughness of a single length scale was adopted.
For this situation, the 1/2 effective exponent can be observed when roughness starts
to perturb the thermal BL, as mentioned before. If, with increasing Ra, smaller
and smaller roughness length scales are introduced, the different size roughness
elements will protrude through the thermal BL one by one. Therefore, the flow can
be maintained in a transition state and the 1/2 effective exponent can be sustained.
In this manuscript, we will demonstrate this conjecture by means of multiscale wall
roughness. In fact, two decades ago Villermaux (1998) theoretically pioneered the
research of RB convection with multiscale cubic roughness, with power-law-distributed
asperity heights. He formulated a new scaling relation and found that the heat transfer
scaling exponent can be significantly enhanced. Later, Ciliberto & Laroche (1999)
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experimentally explored multiscale roughness by gluing glass spheres of controlled
diameter on the bottom copper plate, and found that β increases to 0.45. In contrast,
for a periodic roughness case, they found that the scaling exponent is similar to that
in the smooth case.

Another motivation for this study is that for real-world applications and geophysical
flows, the situation is far more complex, with surface roughness often containing
different length scales. For example, in cities, there is huge difference among
the heights of the buildings, and also natural terrains contain multiscale structure.
Assuming roughness is multiscale provides a practically useful simplification
(Rodriguez-Iturbe et al. 1994).

The paper is organized as follows: in § 2 we describe the numerical method and the
parameter set-up used in the simulations. In § 3 we show how multiscale roughness
alters RB turbulence. In § 4 we briefly summarize the results and give an outlook to
potential future work.

2. Numerical details

We solve the Boussinesq equations with the second-order staggered finite-difference
code AFiD (Verzicco & Orlandi 1996; van der Poel et al. 2015; Zhu et al. 2018b)
in 2-D. The reason why we resorted to 2-D simulations is that they are much less
expensive than the 3-D case and thus we can cover a much wider range of Ra. The
details of the numerical methods, the parallelization and the different versions (CPU
and GPU) can be found in Verzicco & Orlandi (1996), van der Poel et al. (2015) and
Zhu et al. (2018b). The code has been extensively validated and used under various
conditions (Zhu et al. 2017, 2018a,b). The governing equations in the dimensionless
form read:

∂u
∂t
+ u · ∇u=−∇p+

√
Pr
Ra
∇

2u+ θ ẑ, (2.1)

∇ · u= 0, (2.2)
∂θ

∂t
+ u · ∇θ =

1
√

RaPr
∇

2θ, (2.3)

where ẑ is the unit vector pointing in the direction opposite to gravity, u the
velocity vector normalized by the free-fall velocity

√
gα∆L, t the dimensionless time

normalized by
√

L/(gα∆), θ the temperature normalized by ∆, and p the pressure
normalized by gα∆/L. As shown in the above equations, the control parameters of
the system are Ra and Pr. The boundary conditions on the top and bottom plates
are no-slip for the velocity and constant for the temperature. Periodic conditions are
applied to the horizontal boundaries. In all our simulations, Pr is fixed to 1. The
aspect ratio is chosen as Γ ≡W/L = 2, where W is the width of the computational
domain.

For the rough cases, the characteristic length scale that we use to express Ra is the
equivalent smooth wall height L′. This height is defined by determining the height
of a domain with smooth boundaries that would have the same fluid volume. Nu
is calculated from Nu =

√
RaPr〈uzθ〉A − 〈∂zθ〉A, where uz denotes the instantaneous

vertical velocity and 〈·〉A the average over any horizontal plane between the rough
plates.

An immersed boundary method (IBM) has been implemented to cope with rough
surfaces (Fadlun et al. 2000). The basic idea of the IBM is that a body force term
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FIGURE 1. (a) A sketch of the computational domain and the roughness elements.
(b) Roughness element R1 is the base element and the length scale is R1 = 0.1. The
structure is multiscale as Rn+1 = 2−nRn, n= 1, 2, 3.

in the Navier–Stokes equation can mimic the effects of the boundaries. For more
information on IBM, we refer to the reviews by Peskin (2002) and Mittal & Iaccarino
(2005).

We now describe the multiscale roughness pattern: we choose a series of
wall-mounted sinusoidal elements distributed on both the top and bottom plates.
The sinusoidal elements all have the same aspect ratio 1. The multiscale roughness
implementation is similar to that in Yang & Meneveau (2017), although in that study
square roughness elements were adopted and positioned randomly. The size of the
largest roughness element is used as the reference scale, R1= 0.1. At the second and
third generation, we have the rough elements size as Rn+1 = 2−nRn. No roughness
elements of intermediate sizes are included, and the roughness height spectrum is thus
discrete (Yang & Meneveau 2017). Figure 1 gives an overview of the computational
domain and the roughness elements. Adequate resolution was ensured for all cases,
i.e. the mesh is stretched in the wall normal direction with the finest grid implemented
around the tips of the biggest roughness elements. There are at least 12 points inside
the BL. The statistics were averaged over 200 free-fall time units. In the rough case
for Ra = 1011, 10 240 × 5120 grid points, in the horizontal and vertical direction,
respectively, were used. Further details about the simulation parameters can be found
in appendix A.

3. Results

We first compare the flow structures for increasing Ra. Figure 2 shows the
instantaneous temperature snapshots for four Ra, ranging from 108 to 1011. At
the lowest Ra = 108, within the cavity regions, the flow is viscosity dominated.
Interestingly, figure 3 shows that the heat transfer for the case with multiscale
roughness is approximately 15 % lower than for the case with smooth walls. The
same phenomenon of heat transfer reduction due to roughness was observed by
Shishkina & Wagner (2011) and Zhang et al. (2018). The physical reason for the
heat transfer reduction is that the hot/cold fluid is trapped between the roughness
elements, which thus leads to a thicker thermal BL and therefore to a lower overall
heat transport. For larger Ra, plumes start to develop from the tips of the roughness
elements and eventually, at the largest Ra = 1011, plumes are formed even in the
sloping surfaces of the smallest rough elements. This observation indicates the impact
of multiscale roughness on the flow structure and heat transfer for increasing Ra.
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FIGURE 2. The instantaneous temperature fields at (a) Ra= 108, (b) Ra= 109, (c) Ra=
1010 and (d) Ra= 1011. It can be seen that with Ra increasing, plumes are ejected also
from smaller and smaller roughness elements.

Next, we check how the scaling relation evolves with increasing Ra, comparing
the smooth and the multiscale case. Figure 3 shows the Nu scaling behaviour as a
function of Ra, in a log–log plot and in a compensated plot. As was shown before
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FIGURE 3. (a) Nu as a function Ra for the smooth case and the multiscale rough case.
For the smooth case, the scaling exponent is β = 0.29 ± 0.01. For the multiscale rough
case, the scaling exponent is β = 0.49± 0.02. As a reference, the results for mono-scale
roughness are also included (Zhu et al. 2017), which clearly show two scaling regimes.
Note that Ra is defined based on the equivalent smooth wall height. In the mono-scale
roughness case, 20 sinusoidal roughness elements of the same height (0.1) were adopted.
For the multiscale roughness cases considered here, 10 of these large roughness elements
are replaced by one R2 and two R3 generation roughness elements. Therefore, the total
number of roughness elements for the multiscale roughness geometry is 40. Nu is smaller
for the multiscale roughness case than for the mono-scale roughness case, because the
latter has larger roughness elements. (b) Same as in (a) but in a compensated way for the
multiscale rough case. Note that we use only one specific aspect ratio for the roughness
elements. If the aspect ratio changes, the scaling exponent will also change.

in 2-D RB (DeLuca et al. 1990; Johnston & Doering 2009; Zhu et al. 2017), the
smooth case has an effective scaling exponent β = 0.29 ± 0.01, extending over four
decades, from Ra= 108 to Ra= 1012. For the mono-scale roughness case, two distinct
effective scaling exponent can be observed, i.e. β = 0.50 ± 0.02, for one and half
decade; then β saturates back to 0.33. With the introduction of multiscale roughness,
the heat transfer is greatly enhanced. Within 95 % of the confidence bound, we get
the fit of Nu∼ 0.00257Ra0.49±0.02 for three decades of Ra, from Ra= 108 to Ra= 1011.
A root mean square error 2.89 is found for the fit. To our knowledge, this is the
first realization of such a large scaling exponent in such a wide range of Ra in RB.
It is remarkable that it is realized in spite of the relatively low Ra numbers of the
simulations. Obviously, as for the smooth RB, an asymptotic 1/2 exponent is expected
only when Ra approaches infinity.

We will now explain the physical mechanism which leads to this considerable
enhancement of the exponent for a wide range of Ra. Let us first recall why in the
case of periodic roughness with one single height, the regime with an effective scaling
exponent close to 1/2 survives for a limited range of Ra and then saturates back to
a value close to the smooth case. In the former regime, the roughness elements start
to protrude into the thermal BL. Only weak secondary vortices are generated in the
cavities and the resulting mixing is not efficient. Therefore, the flow there is still
dominated by viscosity. In the latter regime, secondary vortices are strong enough to
mix all the fluids inside the cavities. Thus the roughness elements are covered by a
thin thermal BL which is uniformly distributed along the rough surfaces, effectively
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(a) (b)

(c) (d)

FIGURE 4. Sketches on why regular periodic roughness with the same height leads to
scaling saturation and why multiscale roughness increases the exponent in a wider range of
Ra. Orange parts are the regions where the thermal BL are. (a) At lower Ra, the roughness
is below the thermal BL and has little impact on scaling relations. (b,c) At intermediate
Ra, the roughness starts to protrude through the thermal BL, but not to the valley of the
roughness elements. For multiscale roughness, it is easy to imagine that the range of Ra
is wider in this stage, as only with increasing Ra will the smaller and smaller roughness
elements protrude through the thermal BL. (d) When Ra is large enough, a thin thermal
BL is uniformly distributed along the rough surfaces and the scaling exponent will saturate
back to the value close to the smooth case. This case is not reached in this study.

mimicking an increased wet surface area. Therefore, the effect of BL is restored and
the classical BL-controlled regime is retrieved (Zhu et al. 2017).

Multiscale roughness essentially extends this effective 1/2 scaling regime further.
Figure 4 shows sketches of thermal BLs for increasing Ra. As Ra increases, the
thermal BL becomes thinner, the smaller roughness elements start to perturb the
thermal BL, and this process continues until the smallest roughness elements perturb
the thermal BL. Therefore, the system stays in the transitioning state and the 1/2
exponent is observed over a wider range of Ra, compared to the case of periodic
roughness with the same height. To give further evidence for this explanation, in
figure 5, we show the averaged mean temperature profiles for the valley points in
the cavity regions of the roughness elements close to the wall. From the temperature
profile for Ra = 108 we can detect the influence of the largest roughness R1. At
Ra= 109 also the effect of the R2 roughness can be identified. Last, but not least, at
Ra= 1010, the influence of smallest R3 roughness starts to manifest.

4. Summary, discussion, and outlook

In this manuscript, we use 2-D DNS to study the effects of multiscale roughness on
RB turbulence. In our case, the multiscale roughness is composed of three different
roughness length scales of sinusoidal shapes. We show that with this implementation
the Nu versus Ra scaling relation Nu∼ Ra0.49±0.02 can be observed for at least three
decades of Ra, while for mono-scale roughness the scaling could be observed only for
only one and half decades in Ra (Zhu et al. 2017). However, there are still several
open issues, for example:
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œ

0.15
z/L

0.20

FIGURE 5. Mean temperature profile as a function of the wall normal coordinate averaged
at the x-locations of the valley points in the cavity regions, i.e. the locations where no
roughness is added on top of the plate. As explained in the caption of figure 1 there are
40 roughness elements, and these profiles are averaged over all 40 corresponding valley
locations.

(i) We stress that even though we found Nu∼Ra0.5 over an extended Ra range, this
is probably still a transitional regime and not the (asymptotic) ultimate regime in
which the BLs are fully turbulent. This means that it is very likely that for the
considered roughness geometry the heat transfer scaling exponent saturates back
to the value of the smooth case for larger Ra. The situation may also change once
the BL become turbulent. Recently, MacDonald et al. (2019) found an effective
exponent of β ≈ 0.42 in the large-Ra regime for forced convection in channel
flow under the assumption that the BL profile become logarithmic.

(ii) In this work, we modelled three different roughness length scales. We expect
that with more length scales, the Ra range in which the 1/2 scaling exponent
manifests might be more extended. Simulations for RB with more roughness
length scales are needed to settle this question.

(iii) The current simulations are for 2-D only and it would be interesting to see results
in a fully 3-D case. Such simulations would be much more computationally
intensive, but very interesting comparisons to the experimental results by, for
example, Roche et al. (2001) would be possible. In that study a scaling exponent
of approximately 1/2 up to approximately Ra= 5× 1013 was observed.

(iv) Ciliberto & Laroche (1999) observed β ≈ 0.45 for RB with multiscale glass
spheres glued on a copper plate. Understanding the effect of the different heat
conductivities for the two roughness elements (glue and glass, both with smaller
heat conductivity than copper) will be very helpful.

(v) Here we consider only the situation for Pr = 1. Recent experiments by Xie &
Xia (2017) suggest that also the Pr number might play an important role on the
effect of roughness on the overall heat transport. Simulations to investigate this
effect would be very interesting.

(vi) Finally we note that for turbulent Taylor–Couette flow with mono-scale roughness
that aligns in the azimuthal direction, simulations (Zhu et al. 2016) yielded
an intermediate regime where ‘Nusselt number’ Nuω ∼ Ta0.5 (angular velocity
transport versus Taylor number). When Ta is large enough, the exponent saturates
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Ra Nx ×Nz Nu

108 2048× 1024 20.8
2.15× 108 2048× 1024 30.1
4.64× 108 3072× 1536 43.6
109 3072× 1536 63.1
2.15× 109 4096× 2048 92.2
4.64× 109 4096× 2048 130.3
1010 5120× 2560 189.2
2.15× 1010 6144× 3122 273.0
4.64× 1010 8172× 4096 390.5
1011 10 240× 5120 580.7

TABLE 1. Ra, resolution in the horizontal (nx) and wall normal (nz) directions, and Nu
number for the multiscale roughness cases considered in this study. For all cases the
domain aspect ratio is 2 and Pr = 1. The uncertainties in Nu is smaller than 1 % for all
cases. Corresponding information for the mono-scale roughness cases has been reported in
Zhu et al. (2017) and for the smooth case in Zhu et al. (2018a).

back to the smooth case value. The question is whether the Ta range where the
1/2 exponent shows up can also be extended with multiscale roughness. For
turbulent Taylor–Couette flow with mono-scale roughness that aligns in the axial
direction, the asymptotic ultimate regime 1/2 scaling has already been achieved
(Cadot et al. 1997; van den Berg et al. 2003; Zhu et al. 2018c), and pressure
drag has been identified as the origin thereof (Zhu et al. 2018c).
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Appendix. Numerical details

The numerical details are given in table 1.
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