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We obtain an optimal actuation waveform for fast synchronization of periodic airfoil
wakes through the phase reduction approach. Using the phase reduction approach for
periodic wake flows, the spatial sensitivity fields with respect to the phase of the vortex
shedding are obtained. The phase sensitivity fields can uncover the synchronization
properties in the presence of periodic actuation. This study seeks a periodic actuation
waveform using phase-based analysis to minimize the time for synchronization to modify
the wake shedding frequency of NACA0012 airfoil wakes. This fast synchronization
waveform is obtained theoretically from the phase sensitivity function by casting an
optimization problem. The obtained optimal actuation waveform becomes increasingly
non-sinusoidal for higher angles of attack. Actuation based on the obtained waveform
achieves rapid synchronization within as low as two vortex shedding cycles irrespective
of the forcing frequency, whereas traditional sinusoidal actuation requires O(10) shedding
cycles. Further, we analyse the influence of actuation frequency on the vortex shedding and
the aerodynamic coefficients using force-element analysis. The present analysis provides
an efficient way to modify the vortex lock-on properties in a transient manner with
applications to fluid–structure interactions and unsteady flow control.

Key words: low-dimensional models, wakes

1. Introduction

Unsteady periodic fluid flows are common in nature and engineering settings, including
vortex shedding over flapping wings, bluff bodies and airfoils. Modifying the vortex
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shedding behaviour of wake flows is of high relevance to developing efficient engineering
systems. However, controlling such flows is challenging owing to their periodically varying
base states (Colonius & Williams 2011). For the time-periodic base state, the timing
of actuation becomes important. For this purpose, it is necessary to characterize the
perturbation dynamics with respect to the time-periodic base state, which can be achieved
using a phase reduction technique (Winfree 1967; Kuramoto 1984). The phase reduction
approach expresses the perturbation dynamics using a single scalar phase variable.
Recently, it has been used for studying periodic flows to reveal the phase sensitivity fields
(Kawamura & Nakao 2013, 2015; Khodkar & Taira 2020; Iima 2021; Loe et al. 2021;
Kawamura, Godavarthi & Taira 2022), synchronization characteristics to external forcing
(Taira & Nakao 2018; Khodkar & Taira 2020; Khodkar, Klamo & Taira 2021; Skene &
Taira 2022) and flow control (Nair et al. 2021; Loe et al. 2023) in a computationally
inexpensive way.

Examining synchronization properties for periodic wakes can offer insights to modify
the vortex shedding behaviour and has several applications in unsteady flow control
and fluid–structure interactions. Control of vortex shedding of wake flows has direct
implications towards modifying the aerodynamic characteristics, reduction of structural
vibration and noise emissions. Synchronization control has been studied in the context
of vortex-induced vibrations for bluff-body wakes (Feng & Wang 2010; Konstantinidis
& Bouris 2016). In addition, actuating a flow by taking advantage of synchronization
can be efficient in enhancing the aerodynamic performance (Pastoor et al. 2008; Joe,
Colonius & MacMynowski 2011; Wang & Tang 2018; Asztalos, Dawson & Williams
2021). Further, hydrodynamic synchronization is shown to result in efficient swimming in
microscale swimmers at lower Reynolds number (Golestanian, Yeomans & Uchida 2011;
Kawamura & Tsubaki 2018). Hence, it is beneficial to analyse the parameters that result in
optimal synchronization in fluid flows. While most synchronization studies for fluid flows
have characterized this asymptotic synchronization process to external sinusoidal actuation
(Taira & Nakao 2018; Herrmann et al. 2020; Khodkar & Taira 2020; Giannenas, Laizet &
Rigas 2022), it is often desirable to modify the vortex shedding as quickly as possible for
flow control to take effect. This study considers the fast synchronization of wakes to an
external forcing signal for wake flows.

The concept of fast synchronization has been studied in biology to promote the
rapid adjustment of the biological clock to jet lag and facilitate treatments for cardiac
arrhythmias (Guevara & Glass 1982; Granada & Herzel 2009). In the context of
biological and simpler oscillatory systems, Zlotnik et al. (2013) and Takata, Kato &
Nakao (2021) applied the phase reduction approach to analytically obtain the optimal
waveform for fast synchronization, maximizing the synchronization speed to external
periodic forcing. In dynamical systems, synchronization is also referred to as entrainment
(Strogatz 1994).

In this study, we apply such a phase reduction approach to perform the phase-based fast
synchronization for NACA0012 airfoil wakes at post-stall angles of attack with leading-
and trailing-edge actuation. The overview of the fast synchronization analysis is shown
in figure 1. We analytically find the optimal actuation waveforms, and the airfoil wake
flows are actuated numerically using the optimal and sinusoidal waveforms at various
forcing frequencies. The respective synchronization speeds are compared to validate the
theoretical results. Further, we investigate the influence of actuation on the flow fields
and the lift coefficients. The paper is organized as follows. The phase-based description
and the framework to obtain the waveform for fast synchronization are presented in § 2.
The current approach is demonstrated with an example of NACA0012 airfoil wakes in § 3.
Conclusions are offered in § 4.
976 R1-2
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Figure 1. Fast synchronization analysis of flow over a NACA0012 airfoil at α = 55◦ and Re = 100.
(a) Periodic actuation using the optimal waveform. (b) Comparison of the synchronized flow field for a forcing
frequencyΩf = 0.9Ωn with the baseline vorticity field ω. (c) Lift coefficient CL(t) when actuated with the fast
synchronization and sinusoidal waveforms.

2. Fast synchronization analysis through the phase reduction approach

To obtain the optimal actuation waveform for fast synchronization for periodic fluid
flows, we use phase reduction analysis (Taira & Nakao 2018; Kawamura et al. 2022).
We identify the phase sensitivity fields that encode the effect of timing of actuation, and
then analytically solve an optimization problem to obtain the synchronization waveform in
terms of the phase sensitivity function.

2.1. Phase reduction approach
We consider incompressible time-periodic fluid flows governed by the Navier–Stokes
equations q̇ = N (q(x, t)), where q is the flow state. These equations are given by

∂q
∂t

= −q · ∇q − ∇p + 1
Re

∇2q,

∇ · q = 0,

⎫⎬
⎭ (2.1)

where Re is the Reynolds number and p is the pressure. For a time-periodic flow q0(x, t),
it satisfies q0(x, t + T) = q0(x, t), where T is the time period of the limit cycle and
Ωn = 2π/T is the natural frequency of the system. Here, we define a phase θ such that

θ̇ = Ωn, θ ∈ [0, 2π). (2.2)

With the definition of θ , we can identify the full state vector of the limit cycle solution
q0(x, θ) at every θ .

Given a stable limit cycle solution, with the frequency of the limit cycle being Ωn,
the phase in the vicinity of the limit cycle can be described using the generalized phase
variable Θ(q(x, t)). Thus, the generalized phase dynamics is described as

Θ̇(q) =
∫
D

∇qΘ(q) · q̇ d x =
∫
D

∇qΘ(q) · N (q) d x = Ωn. (2.3)

Leveraging the phase dynamics, we can derive the phase response to sufficiently small
perturbations,

q̇ = N (q)+ εF (x, t), (2.4)

which provides the corresponding change to phase dynamics as

θ̇ (t) = Θ̇(q) =
∫
D

∇qΘ(q) · q̇ d x =
∫
D

∇qΘ(q) · [N (q(x, t))+ εF (x, t)] d x

≈ Ωn + ε

∫
D

Z(x, θ) · F (x, t) d x. (2.5)
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Here, Z(x, θ) = ∇qΘ(q)|q=q0(x,θ) is the spatial phase sensitivity field as it quantifies
the phase response of the system to any given small perturbation and D is the considered
spatial domain. This spatial phase sensitivity field can be obtained using either a direct
impulse-based method (Taira & Nakao 2018; Khodkar & Taira 2020; Loe et al. 2021; Nair
et al. 2021), or an adjoint-based approach (Kawamura & Nakao 2013, 2015; Kawamura
et al. 2022), or a Jacobian-free approach (Iima 2021). We use the adjoint-based phase
reduction framework to obtain the phase sensitivity fields in the present study, as we can
obtain the high-fidelity Z(x, θ) in all the flow variables by solving a single pair of forward
and adjoint simulations.

2.2. Adjoint-based approach for phase sensitivity fields
We utilize the adjoint-based formulation to find the phase sensitivity fields Z for
time-periodic wakes. Let us consider the dynamics of a small perturbation q′(x, θ, t)
by linearizing the Navier–Stokes equations about the periodic base state q0(x, θ). The
perturbation dynamics is given by q̇′ = L(x, θ)q′, where L(x, θ) is the linearized
Navier–Stokes operator.

To obtain the phase dynamics of the dominant limit cycle oscillation, we consider
Floquet eigenfunction Q and adjoint eigenfunction Q∗ corresponding to the zero
eigenvalue. This Floquet-zero eigenvalue corresponds to the phase degree of freedom
for the stable limit cycle dynamics. Thus phase dynamics is obtained by projecting the
perturbed dynamics in (2.4) on the adjoint eigenfunction as

θ̇ (t) =
∫
D

[Q∗(x, θ) · N (q)+ εQ∗(x, θ) · F (x, t)] d x

≈ Ωn + ε

∫
D

Q∗(x, θ) · F (x, t) d x. (2.6)

We note that the norm of Q∗ is arbitrary and the normalization condition of Q∗ is
appropriately chosen to satisfy

∫
D[Q∗(x, θ) · N (q)] d x = Ωn for all θ .

More details on the properties of Q∗ are given in our earlier work (Kawamura et al.
2022). Here, by comparing (2.6) and (2.5), for perturbations in the form of velocity, we
obtain Z(x, θ) = Q∗(x, θ). Hence, phase sensitivity is the adjoint-zero eigenfunction of
the linearized Navier–Stokes operator. The spatial phase sensitivity fields can be obtained
by solving the dynamics, which in two dimensions is governed by the linearized adjoint
equations of

∂

∂t
Q∗(x,−Ωnt) = −U∗∇u − V∗∇v + q · ∇Q∗ − ∇P∗ + 1

Re
∇2Q∗,

∇ · Q∗ = 0,

⎫⎬
⎭ (2.7)

where Q∗ = (U∗,V∗) and q = (u, v).
Thus, the phase sensitivity fields with respect to perturbations in the velocity field

are obtained by seeking a periodic solution for (2.1) and solving the system of adjoint
equations (2.7). Since, the adjoint equations are analogous to the Navier–Stokes equations,
the same numerical scheme can be used to solve them. An overview of the phase
description for airfoil wakes is shown in figure 2. The phase is defined based on the lift
coefficient CL−ĊL plane, where θ = 0,π correspond to mean CL, θ = π/2 corresponds
to maximum CL and θ = 3π/2 corresponds to minimum CL (Taira & Nakao 2018).
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Figure 2. An overview of the phase reduction approach for flow over a NACA0012 airfoil at α = 45◦ and
Re = 100. (a) Definition of phase based on the lift coefficient, CL−ĊL plane. (b) Instantaneous spatial phase
sensitivity fields Zu and Zv with respect to the perturbations in velocity fields.

2.3. Synchronization analysis to external periodic forcing
Establishing this oscillator dynamics enables us to study the synchronization
characteristics of the system to an external periodic forcing signal with a frequency Ωf
different from the wake shedding frequencyΩn. We introduce a localized periodic forcing
at location x0 at a forcing frequency Ωf . The spatial profile of forcing is given by a Dirac
delta function h(x) = δ(x − x0). Using (2.5), the governing phase dynamics becomes

θ̇ (t) = Ωn + εζ (θ) · f (Ωf t), (2.8)

where F (x, t) = f (Ωf t)h(x) and the local phase sensitivity function is given by
ζ (θ) = ∫

D Z(x, θ)h(x) d x = Z(x0, θ).
To characterize the synchronization of the system to external forcing, we consider the

relative phase φ(t) between the phase of the system θ(t) and that of the forcing signal Ωf t
as φ(t) = θ(t)−Ωf t. The dynamics of the relative phase is provided as

φ̇(t) = Ωn −Ωf + εζ (φ(t)+Ωf t) · f (Ωf t) = 
Ω + εζ (φ(t)+Ωf t) · f (Ωf t), (2.9)

where 
Ω = Ωn −Ωf . The asymptotic behaviour of relative phase dynamics can be
obtained by averaging over a period of forcing (Kuramoto 1984; Ermentrout & Kopell
1991),

φ̇(t) = 
Ω + εΓ (φ), (2.10)

where

Γ (φ) = 1
2π

2π∫

0

ζ (φ + ψ) · f (ψ) dψ (2.11)

is the phase coupling function and
Ω = Ωn −Ωf . Synchronization occurs if the relative
phase becomes a constant, i.e. φ̇ → 0. Hence, the synchronization condition is given as

εmin
φ
Γ (φ) � −
Ω � εmax

φ
Γ (φ). (2.12)

The synchronization condition determines the forcing frequency required to synchronize
the dynamics to the external actuation based on the phase coupling function.

We aim to identify the optimal periodic actuation to synchronize the system to a forcing
frequency as quickly as possible. Hence, the rate of convergence of φ to a fixed point φ∗
should be maximized to satisfy

φ̇∗ = 
Ω + εΓ (φ∗) = 0. (2.13)

Therefore, we can formulate an optimization problem to maximize |φ̇|, which occurs when
−εΓ ′(φ∗) is large. Here −Γ ′(φ∗) is the synchronization speed S. The cost function J is
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therefore formulated as

J ( f ) = −Γ ′(φ∗)− λ( 〈 f · f 〉 − 1)− μ(
Ω + εΓ (φ∗)), (2.14)

where λ and μ are Lagrangian multipliers and 〈 · 〉 = (1/(2π))
∫ 2π

0 ( · ) dθ . The first term
corresponds to maximizing the synchronization speed, the second term constrains the
energy of actuation, and the third term directly follows from (2.13).

Since the synchronization is independent of the initial phase, without loss of generality,
we consider the fixed point, φ∗ = 0. This optimization can be solved analytically using the
calculus of variations (Zlotnik et al. 2013). The optimal waveform for fast synchronization
can then be derived as

f (θ;
Ω/ε) = −ζ ′(θ)
2λ

− (
Ω/ε)ζ (θ)

〈ζ · ζ 〉 , λ = 1
2

√√√√√
〈ζ ′ · ζ ′〉

1 − (
Ω/ε)2

〈ζ · ζ 〉

. (2.15a,b)

Hence, once we compute the local phase sensitivity function ζ (θ), the optimal waveform
for fast synchronization can be analytically found using (2.15a,b) for various Ωf and ε.
The optimal speed of synchronization is characterized by then computing −Γ ′(0) using
the optimal waveform given by (2.15a,b). Even though the current formulation to obtain
the optimal waveform is defined for a single pointwise actuation, this directly extends
to the case with multiple pointwise actuators or spatially distributed actuators following
from (2.5). This is reflected as a change in the inner product 〈 · 〉 in (2.14) and (2.15a,b),
where the inner product would be computed as an integration for the multiple local phase
sensitivities and actuation waveforms. Next, we uncover these optimal waveforms for the
airfoil wakes using the local phase sensitivity functions and assess their performance for
fast synchronization.

3. Phase synchronization analysis of airfoil wakes

3.1. Computational set-up
This study considers the two-dimensional incompressible laminar flow over NACA0012
airfoils at angles of attack, α = 35◦, 45◦ and 55◦ and chord-based Reynolds number of
Re = U∞c/ν = 100, where U∞, c and ν are the free-stream velocity, airfoil chord length
and kinematic viscosity, respectively. The flow dynamics is governed by incompressible
Navier–Stokes equations (2.1) and the obtained flow fields present with periodic vortex
shedding (Kawamura et al. 2022). The actuation in (2.4) is introduced as a localized force
with the form F (x,Ωf t) = f (Ωf t)δ(x − x0), where x0 is a forcing location. The Dirac
delta function is approximated with a three-cell discrete delta function (Roma, Peskin &
Berger 1999).

The periodic flows over the airfoil are computed numerically through the immersed
boundary projection method (Taira & Colonius 2007; Kajishima & Taira 2016). For the
numerical simulation, we consider a computational domain D = (x/c, y/c) ∈ [−16, 16] ×
[−30, 30]. The quarter-chord of the airfoil is placed at the origin. The smallest grid size
is set to 
xmin/c = 0.02, and the time step is chosen to be 
t = 0.005. The present
computational set-up has been validated and is the same as that used in Kawamura
et al. (2022). The same computational set-up is used for adjoint simulations of the phase
sensitivity fields.
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Figure 3. (a–c) Synchronization speed S around a NACA0012 airfoil at α = 35◦, 45◦ and 55◦. The black dots
indicate local maxima. (d–e) Theoretical optimal waveforms for fast synchronization with pointwise forcing at
the leading and trailing edges for α = 35◦, 45◦ and 55◦.

3.2. Synchronization analysis for airfoil wakes
The spatial phase sensitivity fields with respect to the streamwise and transverse velocity
components Zu and Zv for NACA0012 airfoils at α = 35◦, 45◦ and 55◦ are obtained
through the adjoint-based approach described in § 2.2. Using the obtained spatial phase
sensitivity fields, we can compute the optimal waveform for fast synchronization at
each grid point as per equation (2.15a,b), which is then used to obtain the optimal
synchronization speed at each grid point. We investigate the effect of the angle of attack
on the synchronization speed and waveforms of NACA0012 airfoil wakes, as shown in
figure 3. We consider the case when the forcing frequency Ωf = Ωn and 
Ω = 0. It
follows from (2.15a,b) that the optimal actuation waveform at each point is proportional to
the corresponding derivative of the local phase sensitivity function ζ ′(θ).

The spatial distributions of synchronization speed S around the airfoil found using the
optimal waveform for α = 35◦, 45◦ and 55◦ are depicted in figures 3(a)–3(c). As the
angle of attack increases, the overall magnitude of the synchronization speed decreases,
indicating an increased difficulty in synchronization for higher post-stall angles of attack.
With an increase in α, we observe stronger and larger leading- and trailing-edge vortex
structures. To achieve synchronization with external forcing, the vortex formation time
and the length scale have to be modified. This therefore becomes challenging with higher
α, which is reflected in reduced synchronization speed. Further, we also note that the white
region around the airfoil corresponds to a small optimal synchronization speed, indicating
that, irrespective of the actuation energy, these spatial locations are not conducive for
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flow modification. This means that the actuation effort must penetrate the outside of the
boundary layer.

We also observed that, for all α, the local maxima in the synchronization speed are
attained near the leading and trailing edges, suggesting them as optimal actuation locations
for synchronization (indicated as black dots). The leading and trailing edges are the most
sensitive regions since they are specific regions in the flow field with high curvature.
Further, the regions with high synchronization speed become more compact and are
concentrated at the leading and trailing edges with an increase in α due to the earlier flow
separation and the concentration of gradients at the leading and trailing edges at higher α.
Even though we considered three angles of attack, we expect this trend in synchronization
speed and optimal waveform to hold true for much higher angles of attack.

For the NACA0012 airfoil at Re = 100, we observe a steady wake until α ≈ 20◦.
This results in a constant lift coefficient and, hence, an ill-defined phase. Further, as
α → 90◦, we approach a zero mean lift coefficient. However, for 30◦ � α � 90◦, we
observe periodic vortex shedding and we can leverage the optimal waveform analysis.
We expect a similar trend in the optimal waveform and in the synchronization speed
with an increase in the angle of attack. An increase in the angle of attack results in the
formation of stronger leading- and trailing-edge vortices, thereby increasing the difficulty
in synchronization and the reduction in synchronization speed. The asymmetry in the
vortex formation and roll-up between the leading- and trailing-edge vortices also increases
with most α, resulting in a non-sinusoidal optimal waveform. However, for α → 90◦, we
approach a symmetric bluff-body vortex shedding. Hence, overall, the optimal waveform
outperforms the synchronization speed of a sinusoidal waveform at most higher angles
of attack. It is noteworthy that, due to the difficulty in synchronization at higher angles
of attack, we will require a larger actuation effort to synchronize the wake to a different
frequency.

The optimal actuation waveforms in the x and y velocity directions, at the leading
and trailing edges for various α, are shown in figures 3(d)–3(e). As α increases, the
optimal waveform becomes increasingly non-sinusoidal, due to the asymmetry in the
vortex formation and shedding process near the leading and trailing edges at higher angles
of attack. Further, the optimal waveform at the trailing edge at higher angles of attack
suggests a smaller time duration where actuation is significant (for 0 < θ < 3π/4 in
figure 3e), in comparison with the leading-edge optimal waveform. This is in line with
flow physics, as we observe a more compact and stronger vortex roll-up at the trailing
edge when compared to the vortex formation at the leading edge.

We would like to point out that these optimal waveforms are obtained by independently
maximizing the synchronization speed using the respective local phase sensitivity
functions. We can also obtain the optimal waveforms at the leading and trailing edges
by optimizing the synchronization speed using the local phase sensitivity functions
simultaneously. For this present study, both these cases lead to similar results with minimal
modification, where simultaneous optimization results in the same waveforms but with
more actuation energy at the trailing edge than at the leading edge. This difference
should be carefully considered for more complex flow fields when using multiple actuation
locations.

Next, we numerically validate the synchronization analysis by introducing actuation
at the optimal actuation locations near the leading and trailing edges (as shown in
figure 3d–e). Here, we consider the optimal waveform and a sinusoidal waveform
with the same averaged actuation direction at different forcing frequencies. We present
the numerical results at α = 45◦ as a representative case. The numerical results of
synchronization for a forcing frequency within 5 % of the natural frequency are shown
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CL(t) at a forcing frequency Ωf = 1.05Ωn. (b) Synchronization time using sinusoidal and optimal waveforms
at different forcing frequencies. (c) Comparison of instantaneous vorticity fields for forcing frequencies,
Ωf = 0.95Ωn and Ωf = 1.05Ωn with the unperturbed vorticity field.

in figure 4. Here, we choose an actuation amplitude of ε = 0.1 to achieve synchronization
for laminar flows at higher angles of attack.

To assess the synchronization speed, we consider cycle-to-cycle variations of the
CL coefficient and measure the inter-peak phase difference 
θk for each cycle as
shown in figure 4(a). The optimal waveform actuation achieves synchronization in two
shedding cycles, in comparison to O(10) shedding cycles for the sinusoidal waveform (see
figure 4b) for different forcing frequencies. Since the optimal waveform is based on the
phase sensitivity function, it can efficiently identify the ‘when’ and ‘how’ to efficiently
synchronize the system to an external forcing signal, thus achieving fast synchronization.

The effect of actuation frequency on flow physics is examined using the instantaneous
vorticity fields of synchronized and unperturbed in figure 4(c). We observe streamwise
elongation of the leading- and trailing-edge vortices for lower-frequency actuation,
Ωf = 0.95Ωn, when compared with the unperturbed case. On the other hand, we observe
more compact leading- and trailing-edge vortices for higher actuation frequencies, Ωf =
1.05Ωn. Hence, the modification of vortex shedding frequency through optimal waveform
actuation is achieved by modifying the vortex formation length scale near the leading
and trailing edges. Thus, the phase-sensitivity-based optimal waveform deviates from the
sinusoidal waveform to target more actuation energy at the right time to achieve rapid flow
modification.

To further examine the effect of the present actuation over the lift coefficients, let us
monitor the force elements (Chang 1992). Force element theory enables us to identify
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Figure 5. Characterization of CL for the NACA0012 airfoil at α = 45◦ and Re = 100. (a) Variation of CL
when actuated with forcing frequenciesΩf = 1.05Ωn and 0.95Ωn. (b) Instantaneous lift force elements LE are
shown for the actuated and unperturbed cases at max CL (

�
) and min CL (

�
).

the flow structures responsible for lift generation. We compute an auxiliary potential
function φL that satisfies the Laplace equation ∇2φL = 0, with the boundary condition
−n · ∇φL = n · ey on the airfoil surface, where ey is the unit vector in the lift direction.
The lift force is obtained by taking the inner product of ∇φL with the momentum equation
and integrating with D in two dimensions as

FL =
∫

D
ω × u · ∇φL dD + 1

Re

∫

∂D
ω × n · (∇φL + ey) dl, (3.1)

where the first term denotes the surface integral and the second term denotes the line
integral on the airfoil surface. The first integrand herein referred to the lift element LE,
and is used to monitor the effect of vortical structures on the lift force.

The lift coefficient CL for a vortex shedding period for the unperturbed and the actuation
frequencies Ωf = 0.95Ωn and 1.05Ωn are shown in figure 5. The snapshots are shown
corresponding to the unperturbed flow fields (black), and synchronized flow fields at
Ωf = 0.95Ωn (blue) and Ωf = 1.05Ωn (orange/red) at max CL (

�
) and min CL (

�
).

Owing to the actuation, we notice a significant change in CL compared to the unperturbed
case for both frequencies, especially for Ωf = 1.05Ωn. For a 5 % increase in frequency
(Ωf = 1.05Ωn), we observe a 17 % increase in max CL and a 8 % increase in mean CL
compared with the unperturbed case. However, we note that a similar amount of actuation
is introduced to the flow field. It is noteworthy that the swift modification of the shedding
timing is achieved by the lift increases for high-frequency actuation. We further analyse
the wake with the lift elements LE (

�
) for unperturbed (black) and high-frequency

(orange/red) actuation, as shown in figure 5. We observe a strong compact positive LE near
the leading and trailing edges. This suggests that the increased strength and compactness
of the vortex increases the local circulation, and thereby the lift force (Eldredge & Jones
2019).

We now consider the low-frequency actuation (Ωf = 0.95Ωn), where we do not observe
a significant change in mean CL in comparison with the unperturbed case. In contrast
to the high-frequency actuation, the optimal waveform actuation achieves a reduction in
the wake shedding frequency through a reduction in min CL. The lift force elements LE
corresponding to this case (blue,

�
) show a streamwise-elongated positive force element

effectively pushing away the shear layer from the airfoil surface, thereby reducing the
overall lift force. Overall, through the lift element theory, we identified that high-frequency
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actuation using the optimal waveform results in compact vortices at the leading and trailing
edges, and the lower wake shedding frequency is achieved by streamwise elongation of
the vortices at the leading and trailing edges. Through a high-frequency actuation using
the optimal waveform, a transient increase in lift is observed, albeit with a considerable
actuation effort. By demonstrating the effectiveness of optimal waveform analysis for α =
45◦, we show the potential of this method for the analysis of a wide range of periodic fluid
flows and their control in a transient manner.

4. Conclusions

We presented a theoretical framework to find an optimal actuation waveform for
maximizing the synchronization speed for periodic fluid flows. This was demonstrated
for periodic post-stall airfoil wakes using localized forcing. We leveraged the phase
reduction approach to identify the sensitivity with respect to the vortex shedding phases,
thereby identifying the right time and direction of actuation for efficient synchronization.
The optimal actuation waveform for fast synchronization departs from a sinusoidal
waveform for higher angles of attack. We showed that the optimal waveform significantly
outperforms the sinusoidal waveform in terms of synchronization speed.

We further identified that the modification of wake shedding frequency is achieved by
the elongation of vortical structures for low frequency actuation, whereas synchronization
to a higher frequency is achieved by compacting vortical structures near the leading and
trailing edges. The present study based on phase reduction with an optimal waveform
approach holds potential to develop transient flow control strategies that produce a quick
response.
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