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Abstract

We apply the Moser iteration method to obtain a pointwise bound on the norm of the second fundamental
form from a bound on its L" norm for a complete minimal submanifold in a sphere. As an application
we show that a complete minimal submanifold in a sphere with finite total curvature and Ricci curvature
bounded away from —oo must be compact. This complements similar results of Osserman and Oliveira
in the case the ambient space is the Euclidean and the hyperbolic space respectively.

2000 Mathematics subject classification: primary 53C21.

1. Introduction

In the theory of minimal surfaces in K3, an important role is played by the class of min-
imal surfaces with finite total Gaussian curvature. One celebrated result concerning
such surfaces is

THEOREM (Osserman). Let M2 be a minimal surface in K3 with finite total Gaussian
curvature. Then M2 is conformally equivalent to a compact Riemann surface minus
a finite number of points.

This result has a generalization to the case when the ambient space is the standard
hyperbolic space. In this setting, Oliveira proved

THEOREM ([8]). Let M2 be a minimal surface in the standard hyperbolic space
with L2 second fundamental form. Then M1 is diffeomorphic to a compact Riemann
surface minus a finite number of discs.
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In this note, we look at a generalization of Osserman's theorem in the case when
the ambient space is positively curved. Specifically, we consider the situation where
M" is a minimal submanifold sitting in the standard (n + k)-dimensional sphere with
analogous curvature assumptions imposed on M". We are interested in understanding
what topological effect such curvature assumptions will have on M". To be more
precise, we will prove

THEOREM 1. If M" is a complete minimal submanifold of the sphere Sn+P with

IM \A\2"'2 dM < oo, then M" is compact.

REMARK 1. In the case when n = 2, this condition seems optimal, since the
condition becomes fM \A\2dM < oo.

THEOREM 2. / / M" is a complete minimal submanifold of the sphere Sn+P with
fM |A |" dM < oo and infw Ric(M) > —oo, then M" is compact.

This result together with the results of Osserman and Oliveira forms a rather
complete description of the topology of a minimal surface in a space form with L2

second fundamental form (that is, \A\ e L2(M2)).

Ambient Space
hyperbolic space

Euclidean space

sphere

Result
M2 is conformally equivalent to a compact Riemann
surface minus finitely many discs
M2 is conformally equivalent to a compact Riemann
surface minus finitely many points

M2 is compact

Related to Theorem 2 is the following theorem of Shen and Wang ([11, 12]):

THEOREM. Let M" be a compact minimal submanifold of the unit sphere Sn+P.
Suppose Ric(X, X) > 0 (where X is any unit tangent vector). Then there exists
a constant C(n) depending only on n such that if fM \A\" dM < C(n) then \A\ is
identically equal to zero and M" is totally geodesic.

We remark that Theorem 2 can be used to weaken the compactness assumption in
the theorem of Shen and Wang to that of completeness.

2. Preliminaries

In this section, all the tools needed in the subsequent proofs will be collected.
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2.1. Simons' inequality. Consider a minimal submanifold M" immersed in Sn+P

and denote by /i" (1 < i,j < n, 1 < or < p) its second fundamental form. Then the
following Simons' inequality holds:

A|A| > n\A\ - (2 - l/p)\A\3 in distributional sense,

where |A| is the length of the second fundamental form of M" (seeChern [3,page41],
Berard[l,page49]).

This can be seen by using the computations of Chern on an estimate of J2 Kj &Kj
followed by Kato's inequality (see [2] and also Berard [1]) for the second fundamental
form h"j. It follows that

2.2. Isoperimetric-type inequality. Another important ingredient of our proof is
the following isoperimetric inequality of Li and Yau [7]:

LEMMA 1 (Li and Yau [7]). Let M be a complete noncompact Riemannian mani-
fold without boundary of dimension n. Let R(x) denote the pointwise lower bound of
the Ricci curvature, that is, Ric(x) > R(x)gjj and let R-(x) = max{0, —R(x)}bethe
negative part of R(x). If the geodesic ball of radius r centered at y 6 M is denoted
by Br(y), its volume is denoted by Vy(r), and the area of its boundary is denoted by
Ay(r), then for any p > n — 1 there exist constants C\, C2 > 0 depending only on n
such that for any r > 0,

/

r / r \(n-l)/p

I Rp_dM\ dt.
\JB,(r) /

2.3. Ricci lower bound estimate for minimal submanifolds. The last result we
will need is the following estimate of Leung [6]:

LEMMA 2 (Leung [6]). Let M" be a minimal submanifold in Sn+P with constant
sectional curvature K. Then the following inequality holds

Ric(X,X) > ^——{nK - \A\2},
n

where X is any unit tangent vector.

In the next section, we will prove the main result, that is, Theorem 3. This is done
by using a technical lemma on the decay of |A|(p) (to be proved in the Appendix
using Moser's iteration technique on Simons' inequality while keeping control on the
support of test functions) as p escapes compact sets on M. Having done this, the
Ricci lower bound estimate shows then that the Ricci curvature of M is positively
pinched outside some compact set of M. A modification of Myer's theorem yields
subsequently the compactness.
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3. Proof of main theorem

We shall prove in this and the next section the following two theorems which
complement a result of Oliveira [8].

THEOREM 3. Let M" be a complete noncompact minimal submanifold in Sn+P with
fM \A |" dM < oo and let Ric(X, X) > (n — l)/c (where X is any unit tangent vector
and K a constant). Then for any point q 6 M,

sup \A\ —> 0 as R —> oo,
M\BR(q)

where BR(q) is a geodesic ball of radius R centered at q e M.

THEOREM 4. Let M" be a complete noncompact minimal submanifold in Sn+P and
suppose that JM \A\2n~2 dM < oo. Then for any point q e M,

sup \A\ ->• 0 as R ->• oo,
M\BR(q)

where BR(q) is a geodesic ball of radius R centered at q e M.

PROOF OF THEOREM 3 (the case n > 3). Our key analytical tool is the following
lemma, which will be proved in Appendix via Moser iteration:

LEMMA 3. Let M" be a minimal submanifold such that smooth functions supported
in geodesic balls of radius r < r (r is independent of the center y) satisfy the
generalized Sobolev inequality of Hoffman and Spruck [5]. Then there exist € > 0,
c > 0, t > 0, where t < r, such that for each geodesic ball B,(p) CC M, the
following holds:

' / / |A|"[ < e , then \A\(p) < c \ \A\"\ .
\.JB,(p) J [jBt(p) J

To prove Theorem 3, note that since the Ricci curvatures of M" are greater than or
equal to (n — l)/c, by Bishop's theorem, for all r > 0, x e M,

(1) Vx(r) < K(r),

where VK(r) is the volume of a ball with radius r in the space form with constant
sectional curvatures equal to K.

Now, a theorem of Hoffman and Spruck [5] asserts the existence of a number 9 > 0
depending only on the injectivity radius and the sectional curvature of the ambient
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space (and hence only on K) such that for any x and r > 0 satisfying Vx(r) < 6, a
generalized Sobolev inequality holds for Q° functions compactly supported in Br(x).
Choosing VK(r) < 0 implies then the existence of the radius r with properties required
by Lemma 3.

Choosing geodesic balls of M" with radii r < r, we can apply Lemma 3. Fix
q e M, since fM \A \" dM < oo, there exists R > 0 such that R > R implies

/ \A\ndM<€,
JM\BR(q)

where € is the constant in Lemma 3. Take any B,(p) CC M\BR(q) with t < r; then
Lemma 3 implies \A \(p) < ce. Letting e go to zero completes the proof. •

PROOF OF THEOREM 4 (the case n > 3). Applying Lemma 2 to a complete minimal
submanifoldM" in 5n+'' wehaveRic(X, X) > - ( (« - l)/n)^|A|2(whereX isaunit
tangent vector of M) and hence we conclude that the integral fB \A \2p dM satisfies

/ \A \2p dM > constant x / Rp_dM.
JBy(r) JB,(r)

Next choosing p = n — 1 in Lemma 1, we have

Ay{r) < C,/-"-1 + C2r
z"-4 / I / Rn_~l dM I dtr2""4 f ( I R"_

J0 \JBy(r)

< Qr"-1 + C2r
2"-* [ ' ( [ \A\2n~2dM\ dt,

where C\, C2 denotes constants independent of the choice of the center y as in
Lemma 1. From this and the hypothesis that \A \ is in L2n~2 (M), it follows that

(2) Ay(r) <

Recall that for almost all r > 0,

(3) " d-^r = A^
hence integrating the above inequality (2) gives the estimate

(4) Vy(r) < — r" + - ^ - r2""2

n in — 2

which implies V(r) < Cr" for r < 1, where C := Q/n + Q/(2n - 2). We have
omitted the subscript y since the estimate is independent of the choice of the center y.
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The last inequality and the monotonicity of the volume of geodesic balls together
imply that smooth functions supported in subsets of geodesic balls Br(y) satisfy the
hypothesis for the Sobolev inequality, provided r < r0 for some ro > 0. Having
established this fact, the rest of the proof is completely analogous to that of Theorem 3
except that for the initial step of Moser iteration one starts with the assumption (see
for example (17) in Appendix) fM \A\2n~~2 dM < oo instead of fM \A\"dM < oo.
However, from the fact that fM \A \2"~2 dM < oo and V(r) < Crn, one can conclude

L(5) / \A\"dM -> 0 as R - • oo
>M\BK(q)

(where q is an arbitrary but fixed point in M), which is all that is needed to move
terms involving higher Lp norms in inequality (17) of Appendix and other related
inequalities to the relevant side in the Moser iteration. The fact (5) follows from our
assumption because for r < 1, we have V(r) < Cr" < C, hence

/ \A\"dM<(
n/iZn-2)

As a conclusion, for Br sitting outside large compact set BR(q), one has

\A\2n'2dM -> 0,I,
which implies fB \A \" dM —>• 0. Having established this, the rest follows the proof
of Theorem 3. •

4. The case n = 2

Decay estimate under || A || 2 bound. In the case when the dimension of the minimal
submanifold is two, Theorem 3 covers Theorem 4. It therefore suffices to prove
Theorem 4. To this end, we need the following stability result for minimal surfaces

PROPOSITION \. If M1 -> S2+p is a minimal surface satisfying the condition
fM \A\2dM < oo, then it is stable over small balls sitting outside some large com-
pact set BT(p0) (po is some arbitrary but fixed point on the surface) for which
f \A\2dM is sufficiently small. (More precisely, there exist T,r>0 depend-

ing only on fM \A\2 dM and M but not on the choice of the center of the geodesic balls
Br(p) such that for all r, ifO < r < r and Br(p) CC M\BT(p0), then Br/2(p) is a
stable minimal surface.)
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PROOF. Without loss of generality we assume that the sectional curvatures K of
Sn+P satisfy K = 1. By the isoperimetric inequality of Li and Yau (see inequality
(4) in Section 3), we have quadratic growth for geodesic balls, that is, Vp (r) < Cr2

(where C depends on fM | A |2 dM and is independent of the choice of the point p.)
We follow Oliveira [8] (the first inequality on page 14 of his paper) and apply the

L1 Sobolev inequality (that is, (3.3) of Oliveira [8]) to certain class of test functions £
(to be specified later) satisfying the condition supp£ CC Br(p), where r < r with r
defined as in the proof of Theorem 4 to get

II£|A|2||2 < 2C,

Combining with the Cauchy-Schwarz inequality on the right-hand-side, this be-
comes

where x = characteristic function of supp £.
On the other hand, Simons' inequality multiplied by £2|A|9 (where q = 1) and

integrated, yields (see [8, (3.14)]),

(6) 0 (

Combining the above inequalities, we have

By taking Br(p) c M\BT(p0) for some large number T, we obtain HxlA|||2,fl,(/,) <
l/(4CiC2) which implies

(7) \\^\A\\\2,Br(J))<Q\\\A\\V^\\\2,Br
ip)

(see [8, (3.18)]).
To prove stability, choose a non-negative function £ such that

j l , € *
[0 x e M\Br(p)

with |V^| < 8/r and consider arbitrary <p € Q°(Sr/2(p)). By the V Sobolev

https://doi.org/10.1017/S1446788700008867 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008867


158 Leung-Fu Cheung and Pui-Fai Leung [8]

inequality,

\\\A\<P$\\2,Br<p) < C,\\V(\A\\<p\$)\U,Br(p) (where Cs is the Sobolev constant)

$\A\\V<p\)<CS([ /
,(p) JBr(jj)

\<p\$\V\A\\+ [ \<p\\A\\Vi-\+ f
Br(p) JB,(p) JBr(p)

< C,[M\V\A\\\\2.Br(p)\\<PhB,(p)

Using the fact that ^ s Ion Bir/4(p),

(8)

Now we study the terms on the right-hand side of this inequality. First we observe
that

1- \\\Am\2.Br(p)\\W<ph,Br(p) < (l/(6Q))||V^||2,BrW, if we choose

\\Ah,Br(p) < 1/(6C5).

2. From (7), ||?|V|A||||2.Br(p) < C3\\\A\V$h.B,(p) < 1/(6C5) by choosing

3. II|A|V|||2 < ||A 112,^,8/r < 1 /(6C.) by choosing \\Ah,Bt(p) < r/(48C,).

Putting all these inequalities back into (8), we have

(9) \\\A\<p\\2,Br/l(p) < {2\\<ph,Br(p)

Next, apply the isoperimetric inequality of Li and Yau to functions

<p 6 CS°(Br/2(p)) (with r < f)

together with the Sobolev inequality of Hoffman and Spruck and get the following
estimate on

(10) \Wh.Brllip)<CsVJ<p\\UBtll(p)<C,S
JBr/li

<Cv||V^||2,Br/2(,)Vp(r/2)1/2

< CA\V(p\\2,BrnAp)C
xl2r/2 =
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This estimate, when applied to (9), yields

< a/6){2C6r\\V<p\\2,Br/2(p)

Finally, choosing r < 1/(4C6), we obtain

(ID \\\A\<ph,Br/2(j>) <

=

which implies

(12) / |A|VdM <\ I \V<p\2dM\
y JBr/2

this completes one half of the stability inequality. The other half follows by applying
(10) again to <p:

\\<Ph < C6r\\V(p\\2 <

this upon squaring gives

(13) I 2<p2 < f \

Adding (12) to (13) gives the stability inequality in the ball Br/2.
Having obtained the stability of the surface restricted to balls of radius r/2 sitting

inside M\BT(pa), we can follow Oliveira [8] to use Schoen's result [10, Theorem 3]
and obtain the existence of constants C7 and ^ not depending on p with the following
property:

(14) 0 < fj, < 1/2 and sup|A|<C7.

Furthermore, the Li-Yau isoperimetric inequality provides a bound on the volume of
balls B^r(p), that is,

(15) Vp(nr) < Cn2r2 < Q

because fj,r < 1 by definition.
Inequalities (14) and (15) enable us to follow Oliveira (see also Appendix) to

obtain the decay in the dimension 2 case. This finishes the proof of Theorem 4 in the
dimension 2 case (see Oliveira [8, pages 15-16]). •
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5. Proof of the two main theorems

Theorem 3 and Theorem 4 when combined with the following lemma will give our
main result.

LEMMA 4. If M" is a complete Riemannian manifold with

Ric(X, X) > (n — 1)K > 0 (where X is any unit tangent vector)

outside some compact subset G of M", then M" is compact.

PROOF. Let BT(p) be a geodesic ball with radius T centered at a point p in the
interior of G and containing G. By definition, the boundary of this ball is a connected
set. Take p e the closure of BT(p), then we have d(p, p) < T. If p e M\BT(p),
then the completeness of M guarantees the existence of an arc-length parametrized
geodesic y joining p to q e dBT(p) realizing the distance d{p, dBT(p)). This
geodesic lies outside BT{p) from the definition of BT(p). But the proof of Myer's
Theorem implies L(y) < n/-Jic 4- T, since Ric(y', y') > (n — \)K outside G. Hence
by the triangle inequality, we have d(p, p) < d(p, q) + d(q, p) < n/y/ic. It follows
that diam(M) < ITZ/^/K + IT. •

Now the two main theorems (Theorems 1 and 2) can be proved by contradiction.
Suppose M is non-compact, fix a point p0 e M" and denote the geodesic distance
from this point by R. By Theorems 3 and 4, | A | ->• 0 as R -> oo, which implies that
outside a big compact subset G of M", \A \2 < nK/2. Hence by Lemma 2 the Ricci
curvatures of M" is bounded away from zero outside a big compact subset of Mn. A
contradiction by Lemma 4.

6. Appendix (proof of Lemma 3)

The proof of Lemma 3 follows the standard Moser iteration procedure. However,
care has to be taken to guarantee that the volumes of the geodesic balls can be bounded
uniformly from above by Cr".

PROOF (n > 3). In the sequel, we shall occasionally denote \A \ by u.
Choose a geodesic ball with radius r and centered at p, by the hypothesis of

Lemma 3 all functions on M" supported in Br(p) with r < r (p is arbitrary here!)
satisfy the generalized Sobolev inequality of Hoffman and Spruck.

Restricting to functions in C™(Br(p)), we can apply the standard Moser iteration
argument to the Simons' inequality to obtain a decay estimate of, |A|(p) (see for
example [8]). We shall now give the details.
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Lets > 2and£ 6 Q°(Br(p)),xdenotethecharacteristicfunctionofsupp^. Using
the Holder inequality, we can estimate fM £21A \2u2q dM and obtain (for simplicity dM
will be omitted in the sequel)

2/ ( r

y/U-2)f S2\A\2u*<\[(X\A\Y2\ ' { / V ^
JM [JM ) [JM

On the other hand, Simons' inequality yields the following inequality after multipli-
cation through by M29"1^2 and estimating in a standard way (see [8]):

Applying the Sobolev inequality of Hoffman and Spruck [5], that is,

11/ \\nm/(n-m) < Csm^~^\\^f IL , V/ G C?(Br(p)), Vm < n,

with m — 2 and $uq replacing/ gives

(16) llf«'ll2»/»-2<C,||V(fM*)||2 (where C, = C,2 (" ~
\
(where C, C, 0

with C = Cs C8 which depends on n.
Now take s = n and q = n/2. Then the above inequality reads

(17)

where C, =
Next, we try to absorb the last term of this expression to the other side of the

inequality by requiring (this choice determines the e to be fixed later)

(\A\ndM)l/n < J

Hence we obtain

/2 /2 < C, SUp |V£| / \A\n

Br(p) \JB,(J>)
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where C* = 2C\y/n. Choose £ such that f = 1 on B^^ip) and £ = 0 outside Br(p),
< 8/r. Then we have

8C f /" 1 '̂ 2 f /" 1 ' ^
(18) |||Ar/2||2n/(n_2),B,/4(p) < — / |A|" < 8 c J / |A|" ,

where ct = CJr = (2Q/r)^/n. Choose c > 0 such that e < (l/Sct)
2/n and

e < \/{2C\y/n), hence if/fl |A|" < e", then the following inequalities hold:

8c. ( /" |A|"1 < 1 and (f )
l J

With this choice of e, inequality (18) gives for all £ e C™(B3r/4(p)), x : = supp£,

I («-2)/2n

II,
Because of this inequality and since for s = n2/n — 2,

II" l l i72,S 3 r / 4 (p) — II" l l 2 « / ( n - 2 ) , B 3 r / 4 ( p ) '

inequality (16) and s = n2/(n - 2) gives

(19) ||£««||2,/(fl-2) < CV9{||««|V|| | |2 + ||f M'||2,/(,-2)}, V£ £

The next step is an interpolation argument. Recall the interpolation inequality for
V -spaces:

(20) ||£K'7||2.V/.V-2 5 <$II£M'7II2,I/,1-2 + <5~'T||£M'7||2, V5 > 0 and 5 > n.

Put s — n2/n -2,a— n/n - 2 in (20) and choose S such that C&Jq = 1/4, where
C is the constant in (19). Then

S =

From (19) and (20), we have for every £ e C^(B3r

Uu"\\2

where c : = (4C)1+'T/3.
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To proceed further, let £, e C~(f i , ) , where 5 , : = 5(i/4+i/2<+i)r(/>), £/ = 1 on

Bi+l, £, = 0 on M\Bh Xi '•= characteristic function of supp£, and such that |V£,-| <

2 • 2 1 + 2 / r , then the previous inequality gives

(21) ||$,«'||2a <

{ 2i+1 1

— 11X^112 +1a/2\\XiWh\
q°l2

as we can assume without loss of generality that r < 1. Since supp£, c [x e M :

^,_I(A:) = 1}, (21) implies

squaring this implies

where c' = ( 2 7 / r ) 2 and c' depends only on r and n.

Next, let 2g = no1. Then

c'q (2i+2 + q°/lY = -^- {2'+2 +

_ dna1 . ,+2

2

where cj, depends only on n and r.
To conclude our iteration process, we have

\ A r M ) < c ' f \A\"°\

l/a'+i i r ] I/a'
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Denoting the left-hand side of the last inequality by Ii+\ and the right-hand side by /,,
we get

h+\ — c« A — c
t " U-\ 5: c't" " Io

which when passing to the limit, yields / ^ < c,,/0, concluding the proof of Lemma 3.

•
We conclude by a remark for the iteration when n = 2.

REMARK 2 (the case n = 2). In this case, one performs precisely the same iteration,

but using the L'-Sobolev inequality, that is, | | / ||n/(n_i) < Cj|| V / ||] instead of the L2-

Sobolev inequality, that is, \\f ||2n/(n-2) 5 C I | V / ||2 with some simple modifications.

This leads to iteration inequality of the form

J

with s > 2. This last condition on s requires for the initial step a higher norm bound
on |A | over small balls than the L2 norm, which is provided by the stability result of
Schoen [10].
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