ALTERNATIVE DERIVATION OF SOME REGULAR CONTINUED FRACTIONS

R. F. C. WALTERS
(Received 21 July 1966, revised 20 February 1967)

1

In this paper we find an expression for e^{x} as the limit of quotients associated with a sequence of matrices, and thence, by using the matrix approach to continued fractions ([5] 12-13, [2] and [4]), we derive the regular continued fraction expansions of $e^{2 / k}$ and $\tan l / k$ (where k is a positive integer).

If the real number α has the regular continued fraction expansion

$$
\alpha=a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \cdots
$$

(which in this paper we shall write as

$$
\left.\alpha=\left[a_{0}, a_{1}, a_{2}, \cdots\right]\right)
$$

then it is easy to see that the convergents p_{n} / q_{n} to α are given by

$$
\left(\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right)=\left(\begin{array}{ll}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{ll}
a_{n} & 1 \\
1 & 0
\end{array}\right) .
$$

Thus α may be expressed as a limit of quotients, namely p_{n} / q_{n}, associated with the sequence of matrices $\left\{\left(\begin{array}{ll}a_{n} & 1 \\ 1 & 0\end{array}\right)\right\}$.

2
We now introduce some notation. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a matrix, for definiteness over the field of complex numbers, we define

$$
K_{1}(A)=\frac{a}{c}, \text { if } c \neq 0 ; \quad K_{2}(A)=\frac{b}{d}, \text { if } d \neq 0
$$

If $\left\{A_{n}\right\}$ is a sequence of such matrices, and

$$
K_{s}\left(A_{1} \cdots A_{n}\right) \rightarrow \alpha_{s}
$$

$$
(s=1,2)
$$

as $n \rightarrow \infty$, we say that $K_{s}\left(A_{1} \cdots A_{n}\right)$ converges to α_{s} and we write

$$
K_{s}\left(A_{1} A_{2} \cdots\right)=\alpha_{s}
$$

If $\alpha_{1}=\alpha_{2}=\alpha$, we write simply

$$
K\left(A_{1} A_{2} \cdots\right)=\alpha
$$

With this notation,

$$
\left[a_{0}, a_{1}, a_{2}, \cdots\right]=K\left\{\left(\begin{array}{ll}
a_{0} & 1 \tag{2.1}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a_{2} & 1 \\
1 & 0
\end{array}\right) \cdots\right\} .
$$

Thus, if $a_{0}, a_{1}, a_{2}, \cdots$ is a sequence of integers, all positive except (perhaps) a_{0}, then the right-hand side of (2.1) represents a unique real number α and the regular continued fraction expansion of this number is

$$
\alpha=\left[a_{0}, a_{1}, a_{2}, \cdots\right] .
$$

We note here some simple properties of the functions K_{1}, K_{2}. Lemmas 1 to 3 are stated in terms of K_{1}, but apply equally to K_{2}.

Lemma 1. If $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $K_{1}\left(A_{1} A_{2} \cdots\right)=\alpha$, where $c \alpha+d \neq 0$, then

$$
K_{1}\left(B A_{1} A_{2} \cdots\right)=\frac{a \alpha+b}{c \alpha+d} .
$$

Lemma 2. If $K_{1}\left(A_{1} A_{2} \cdots\right)=\alpha$, and $\left\{k_{n}\right\}$ is a sequence of non-zero complex numbers, then

$$
K_{1}\left\{\left(k_{1} A_{1}\right)\left(k_{2} A_{2}\right) \cdots\right\}=\alpha
$$

Lemma 3. Suppose $K_{1}\left(A_{1} A_{2} \cdots\right)$ exists. If $\left\{B_{1} B_{2} \cdots B_{n}\right\}$ is a subsequence of $\left\{A_{1} A_{2} \cdots A_{n}\right\}$, then

$$
K_{1}\left(A_{1} A_{2} \cdots\right)=K_{1}\left(B_{1} B_{2} \cdots\right)
$$

in particular

$$
K_{1}\left(A_{1} A_{2} \cdots\right)=K_{1}\left\{\left(A_{1} A_{2} A_{3}\right)\left(A_{4} A_{5} A_{6}\right) \cdots\left(A_{3 n-2} A_{3 n-1} A_{3 n}\right) \cdots\right\}
$$

$$
\text { Lemma 4. If } A_{1} \cdots A_{n}=\left(\begin{array}{ll}
p_{n} & r_{n} \\
q_{n} & s_{n}
\end{array}\right)=P_{n} \text {, then }
$$

$$
\left|K_{1}\left(P_{n}\right)-K_{2}\left(P_{n}\right)\right|=\frac{1}{\left|q_{n} s_{n}\right|} \prod_{r=1}^{n}\left|\operatorname{det} A_{r}\right|
$$

The proofs of Lemmas 1 to 4 are trivial and are left to the reader.
Lemma 5. Let B, A_{1}, A_{2}, \cdots be matrices over the ring of Gaussian integers, with $\left|\operatorname{det} A_{r}\right|=1(r=1,2, \cdots)$ and $K\left(A_{1} A_{2} \cdots\right)=\alpha$. Then, if
and if

$$
B \neq\left(\begin{array}{ll}
0 & b \\
0 & d
\end{array}\right), K_{1}\left(A_{1} \cdots A_{n} B\right) \rightarrow \alpha \text { as } n \rightarrow \infty ;
$$

$$
B \neq\left(\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right), K_{2}\left(A_{1} \cdots A_{n} B\right) \rightarrow \alpha
$$

If B has a non-zero element in each column, $K\left(A_{1} \cdots A_{n} B\right) \rightarrow \alpha$.

Proof. It suffices to prove the first conclusion of the lemma; the proof of the second is similar, and the final result follows immediately. We write

$$
\begin{aligned}
& A_{1} A_{2} \cdots A_{n}=\left(\begin{array}{ll}
p_{n} & r_{n} \\
q_{n} & s_{n}
\end{array}\right), \quad B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \\
& \alpha_{n}=\frac{a p_{n}+c \gamma_{n}}{a q_{n}+c s_{n}}=K_{1}\left(A_{1} \cdots A_{n} B\right) .
\end{aligned}
$$

If a or c is zero, the result is trivial, so we suppose that neither is zero.
Since $K\left(A_{1} A_{2} \cdots\right)$ exists, Lemma 4 shows that $\left|q_{n} s_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Also $\left(q_{n}, s_{n}\right)=1$, because

$$
\left|p_{n} s_{n}-q_{n} r_{n}\right|=\left|\operatorname{det}\left(A_{1} A_{2} \cdots A_{n}\right)\right|=1
$$

Hence $\left|a q_{n}+c s_{n}\right| \geqq \mathbf{1}$ for all large n, since $a q_{n}+c s_{n}$ is a Gaussian integer and $a q_{n}+c s_{n}=0$ implies $q_{n} s_{n}$ divides $a c$, which is impossible for sufficiently large n. Thus

$$
\left|\alpha_{n}-\frac{p_{n}}{q_{n}}\right|\left|\alpha_{n}-\frac{r_{n}}{s_{n}}\right|=\frac{|a c|}{\left|q_{n} s_{n}\right|\left|a q_{n}+c s_{n}\right|^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$. Since p_{n} / q_{n} and r_{n} / s_{n} both tend to α as $n \rightarrow \infty$, it now follows that $\alpha_{n} \rightarrow \alpha$.

The next result is of fundamental importance.
Lemma 6. Let B, A_{1}, A_{2}, \cdots be non-singular matrices over the ring of Gaussian integers, with

$$
\left|\operatorname{det} A_{r}\right|=1(r=1,2, \cdots) \text { and } B C_{r} B^{-1}=A_{r}(r=1,2, \cdots) \text {. }
$$

Then $K\left(A_{1} A_{2} \cdots\right)=\alpha$ implies $K\left(B C_{1} C_{2} \cdots\right)=\alpha$.
Proof. From Lemma 5, $K\left(A_{1} \cdots A_{n} B\right) \rightarrow \alpha$ as $n \rightarrow \infty$. Noting that $B C_{1} \cdots C_{n}=A_{1} \cdots A_{n} B$ we have $K\left(B C_{1} \cdots C_{n}\right) \rightarrow \alpha$ as $n \rightarrow \infty$, the result.

It is of particular interest to evaluate $K\left(A_{1} A_{2} \cdots\right)$ in the case where A_{r} has rational integral elements with $\left|\operatorname{det} A_{r}\right|=1$, since it will then frequently be possible to transform the product into one of the form exhibited in (2.1), so yielding a regular continued fraction. A useful result in this connection is

Lemma 7. If a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has integral elements with $c>d>0$ and determinant ± 1, then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{ll}
a_{n} & 1 \\
1 & 0
\end{array}\right),
$$

where a_{0} is an integer and a_{1}, \cdots, a_{n} are positive integers.

Proof. If $d>1$, we write

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
b & a-x b \\
d & c-x d
\end{array}\right)\left(\begin{array}{ll}
x & 1 \\
1 & 0
\end{array}\right)
$$

where $x=[c / d] \geqq 1$. Noting that c / d is not an integer, since d / c would imply $d \mid 1$, we have $d>c-x d>0$. Repetition of this process must lead ultimately to the case $d=1$.

If $d=1$, then $c>1$ and $a-b c= \pm 1$, and we have

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & 1
\end{array}\right) & =\left(\begin{array}{ll}
b & a-b c \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
c & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
a-(c-1) b & b c-a \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
c-1 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

and one of these products is of the required form.

3

We now obtain an expression for e^{x} in the form $K\left(A_{1} A_{2} A_{3} \cdots\right)$.
Theorem 1.

$$
e^{x}=K\left\{\prod_{m=0}^{\infty}\left(\begin{array}{ll}
(2 m+1)+x & (2 m+1) \tag{3.1}\\
(2 m+1) & (2 m+1)-x
\end{array}\right)\right\}
$$

for all (complex) x.
Proof. We first show that

$$
\prod_{m=1}^{n}\left(\begin{array}{ll}
(2 m-1)+x & (2 m-1) \tag{3.2}\\
(2 m-1) & (2 m-1)-x
\end{array}\right)=\left(\begin{array}{ll}
f_{n}(x) & g_{n}(x) \\
h_{n}(x) & k_{n}(x)
\end{array}\right)
$$

where

$$
\begin{equation*}
h_{n}(x)=g_{n}(-x), \quad k_{n}(x)=f_{n}(-x) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{aligned}
& f_{n}(x)=\sum_{k=0}^{n} n c_{n, k} x^{k} \\
& g_{n}(x)=\sum_{k=0}^{n}(n-k) c_{n, k} x^{k},
\end{aligned}
$$

with

$$
c_{n, k}=\frac{(2 n-k-1)!}{(n-k)!k!}
$$

The relations (3.3) follow immediately from the observation that the lefthand side of (3.2) is unchanged on interchanging rows and then columns of each of the matrices and replacing x by $-x$.

We now proceed by induction on n. The result is clearly true for $n=1$, and we assume it true for some $n \geqq 1$. To prove it true for $n+1$ it suffices, in view of (3.3), to show that

$$
\begin{align*}
& (2 n+1)\left\{f_{n}(x)+g_{n}(x)\right\}+x f_{n}(x)=f_{n+1}(x) \tag{3.4}\\
& (2 n+1)\left\{f_{n}(x)+g_{n}(x)\right\}-x g_{n}(x)=g_{n+1}(x)
\end{align*}
$$

and it is easily verified that these relations hold.
To establish (3.1), then, we must prove that $f_{n}(x) / g_{n}(-x) \rightarrow e^{x}$ as $n \rightarrow \infty$. This follows from the results

$$
\frac{f_{n}(x)}{n(n+1) \cdots(2 n-1)} \rightarrow e^{\frac{1}{2} x}, \quad \frac{g_{n}(x)}{n(n+1) \cdots(2 n-1)} \rightarrow e^{\frac{1}{2} x} .
$$

We prove the first of these. Using the expression for $f_{n}(x)$, we have for all complex x

$$
\begin{aligned}
\frac{f_{n}(x)}{n(n+1) \cdots(2 n-1)} & =1+\sum_{k=1}^{n} \frac{n(n-1) \cdots(n-k+1)}{(2 n-1)(2 n-2) \cdots(2 n-k)} \frac{x^{k}}{k!} \\
& =1+\sum_{k=1}^{n} \frac{\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)}{\left(1-\frac{1}{2 n}\right)\left(1-\frac{2}{2 n}\right) \cdots\left(1-\frac{k}{2 n}\right)} \frac{\left(\frac{1}{2} x\right)^{k}}{k!} \\
& =1+\sum_{k=1}^{n} a_{n, k} \frac{\left(\frac{1}{2} x\right)^{k}}{k!}, \text { say. }
\end{aligned}
$$

Clearly $a_{n, k} \rightarrow 1$ as $n \rightarrow \infty$ for fixed k, and also

$$
a_{n, k}<\frac{1}{\left(1-\frac{k}{2 n}\right)^{k}} \leqq \frac{1}{\left(1-\frac{1}{2}\right)^{k}}=2^{k}
$$

so the first result stated follows from Tannery's theorem [1]. The second follows from the first and the relation (3.4) (if we divide by $(n+1)(n+2) \cdots(2 n+1)$ and let $n \rightarrow \infty)$.

We now deduce some regular continued fractions from the relation (3.1). We collect them together in

TheOrem 2. The following are regular continued fraction expansions for the functions specified, where k denotes an integer subject to the restrictions stated.
(i) $e^{1 / k}=[\overline{1,(2 n+1) k-1,1}]_{n=0}^{\infty}$ $(k>1) ;$ $e=[2, \overline{1,2 n, 1}]_{n=1}^{\infty}$.
(ii) $e^{2 / k}=\left[\overline{1, \frac{1}{2}\{(6 n+1) k-1\}, 6(2 n+1) k, \frac{1}{2}\{(6 n+5) k-1\}, 1}\right]_{n=0}^{\infty}($ odd $k>1)$; $e^{2}=[7,3 n+2,1,1,3 n+3,6(2 n+3)]_{n=0}^{\infty}$.
(iii) $\tan \frac{1}{k}=[0, k-1, \overline{1,(2 n+1) k-2}]_{n=1}^{\infty}$ $(k>1) ;$
$\tan 1=[\overline{1,2 n-1}]_{n=1}^{\infty}$.
(The beginning of the expansion of e^{2} illustrates the meaning of the notation we have used:

$$
\left.e^{2}=[7,2,1,1,3,18,5,1,1,6,30,8,1,1, \cdots]\right)
$$

Proof of Theorem 2. (i) If we put $x=1 / k$ in (3.1), with integral $k>0$ and use Lemma 2, we obtain

$$
e^{1 / k}=K\left\{\prod_{n=0}^{\infty}\left(\begin{array}{ll}
(2 n+1) k+1 & (2 n+1) k \\
(2 n+1) k & (2 n+1) k-1
\end{array}\right)\right\}
$$

Using the result

$$
\left(\begin{array}{ll}
a+1 & a \tag{4.1}\\
a & a-1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a-1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

with $a=(2 n+1) k$, we find

$$
e^{1 / k}=\left[\widehat{1,(2 n+1) k-1,1}_{1}^{\infty}\right]_{n=0}^{\infty}
$$

which is a regular continued fraction if $k>1$.
If $k=1$, on using (4.1) with $a=2 n+1$ and $n>0$, we obtain

$$
e=[2, \overline{1,2 n, 1}]_{n=1}^{\infty}
$$

(ii) Similarly

$$
e^{2 / k}=K \begin{cases}\left.\prod_{\nu=0}^{\infty}\left(\begin{array}{ll}
(2 v+1) k+2 & (2 v+1) k \\
(2 v+1) k & (2 v+1) k-2
\end{array}\right)\right\} . \text {. } \quad\left(\begin{array}{l}
(2 v a n
\end{array}\right) .\end{cases}
$$

We may transform the product of three successive factors in this expression, given by $v=3 n, 3 n+1,3 n+2$, into a form which is appropriate when k is an odd integer. We observe that

$$
\begin{aligned}
\left(\begin{array}{ll}
a+2 & a \\
a & a-2
\end{array}\right) & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{2}(a-1) & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
2 & 2 \\
1 & -1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 2 \\
1 & -2
\end{array}\right)\left(\begin{array}{ll}
2 a & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
2 & -2
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 & 1 \\
2 & -1
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{2}(a-1) & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

and apply these factorizations in this order to the three matrices specified, noting that

$$
\left(\begin{array}{rr}
2 & 2 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
1 & 2 \\
1 & -2
\end{array}\right)=\left(\begin{array}{rr}
1 & 1 \\
2 & -2
\end{array}\right)\left(\begin{array}{rr}
2 & 1 \\
2 & -1
\end{array}\right)=4\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

This yields
$\prod_{r=1}^{3}\left(\begin{array}{ll}(6 n+2 r-1) k+2 & (6 n+2 r-1) k \\ (6 n+2 r-1) k & (6 n+2 r-1) k-2\end{array}\right)$
$=8\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}\frac{1}{2}\{(6 n+1) k-1\} & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}6(2 n+1) k & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}\frac{1}{2}\{(6 n+5) k-1\} & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$,
and hence the results stated. (For other methods of establishing this result, and the one for $e^{1 / k}$ see [5], 123-125, or [3].)
(iii) Since

$$
\cot \frac{1}{k}-1=\frac{(i-1) e^{2 i / k}+(i+1)}{e^{2 i / k}-1}
$$

application of Lemma 1 to (3.1) with $x=2 i / k$ gives

$$
\cot \frac{1}{k}-1=K\left\{\left(\begin{array}{ll}
i-1 & i+1 \\
1 & -1
\end{array}\right) \prod_{n=0}^{\infty}\left(\begin{array}{ll}
(2 n+1) k+2 i & (2 n+1) k \\
(2 n+1) k & (2 n+1) k-2 i
\end{array}\right)\right\}
$$

Since

$$
\left(\begin{array}{ll}
i-1 & i+1 \\
1 & -1
\end{array}\right) \cdot \frac{1}{2}\left(\begin{array}{ll}
a+2 i & a \\
a & a-2 i
\end{array}\right)=\left(\begin{array}{ll}
a-1 & a-2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
i-1 & i+1 \\
1 & -1
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
a-1 & a-2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
a-2 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Lemma 6 leads to the result

$$
\cot \frac{1}{k}-1=[\overline{(2 n+1) k-2,1}]_{n=0}^{\infty} .
$$

It follows that

$$
\cot \frac{1}{k}=[k-1, \overline{1,(2 n+1) k-2}]_{n=1}^{\infty},
$$

and so

$$
\tan \frac{1}{k}=[0, k-1, \overline{1,(2 n+1) k-2}]_{n=1}^{\infty}
$$

these are regular continued fractions for integers $k>0$ and $k>1$, respectively.

Finally,

$$
\tan \mathrm{I}=[\overline{1,2 n-1}]_{n=1}^{\infty}
$$

Notice that these expansions for $\tan 1 / k$ can be derived from Lambert's semiregular continued fraction expansion for $\tan 1 / k$ ([5], 148-149 and [6]).

I should like to thank Professor C. S. Davis and Mr. K. R. Matthews for help in the preparation of this paper.

References

[1] T. J. I. Bromwich, An introduction to the theory of infinite series (London, Macmillan, 2nd ed. rev., 1926 reprinted 1955), 136.
[2] A. Châtelet, 'Contribution à la théorie des fractions continues arithmétiques', Bull. Soc. Math. France 40 (1912), 1-25.
[3] C. S. Davis, 'On some simple continued fractions connected with e', J. London Math. Soc. 20 (1945), 194-198.
[4] K. Kolden, 'Continued fractions and linear substitutions', Arch. Math. Naturvid. 50 (1949), 141-196.
[5] O. Perron, Die Lehre von den Kettenbrüchen, Bd. 1. Elementave Kettenbrüche (Stuttgart, Teubner, 3rd ed., 1954).
[6] O. Perron, Die Lehre von den Kettenbrüchen, Bd. 2. Analytisch-funktionentheovetische Kettenbrüche (Stuttgart, Teubner, 3rd ed., 1957), 157.

Department of Mathematics
Universiy of Queensland
Brisbane

