DENSE SUBGROUPS OF THE AUTOMORPHISM GROUPS OF FREE ALGEBRAS

ROGER M. BRYANT AND VESSELIN DRENSKY

Abstract

Let F be the free metabelian Lie algebra of finite rank m over a field K of characteristic 0 The automorphism group Aut F is considered with respect to a topology called the formal power sertes topology and it is shown that the group of tame automorphisms (automorphisms induced from the free Lie algebra of rank m) is dense in Aut F for $m \geq 4$ but not dense for $m=2$ and $m=3$ At a more general level, we study the formal power series topology on the semigroup of all endomorphisms of an arbitrary (associative or non-associatıve) relatively free algebra of finite rank m and investigate certain associated modules of the general linear group $\mathrm{GL}_{m}(K)$

Introduction. Let K be a field of characteristic 0 and let L_{m} be the free Lie algebra over K of finite rank m freely generated by x_{1}, \ldots, x_{m}. The general linear group $\mathrm{GL}_{m}(K)$ acts naturally on the m-dimensional subspace of L_{m} spanned by $\left\{x_{1}, \ldots, x_{m}\right\}$ and we can extend this action so that $\mathrm{GL}_{m}(K)$ becomes a group of algebra automorphisms of L_{m}. If $m \geq 2$ and f belongs to the subalgebra of L_{m} generated by $\left\{x_{2}, \ldots, x_{m}\right\}$ then the endomorphism τ_{f} of L_{m} defined by

$$
\tau_{f}\left(x_{1}\right)=x_{1}+f, \quad \tau_{f}\left(x_{l}\right)=x_{l} \quad(l \neq 1)
$$

is clearly an automorphism of L_{m}. By a result of Cohn [8], Aut L_{m} is generated by $\mathrm{GL}_{m}(K)$ and the automorphisms τ_{f}.

The main purpose of this paper is to study the automorphism group of the free metabelian Lie algebra $L_{m} / L_{m}^{\prime \prime}$ where $L_{m}^{\prime \prime}$ is the second derived algebra of L_{m}. Those automorphisms which belong to the image of the canonical homomorphism Aut $L_{m} \rightarrow$ Aut $L_{m} / L_{m}^{\prime \prime}$ are called tame. One of the questions which motivated our work was the question of whether every automorphism of $L_{m} / L_{m}^{\prime \prime}$ is tame.

The analogous question has been answered completely for the free metabelian groups $\Gamma_{m} / \Gamma_{m}^{\prime \prime}$ (where Γ_{m} is the free group of rank m): every automorphism of $\Gamma_{m} / \Gamma_{m}^{\prime \prime}$ is tame when $m \neq 3$ (see [2, 4, 12]) but $\Gamma_{3} / \Gamma_{3}^{\prime \prime}$ has non-tame automorphisms (see [7, 3]).

By Cohn's result, Aut $L_{2}=\mathrm{GL}_{2}(K)$. It follows that $L_{2} / L_{2}^{\prime \prime}$ has non-tame automorphisms: if v is a non-zero element of the derived algebra of $L_{2} / L_{2}^{\prime \prime}$ then the mapping of $L_{2} / L_{2}^{\prime \prime}$ defined by $u \mapsto u+[u, v]$ for all $u \in L_{2} / L_{2}^{\prime \prime}$ is an automorphism which is clearly not induced by an element of $\mathrm{GL}_{2}(K)$ (see also [14, Proposition 4]). To study Aut $L_{m} / L_{m}^{\prime \prime}$ for $m \geq 3$ we make use of a topology on Aut $L_{m} / L_{m}^{\prime \prime}$ called the formal power series topology (see Section 2). We prove in Section 3 that the set of tame automorphisms is
dense in Aut $L_{m} / L_{m}^{\prime \prime}$ for all $m \geq 4$ but is not dense when $m=3$. In particular $L_{3} / L_{3}^{\prime \prime}$ has non-tame automorphisms.

Since the completion of our work we have been informed by Yu. A. Bahturin that he and S. Nabiyev have now proved that $L_{m} / L_{m}^{\prime \prime}$ has non-tame automorphisms for all $m \geq 2$ [6]. This nicely supplements our main result and shows that no exact analogue exists of the group theoretic results.

In order to study Aut $L_{m} / L_{m}^{\prime \prime}$ we develop techniques which apply in a wider setting. We investigate the endomorphisms of arbitrary finitely generated relatively free algebras over K. The relevant background on relatively free algebras is described in Section 1. Our techniques are based on a combination of the methods of Anick [1] and Drensky and Gupta [9]. Anick considered the formal power series topology on the set of endomorphisms of the polynomial algebra $K\left[x_{1}, \ldots, x_{m}\right]$. He proved that the endomorphisms with invertible Jacobian matrix form a closed subset J and that the group of tame automorphisms is dense in J. Drensky and Gupta applied the representation theory of $\mathrm{GL}_{m}(K)$ to investigate the automorphisms of relatively free nilpotent Lie algebras. We shall develop some of these ideas further.

Let \mathcal{U} be any variety of algebras over K, let $F=F_{m}(\mathcal{U})$ be the relatively free algebra of \mathcal{U} of $\operatorname{rank} m$, and let $E=\operatorname{End} F$ be the semigroup of all algebra endomorphisms of F. As in the special case where $F=L_{m}$ we can regard $\mathrm{GL}_{m}(K)$ as a subgroup of Aut F; thus $\mathrm{GL}_{m}(K) \subseteq E$. For $k \geq 2$ and any subsemigroup H of E, let $I_{k} H$ be the set of elements of H which induce the identity map on F / F^{k}. Thus $H \supseteq I_{2} H \supseteq I_{3} H \supseteq \cdots$ and each $I_{k} H$ is a subsemigroup of H. For $\phi, \psi \in E$ write $\phi \equiv_{k+1} \psi$ if ϕ and ψ induce the same endomorphism on F / F^{k+1}. Then it is easily verified that \equiv_{k+1} is a congruence on E. We show in Section 1 that the quotient semigroup $I_{k} E / \equiv_{k+1}$ can be given the structure of a $K \mathrm{GL}_{m}(K)$-module, where the action of $\mathrm{GL}_{m}(K)$ comes from conjugation within E, and we determine the structure of this module. Furthermore, in Section 2 we show that the direct sum

$$
\mathcal{L}(E)=\bigoplus_{k \geq 2} I_{k} E / \equiv_{k+1}
$$

acquires the structure of a graded Lie algebra over K.
If H is any subgroup of Aut F then $I_{k} H / I_{k+1} H$ can be identified with a subgroup of $I_{k} E / \equiv_{k+1}$. Making this identification we show that if H is $\mathrm{GL}_{m}(K)$-invariant then $I_{k} H / I_{k+1} H$ is a $K \mathrm{GL}_{m}(K)$-submodule of $I_{k} E / \equiv_{k+1}$ and

$$
\mathcal{L}(H)=\bigoplus_{k \geq 2} I_{k} H / I_{k+1} H
$$

is a subalgebra of $\mathcal{L}(E)$. Furthermore we prove that if H_{1} and H_{2} are subgroups of Aut F such that $\mathrm{GL}_{m}(K) \subseteq H_{1} \subseteq H_{2}$ then H_{1} is dense in H_{2} with respect to the formal power series topology if and only if $\mathcal{L}\left(H_{1}\right)=\mathcal{L}\left(H_{2}\right)$. In Section 3 we apply these ideas to the study of $L_{m} / L_{m}^{\prime \prime}$ by means of representation theory. We completely determine the $K \mathrm{GL}_{m}(K)$ modules $I_{k} T / I_{k+1} T$ and $I_{k} A / I_{k+1} A$ where T is the group of tame automorphisms of $L_{m} / L_{m}^{\prime \prime}$ and $A=\operatorname{Aut} L_{m} / L_{m}^{\prime \prime}$.

1. Relatively free algebras. Throughout this paper K will be a field of characteristic 0 . By an "algebra" we shall mean a vector space R over K endowed with a multiplication which satisfies the left and right distributive laws and the law $a\left(r_{1} r_{2}\right)=\left(a r_{1}\right) r_{2}=$ $r_{1}\left(a r_{2}\right)$ for all $r_{1}, r_{2} \in R, a \in K$. (Thus R is non-unitary and need not be commutative or associative.) Let \mathfrak{R} be the class of all algebras and denote by $F(\mathfrak{R})$ the absolutely free algebra freely generated by the countable set $\left\{x_{1}, x_{2}, \ldots\right\}$. Thus the elements of $F(\mathfrak{i})$ may be regarded as polynomials without constant terms in non-commuting and non-associative variables. For each positive integer $m, F_{m}(\mathfrak{R})$ denotes the subalgebra of $F(\mathfrak{R})$ generated by $\left\{x_{1}, \ldots, x_{m}\right\}$.

If $f=f\left(x_{1}, \ldots, x_{m}\right) \in F(\mathfrak{R})$ we say that f is a polynomial identity of an algebra R if $f\left(r_{1}, \ldots, r_{m}\right)=0$ for all $r_{1}, \ldots, r_{m} \in R$. For a given subset W of $F(\mathfrak{R})$, the class \mathbb{U} of all algebras in which all elements of W are polynomial identities is called the variety of algebras defined by W. The set $T(\mathbb{H})$ of all elements of $F(\Re)$ which are polynomial identities of all algebras of U is an ideal invariant under all endomorphisms of $F(\mathfrak{R})$. The quotient algebra $F(\mathcal{U})=F(\mathfrak{R}) / T(\mathbb{U})$ is the so-called relatively free algebra of \mathfrak{U} of countable rank, freely generated by the set $\left\{y_{1}, y_{2}, \ldots\right\}$ where $y_{t}=x_{1}+T(\mathbb{U})$ for all i. Similarly $F_{m}(\mathcal{U})=F_{m}(\mathfrak{R}) /\left(F_{m}(\mathfrak{R}) \cap T(\mathcal{U})\right)$ is a relatively free algebra of \mathcal{U} of rank m. We identify it with the subalgebra of $F(\mathbb{U})$ generated by $\left\{y_{1}, \ldots, y_{m}\right\}$, so that $F_{m}(\mathbb{U})$ is freely generated by $\left\{y_{1}, \ldots, y_{m}\right\}$. If r_{1}, \ldots, r_{m} are elements of any algebra R of \mathfrak{U} then there is a unique homomorphism $\phi: F_{m}(\mathrm{U}) \rightarrow R$ such that $\phi\left(y_{t}\right)=r_{l}(1 \leq i \leq m)$. For a fixed variety U and fixed m we now write $F=F_{m}(\mathfrak{l})$.

We may write $F_{m}(\Re)=\oplus_{k \geq 1} F_{m}(\mathfrak{R})_{(k)}$ where $F_{m}(\mathfrak{R})_{(k)}$ is the subspace of $F_{m}(\mathfrak{R})$ spanned by all monomials of total degree k in x_{1}, \ldots, x_{m}. Since K is infinite we may see by a Vandermonde determinant argument that

$$
F_{m}(\mathfrak{R}) \cap T(\mathfrak{H})=\bigoplus_{k \geq 1}\left(F_{m}(\mathfrak{R})_{(k)} \cap T(\mathfrak{H})\right) .
$$

Thus we may write F as a sum of homogeneous components, $F=\oplus_{k \geq 1} F_{(k)}$, where

$$
F_{(k)} \cong F_{m}(\Re)_{(k)} /\left(F_{m}(\Re)_{(k)} \cap T(H)\right)
$$

and $F_{(k)}$ is the subspace of F spanned by all monomials of total degree k in y_{1}, \ldots, y_{m}. Each element f of F may be written uniquely in the form $f=\sum_{k \geq 1} f_{(k)}$ with $f_{(k)} \in F_{(k)}$ for all k and $f_{(k)}=0$ for all but finitely many k. We say that $f_{(k)}$ is the homogeneous component of f of degree k. Similarly, for any m-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of non-negative integers we write $F_{\alpha}=F_{\left(\alpha_{1}, \alpha_{m}\right)}$ for the multi-homogeneous component corresponding to α; that is, the subspace of F spanned by all monomials of total degree α_{t} in y_{t} for $i=1, \ldots, m$. Then, by similar arguments to those above, $F=\oplus_{\alpha} F_{\alpha}$ where α ranges over all m-tuples. Note that, for each positive integer $k, F^{k}=\oplus_{l \geq k} F_{(t)}$.

We write G for the general linear group $\mathrm{GL}_{m}(K)$ and let G act in the natural way on the subspace $F_{m}(\mathfrak{R})_{(1)}$ of $F_{m}(\mathfrak{R})$ spanned by x_{1}, \ldots, x_{m}. We extend this action so that G acts on $F_{m}(\Re)$ by algebra automorphisms. Clearly the subspaces $F_{m}(\Re) \cap T(\mathbb{H})$ and $\left.F_{m}(\Re)\right)_{(k)}$, $k \geq 1$, are G-invariant. Thus G acts as a group of automorphisms of F such that each
$F_{(k)}$ is a $K G$-submodule. From now on we assume that \mathbb{U} is non-trivial, i.e., $x_{1} \notin T(\mathbb{U})$. Thus $F_{(1)}$ has basis $\left\{y_{1}, \ldots, y_{m}\right\}$ and $F_{(1)}$ is the natural $K G$-module. In particular G acts faithfully on F and we may regard G as a subgroup of Aut F. We write $E=\operatorname{End} F$ for the semigroup of all (algebra) endomorphisms of F.

For each integer $k, k \geq 2$, let $I_{k} E$ be the set of endomorphisms of F which induce the identity map on F / F^{k} and write $I E=I_{2} E$. Thus

$$
E \supseteq I E=I_{2} E \supseteq I_{3} E \supseteq \cdots
$$

and each $I_{k} E$ is a subsemigroup of E. For $\phi, \psi \in E$ and $k \geq 1$ we write $\phi \equiv_{k} \psi$ if ϕ and ψ induce the same endomorphism on F / F^{k} or, equivalently, $\phi\left(y_{t}\right)-\psi\left(y_{t}\right) \in F^{k}$ for $i=1, \ldots, m$. It is easily verified that \equiv_{k} is a congruence on E. For $k \geq 2$ we write $I_{k} E / \equiv_{k+1}$ for the quotient semigroup of $I_{k} E$ corresponding to the congruence \equiv_{k+1}.

For any element ϕ of $I_{k} E$ let $\nu_{k}(\phi)=\left(f_{1}, \ldots, f_{m}\right)$ where $f_{l}=\left(\phi\left(y_{l}\right)\right)_{(k)}$ is the homogeneous component of $\phi\left(y_{l}\right)$ of degree $k, i=1, \ldots, m$. Thus $\phi\left(y_{l}\right) \equiv y_{l}+f_{l}\left(\bmod F^{k+1}\right)$, $i=1, \ldots, m$, and $\nu_{k}(\phi) \in F_{(k)}^{\oplus m}$ (the direct sum of m copies of the additive group $F_{(k)}$). It is easily verified that $\nu_{k}: I_{k} E \rightarrow F_{(k)}^{\oplus m}$ is an epimorphism of semigroups. Clearly, for $\phi, \psi \in I_{k} E, \nu_{k}(\phi)=\nu_{k}(\psi)$ if and only if $\phi \equiv_{k+1} \psi$. Thus ν_{k} induces an isomorphism of semigroups $\tilde{\nu}_{k}: I_{k} E / \equiv_{k+1} \rightarrow F_{(k)}^{\oplus m}$. In particular, $I_{k} E / \equiv_{k+1}$ is an abelian group. Furthermore, since $F_{(k)}^{\oplus m}$ is a vector space over K we can give $I_{k} E / \equiv_{k+1}$ a similar structure so that $\tilde{\nu}_{k}$ becomes a vector space isomorphism. More explicitly, if $[\phi] \in I_{k} E / \equiv_{k+1}$ is represented by $\phi \in I_{k} E$ and if $a \in K$ then $a[\phi]$ is represented by the endomorphism ϕ_{1} defined by $\phi_{1}\left(y_{t}\right)=y_{t}+a f_{l}$, for all i, where $\nu_{k}(\phi)=\left(f_{1}, \ldots, f_{m}\right)$.

As observed above, $F_{(1)}$ is the natural $K G$-module with basis $\left\{y_{1}, \ldots, y_{m}\right\}$. It will sometimes be convenient to regard elements of G as $m \times m$ matrices, corresponding to the ordered basis $\left\{y_{1}, \ldots, y_{m}\right\}$ of $F_{(1)}$. Since $G \subseteq E$ we can let G act by conjugation on E. Then it is easily verified that each $I_{k} E$ is G-invariant and that if ϕ and ψ are elements of $I_{k} E$ satisfying $\phi \equiv_{k+1} \psi$ then $g \phi g^{-1} \equiv_{k+1} g \psi g^{-1}$ for all $g \in G$. Thus G acts on $I_{k} E / \equiv_{k+1}$. It is also easy to see that the action of G on $I_{k} E / \equiv_{k+1}$ commutes with multiplication by elements of K. Thus $I_{k} E / \equiv_{k+1}$ is a $K G$-module.

The action of G on $I_{k} E / \equiv_{k+1}$ is most easily written down using the map ν_{k}. Let $\phi \in I_{k} E, g \in G$ and $\nu_{k}(\phi)=\left(f_{1}, \ldots, f_{m}\right)$. Then ν_{k} maps $g \phi g^{-1}$ to $\left(g\left(f_{1}\right), \ldots, g\left(f_{m}\right)\right) g^{-1}$. Here $g\left(f_{l}\right)$ is calculated in the G-module $F_{(k)}, g^{-1}$ is regarded as an $m \times m$ matrix, and multiplication by g^{-1} is multiplication of a $1 \times m$ matrix by an $m \times m$ matrix. Let $N(1)^{*}$ be the vector space of $1 \times m$ row-vectors over K regarded as a left $K G$-module in which, for each $g \in G, g$ acts as right multiplication by g^{-1} (in other words, $N(1)^{*}$ is the dual of the natural $K G$-module $N(1)$) and regard $F_{(k)} \otimes_{K} N(1)^{*}$ as a $K G$-module under the "diagonal" action of G. Then the map

$$
\nu_{k}(\phi)=\left(f_{1}, \ldots, f_{m}\right) \longmapsto f_{1} \otimes(1,0, \ldots, 0)+\cdots+f_{m} \otimes(0, \ldots, 0,1)
$$

determines a $K G$-module isomorphism from $I_{k} E / \equiv_{k+1}$ to $F_{(k)} \otimes_{K} N(1)^{*}$. Thus we have established the following result.

Theorem 1.1. Let \cup be a non-trivial variety of algebras, let $F=F_{m}(\mathbb{U})$ be the relatively free algebra of finite rank m in \mathcal{U} and let $G=\mathrm{GL}_{m}(K)$. Then, for $k \geq 2$, there is a $K G$-module isomorphism

$$
I_{k} E / \equiv_{k+1} \cong F_{(k)} \otimes_{K} N(1)^{*}
$$

where $N(1)^{*}$ is the dual of the natural $K G$-module $N(1)$.
The proof we have given applies to any infinite field K (without need of our assumption that char $K=0$) and is based on the proof of [9, Theorem 2.1].

Before proceeding further we need to summarise some information about $K G$ modules, particularly (finite dimensional) polynomial $K G$-modules (see [10] for basic facts and definitions). For an arbitrary integer n we write (det) ${ }^{n}$ to denote a one-dimensional $K G$-module which affords the representation $g \mapsto(\operatorname{det} g)^{n}$ for all $g \in G$ (where $\operatorname{det} g$ is the determinant of g). Every polynomial $K G$-module is a direct sum of irreducible ones. The irreducible polynomial modules are indexed (up to isomorphism) by the m tuples of non-negative integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{m}$. Such an m-tuple with $\lambda_{1}+\cdots+\lambda_{m}=k$ is called a partition of k into m parts and Part (k) denotes the set of all such partitions. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ the irreducible polynomial module corresponding to λ will be denoted by $N(\lambda)$ or $N\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The modules $N(\lambda)$ with $\lambda \in \operatorname{Part}(k)$ are precisely those irreducible polynomial modules which are homogeneous of degree k. Associated with each polynomial module W is an element of $\mathbb{Z}\left[X_{1}, \ldots, X_{m}\right]$ called the character of W; and the character of $N(\lambda)$ has leading term $X_{1}^{\lambda_{1}} \cdots X_{m}^{\lambda_{m}}$. When writing partitions we shall make use of standard abbreviations: thus, for example, ($2,2,1,1,1,0$) may be written as $\left(2^{2}, 1^{3}\right)$.

It is well known (and easy to verify by inspecting characters) that the m-dimensional natural $K G$-module is isomorphic to $N(1)$, and (det) $)^{1} \otimes_{K} N(1)^{*} \cong N\left(1^{m-1}\right)$. Thus $N(1)^{*} \cong$ (det) ${ }^{-1} \otimes_{K} N\left(1^{m-1}\right)$ and Theorem 1.1 may be re-stated as follows.

Corollary 1.2 (See [9, Theorem 2.1]). For $k \geq 2$ there is a $K G$-module isomorphism

$$
I_{k} E / \equiv_{k+1} \cong(\operatorname{det})^{-1} \otimes_{K} N\left(1^{m-1}\right) \otimes_{K} F_{(k)} .
$$

It is easily verified that $F_{(k)}$ is a homogeneous polynomial $K G$-module of degree k. Thus $F_{(k)}$ can be decomposed as a direct sum of modules each of which is isomorphic to some $N(\lambda)$ with $\lambda \in \operatorname{Part}(k)$.

We shall be particularly interested in varieties of Lie algebras (see [5]). Then, in all the above, we may replace $F(\Re)$ by the free Lie algebra L freely generated by $\left\{x_{1}, x_{2}, \ldots\right\}$ and replace $F_{m}(\Re)$ by the free Lie algebra L_{m} of rank m freely generated by x_{1}, \ldots, x_{m}. We may take polynomial identities as coming from L and take relatively free Lie algebras of rank m as quotient algebras of L_{m}. The following result is well known. (For a proof see, for example, [9, Lemma 3.4].)

Proposition 1.3. Let $F=L_{m} / L_{m}^{\prime \prime}$ be the free metabelian Lie algebra of finite rank $m \geq 2$ and let $G=\mathrm{GL}_{m}(K)$. Then the homogeneous components of F satisfy the $K G$ module isomorphisms $F_{(1)} \cong N(1)$ and $F_{(k)} \cong N(k-1,1), k \geq 2$.

The tensor product of polynomial modules can be calculated by means of the Littlewood-Richardson rule. (For the rule itself see [11]. The application to $\mathrm{GL}_{m}(K)$ is well known and is stated in [9, Proposition 1.4].) Thus by Proposition 1.3 and Corollary 1.2 we can find the structure of the modules $I_{k} E / \equiv_{k+1}$ in the case where $F=L_{m} / L_{m}^{\prime \prime}$. The results are as follows (essentially as stated in [9, Lemma 3.5]).

PROPOSITION 1.4. Let $F=L_{m} / L_{m}^{\prime \prime}$, where $m \geq 2$.
(i) For $m=2, I_{2} E / \equiv_{3} \cong N(1)$ and $I_{k} E / \equiv_{k+1} \cong N(k-2,1) \oplus N(k-1), k \geq 3$.
(ii) For $m \geq 3, I_{2} E / \equiv 3 \cong\left((\operatorname{det})^{-1} \otimes_{K} N\left(2^{2}, 1^{m-3}\right)\right) \oplus N(1)$ and

$$
I_{k} E / \equiv_{k+1} \cong\left((\operatorname{det})^{-1} \otimes_{K} N\left(k, 2,1^{m-3}\right)\right) \oplus N(k-2,1) \oplus N(k-1), \quad k \geq 3
$$

2. Endomorphisms and automorphisms. We now return to the general situation where $F=F_{m}(\mathcal{U})$ and \mathbb{U} is a non-trivial variety of algebras. We shall continue to use all the notation of Section 1. In particular, $E=\operatorname{End} F$ and $G=\mathrm{GL}_{m}(K)$.

We consider the topology on F corresponding to the series $F \supseteq F^{2} \supseteq F^{3} \supseteq \cdots$; that is, the topology in which the sets $f+F^{k}(f \in F, k \geq 1)$ form a basis for the open sets. Since each element ϕ of E corresponds uniquely to an m-tuple $\left(\phi\left(y_{1}\right), \ldots, \phi\left(y_{m}\right)\right)$ we may give E the topology of the direct product $F \times \cdots \times F$ of m copies of F. We call this topology the formal power series topology on E, following Anick [1]. (This topology can be described by the metric satisfying $d(\phi, \psi)=0$ if $\phi=\psi$ and $d(\phi, \psi)=\exp (-k)$ if $\phi \neq \psi$ and k is maximal subject to $\phi \equiv_{k} \psi$.)

We aim to construct a graded Lie algebra $\mathcal{L}(E)$. In order to do this it is convenient to utilise the completions of F and E. The completion \hat{F} of F with respect to the series $F \supseteq F^{2} \supseteq \cdots$ may be identified with the complete (unrestricted) direct sum $\widehat{\oplus}_{l \geq 1} F_{(l)}$. It has a natural algebra structure such that F is a subalgebra of \hat{F}. Each element of \hat{F} may be regarded as an infinite formal $\operatorname{sum} f=\sum_{l \geq 1} f_{(l)}$ with $f_{(l)} \in F_{(l)}$ for all i. For each $k \geq 1$ let $\hat{F}^{(k)}$ be the set of all such elements f with $f_{(l)}=0$ for $i<k$. (In other words $\hat{\hat{F}}^{(k)}$ is the completion of F^{k}.) Clearly the topology that \hat{F} inherits from F is the same as the topology on \hat{F} obtained from the series $\hat{F} \supseteq \hat{F}^{(2)} \supseteq \cdots$. It is straightforward to prove the following result.

LEMMA 2.1. If w_{1}, \ldots, w_{m} are arbitrary elements of \hat{F} then there is a unique continuous endomorphism ϕ of \hat{F} such that $\phi\left(y_{l}\right)=w_{l}, i=1, \ldots, m$.

Let \hat{E} be the semigroup of all continuous endomorphisms of \hat{F}. Then Lemma 2.1 shows that each element ϕ of \hat{E} corresponds uniquely to an element $\left(\phi\left(y_{1}\right), \ldots, \phi\left(y_{m}\right)\right)$ of the direct product $\hat{F} \times \cdots \times \hat{F}$ of m copies of \hat{F}. Clearly the set \hat{E} with the topology of
this direct product may be identified with the completion of E and we call this topology on \hat{E} the formal power series topology. Note also that E is a subsemigroup of \hat{E}.

Because $\hat{F}^{(k)}$ is the closure of $F^{k}, \phi\left(\hat{F}^{(k)}\right) \subseteq \hat{F}^{(k)}$ for all $\phi \in \hat{E}$. For $k \geq 2$ we let $I_{k} \hat{E}$ be the set of all elements of \hat{E} which induce the identity map on $\hat{F} / \hat{F}^{(k)}$. Thus $E \cap I_{k} \hat{E}=I_{k} E$ and $I_{k} \hat{E}$ is the completion of $I_{k} E$. We also write $I \hat{E}=I_{2} \hat{E}$.

Lemma 2.2. IÊ ls a group.
Proof. Clearly $I \hat{E}$ is a subsemigroup of \hat{E}. Let $\phi \in I \hat{E}$. Then it is easy to see that ϕ induces the identity map on each factor $\hat{F}^{(k)} / \hat{F}^{(k+1)}$. Thus ϕ induces an automorphism of $\hat{F} / \hat{F}^{(k+1)}$. It follows that for each k there is an element ϕ_{k} of E such that $\phi \phi_{k}$ and $\phi_{k} \phi$ induce the identity map on $\hat{F} / \hat{F}^{(k+1)}$. The limit of the maps ϕ_{k} is an inverse of ϕ in $I \hat{E}$. Thus each element of $I \hat{E}$ is invertible.

It follows from Lemma 2.2 that each $I_{k} \hat{E}$ is a normal subgroup of $I \hat{E}$ and the topology induced on $I \hat{E}$ from \hat{E} is the same as the topology associated with the series $I \hat{E}=I_{2} \hat{E} \supseteq$ $I_{3} \hat{E} \supseteq \cdots$.

For each $k \geq 2$ we can extend the homomorphism $\nu_{k}: I_{k} E \rightarrow F_{(k)}^{\oplus m}$ to a group homomorphism $\nu_{k}: I_{k} \hat{E} \rightarrow F_{(k)}^{\oplus m}$ in the obvious way. Thus ν_{k} induces a group isomorphism $\bar{\nu}_{k}: I_{k} \hat{E} / I_{k+1} \hat{E} \rightarrow F_{(k)}^{\oplus m}$. For each $k \geq 2$ we write

$$
\bar{I}_{k} E=I_{k} \hat{E} / I_{k+1} \hat{E}=\left(I_{k} E\right)\left(I_{k+1} \hat{E}\right) / I_{k+1} \hat{E}
$$

Thus $\bar{I}_{k} E \cong I_{k} E / \equiv_{k+1}$. Furthermore we can use the map $\bar{\nu}_{k}$ to give $\bar{I}_{k} E$ the structure of a vector space over K so that $\bar{\nu}_{k}: \bar{I}_{k} E \rightarrow F_{(k)}^{\oplus m}$ is a vector space isomorphism. Since $G \subseteq E \subseteq \hat{E}, G$ acts by conjugation on \hat{E} and $\bar{I}_{k} E$ becomes a $K G$-module. Clearly $\bar{I}_{k} E$ and $I_{k} E / \equiv_{k+1}$ are isomorphic as $K G$-modules.

The following result is similar to several well known results and is straightforward to prove by direct calculation.

Lemma 2.3. Let $\phi \in I_{j} \hat{E}$ and $\psi \in I_{k} \hat{E}(j, k \geq 2)$. Then the group commutator $\phi^{-1} \psi^{-1} \phi \psi$ satisfies $\phi^{-1} \psi^{-1} \phi \psi \in I_{j+k-1} \hat{E}$. Furthermore, if $\nu_{J}(\phi)=\left(f_{1}, \ldots, f_{m}\right)$ and $\nu_{k}(\psi)=\left(g_{1}, \ldots, g_{m}\right)$ then $\nu_{J+k-1}\left(\phi^{-1} \psi^{-1} \phi \psi\right)=\left(h_{1}, \ldots, h_{m}\right)$ where, for $i=1, \ldots, m$,

$$
h_{t}=\left(g_{t}\left(y_{1}+f_{1}, \ldots, y_{m}+f_{m}\right)\right)_{(1+k-1)}-\left(f_{t}\left(y_{1}+g_{1}, \ldots, y_{m}+g_{m}\right)\right)_{(1+k-1)} .
$$

(Recall that, for $f \in F, f_{(J+k-1)}$ denotes the homogeneous component of f of degree $j+$ $k-1$.)

REMARK 2.4. In the notation of Lemma 2.3 we can write

$$
\begin{aligned}
\left(f_{l}\left(y_{1}+g_{1}, \ldots, y_{m}+g_{m}\right)\right)_{(1+k-1)} & =f_{l}^{\prime}\left(y_{1}, \ldots, y_{m}, g_{1}, \ldots, g_{m}\right) \\
\left(g_{l}\left(y_{1}+f_{1}, \ldots, y_{m}+f_{m}\right)\right)_{(1+k-1)} & =g_{l}^{\prime}\left(y_{1}, \ldots, y_{m}, f_{1}, \ldots, f_{m}\right)
\end{aligned}
$$

where f_{l}^{\prime} is linear in g_{1}, \ldots, g_{m} (that is, a linear combination of monomials in y_{1}, \ldots, y_{m}, g_{1}, \ldots, g_{m} each of which contains precisely one factor from g_{1}, \ldots, g_{m}) and g_{t}^{\prime} is linear in f_{1}, \ldots, f_{m}.

Proposition 2.5. Let $E=\operatorname{End} F$ where $F=F_{m}(\mathbb{H})$. Then the vector space direct sum $\mathcal{L}(E)=\oplus_{k \geq 2} \bar{I}_{k} E$ has the structure of a graded Lie algebra over K with $\bar{I}_{k} E$ as component of degree $k-1$ in the grading and Lie multiplication given by

$$
\left[\phi I_{J+1} \hat{E}, \psi I_{k+1} \hat{E}\right]=\left(\phi^{-1} \psi^{-1} \phi \psi\right) I_{j+k} \hat{E}
$$

for all $\phi \in I_{j} \hat{E}, \psi \in I_{k} \hat{E}(j, k \geq 2)$. Furthermore $G=\mathrm{GL}_{m}(K)$ acts on $\mathcal{L}(E)$ as a group of Lie algebra automorphisms.

Proof. By Lemma 2.3 the mutual commutator groups $\left(I_{j} \hat{E}, I_{k} \hat{E}\right)$ of the terms of the series $I_{2} \hat{E} \supseteq I_{3} \hat{E} \supseteq \cdots$ satisfy $\left(I_{J} \hat{E}, I_{k} \hat{E}\right) \subseteq I_{++k-1} \hat{E}$ for all $j, k \geq 2$. Therefore the direct sum of abelian groups $\mathcal{L}(E)=\oplus_{k \geq 2}\left(I_{k} \hat{E} / I_{k+1} \hat{E}\right)$ may be given the structure of a graded Lie ring in the standard way such that

$$
\left[\phi I_{j+1} \hat{E}, \psi I_{k+1} \hat{E}\right]=\left(\phi^{-1} \psi^{-1} \phi \psi\right) I_{J+k} \hat{E}
$$

for all $\phi \in I, \hat{E}, \psi \in I_{k} \hat{E}, j, k \geq 2$. (See [13, Part I, Chapter II].)
We have to show that $\mathcal{L}(E)$ is a Lie algebra over K. Let $\phi \in I_{J} \hat{E}, \psi \in I_{k} \hat{E}(j, k \geq 2)$ and let $a \in K$. In the notation of Lemma 2.3 and Remark 2.4,

$$
\begin{aligned}
a\left(\left(\phi^{-1} \psi^{-1} \phi \psi\left(y_{l}\right)\right)_{(1+k-1)}\right)= & a g_{l}^{\prime}\left(y_{1}, \ldots, y_{m}, f_{1}, \ldots, f_{m}\right)-a f_{l}^{\prime}\left(y_{1}, \ldots, y_{m}, g_{1}, \ldots, g_{m}\right) \\
= & g_{l}^{\prime}\left(y_{1}, \ldots, y_{m}, a f_{1}, \ldots, a f_{m}\right)-a f_{l}^{\prime}\left(y_{1}, \ldots, y_{m}, g_{1}, \ldots, g_{m}\right) \\
= & \left(g_{l}\left(y_{1}+a f_{1}, \ldots, y_{m}+a f_{m}\right)\right)_{(\jmath+k-1)} \\
& -\left(a f_{l}\left(y_{1}+g_{1}, \ldots, y_{m}+g_{m}\right)\right)_{(\jmath+k-1)} \\
= & \left(\phi_{1}^{-1} \psi^{-1} \phi_{1} \psi\left(y_{l}\right)\right)_{(1+k-1)}
\end{aligned}
$$

where $\phi_{1} \in I_{j} \hat{E}$ is defined by $\phi_{1}\left(y_{t}\right)=y_{t}+a f_{l}, i=1, \ldots, m$. Thus

$$
a\left[\phi I_{J+1} \hat{E}, \psi I_{k+1} \hat{E}\right]=\left[a \phi I_{J+1} \hat{E}, \psi I_{k+1} \hat{E}\right]
$$

and $\mathcal{L}(E)$ is a Lie algebra over K. It is easy to verify that the action of G on \hat{E} by conjugation induces an action of G on $\mathcal{L}(E)$ by Lie algebra automorphisms.

Note that, for $\phi \in I_{j} E, \psi \in I_{k} E,\left(\phi^{-1} \psi^{-1} \phi \psi\right) I_{j+k} \hat{E}$ depends only on the elements $\left(\phi\left(y_{l}\right)\right)_{(,)}$and $\left(\psi\left(y_{t}\right)\right)_{(k)}$. Thus the Lie algebra operations on $\mathcal{L}(E)$ can be defined purely in terms of E rather than \hat{E}.

For any subgroup H of Aut F we write $I_{k} H=H \cap I_{k} \hat{E}, k \geq 2$, and $I H=I_{2} H$. Thus $I_{k} H$ is the set of elements of H which induce the identity map on F / F^{k} and is a normal subgroup of H. We also write $\bar{I}_{k} H=I_{k} H\left(I_{k+1} \hat{E}\right) / I_{k+1} \hat{E}$. Since $I_{k} H \cap I_{k+1} \hat{E}=I_{k+1} H, \bar{I}_{k} H$ is naturally isomorphic to $I_{k} H / I_{k+1} H$. It is convenient to use $\bar{I}_{k} H$ rather than $I_{k} H / I_{k+1} H$ because of the inclusion $\bar{I}_{k} H \subseteq \bar{I}_{k} E$. Thus if H_{1} and H_{2} are subgroups of Aut F with $H_{1} \subseteq H_{2}$ we have $\bar{I}_{k} H_{1} \subseteq \bar{I}_{k} H_{2}$. The topology induced on H from E is clearly the same as the topology corresponding to the series $H \supseteq I_{2} H \supseteq I_{3} H \supseteq \cdots$.

Proposition 2.6. Let H be a subgroup of Aut F which is invariant under conjugation by elements of G. Then, for $k \geq 2, \bar{I}_{k} H$ is a $K G$-submodule of $\bar{I}_{k} E$.

Proof. It is easy to verify that $\bar{I}_{k} H$ is invariant under the action of G. It remains to show that it is closed under multiplication by elements of K. We repeat arguments from [1, Lemma 6] and [9, Lemma 3.1]. Let $\phi \in I_{k} H$ and $a \in K$. Since $\bar{\nu}_{k}: \bar{I}_{k} E \rightarrow F_{(k)}^{\oplus m}$ is a vector space isomorphism, it is enough to prove that $a \nu_{k}(\phi) \in \nu_{k}\left(I_{k} H\right)$. Suppose first that a is rational: $a=p / q$ where p and q are integers $(q \neq 0)$. Let d be the scalar matrix of G with all diagonal entries equal to $1 / q$ and let $n=p q^{k-2}$. Then, by an easy calculation,

$$
\nu_{k}\left(\left(d \phi d^{-1}\right)^{n}\right)=n \nu_{k}\left(d \phi d^{-1}\right)=n\left(1 / q^{k-1}\right) \nu_{k}(\phi)=a \nu_{k}(\phi) .
$$

Thus $a \nu_{k}(\phi) \in \nu_{k}\left(I_{k} H\right)$, as required. Now let a be a non-rational element of K. For $r=0,1, \ldots, k-1$, let d_{r} be the scalar matrix of G with all diagonal entries equal to $a+r$. Then

$$
\nu_{k}\left(d_{r} \phi d_{r}^{-1}\right)=(a+r)^{k-1} \nu_{k}(\phi)
$$

and so $(a+r)^{k-1} \nu_{k}(\phi) \in \nu_{k}\left(I_{k} H\right)$ for $r=0,1, \ldots, k-1$. But a can be written as a linear combination of $(a+0)^{k-1}, \ldots,(a+(k-1))^{k-1}$ with rational coefficients. Thus $a \nu_{k}(\phi) \in \nu_{k}\left(I_{k} H\right)$, as required.

PRoposition 2.7. Let H be a G-invariant subgroup of Aut F. Then $\mathcal{L}(H)=\oplus_{k \geq 2} \bar{I}_{k} H$ is a graded Lie algebra over K which is a G-invariant graded subalgebra of $\mathcal{L}(E)$.

Proof. By Proposition 2.6, $\bar{I}_{k} H$ is a subspace of $\bar{I}_{k} E$ for all k. By the definition of the Lie product in $\mathcal{L}(E),\left[\bar{I}_{\jmath} H, \bar{I}_{k} H\right] \subseteq \bar{I}_{\not+k-1} H$ for all $j, k \geq 2$. The result follows.

If $\bar{I}_{k} H$ is identified with $I_{k} H / I_{k+1} H$ for each k then it is clear that $\mathcal{L}(H)$ is the same as the Lie algebra $\oplus_{k \geq 2}\left(I_{k} H / I_{k+1} H\right)$ obtained by means of group commutators from the series $I H=I_{2} H \supseteq I_{3} H \supseteq \cdots$.

PROPOSITION 2.8. Let H_{1} and H_{2} be G-invariant subgroups of Aut F such that $H_{1} \subseteq$ H_{2}. Then IH_{1} is dense in IH_{2} with respect to the formal power series topology on End F if and only if $\mathcal{L}\left(H_{1}\right)=\mathcal{L}\left(H_{2}\right)$.

Proof. Suppose that $I H_{1}$ is dense in $I H_{2}$ and let $\phi \in I_{k} H_{2}, k \geq 2$. Then there exists $\psi \in I H_{1}$ such that $\psi^{-1} \phi \in I_{k+1} H_{2}$. Hence $\psi \in I_{k} H_{1}$ and so $I_{k} H_{2}=\left(I_{k} H_{1}\right)\left(I_{k+1} H_{2}\right)$. Thus, for all $k, \bar{I}_{k} H_{1}=\bar{I}_{k} H_{2}$ and so $\mathcal{L}\left(H_{1}\right)=\mathcal{L}\left(H_{2}\right)$. The converse is similar.

COROLLARY 2.9. Let H_{1} and H_{2} be subgroups of Aut F such that $G \subseteq H_{1} \subseteq H_{2}$. Then H_{1} is dense in H_{2} if and only if $\mathcal{L}\left(H_{1}\right)=\mathcal{L}\left(H_{2}\right)$.

Proof. Note that $H_{l}=G\left(I H_{l}\right), i=1,2$. If H_{1} is dense in H_{2} then clearly $I H_{1}$ is dense in $I H_{2}$. Conversely, if $I H_{1}$ is dense in $I H_{2}$ then, for all $k \geq 2, I H_{2}=\left(I H_{1}\right)\left(I_{k+1} H_{2}\right)$ and so

$$
H_{2}=G\left(I H_{2}\right)=G\left(I H_{1}\right)\left(I_{k+1} H_{2}\right)=H_{1}\left(I_{k+1} H_{2}\right),
$$

which implies that H_{1} is dense in H_{2}. The result now follows from Proposition 2.8.
3. Automorphisms of free metabelian Lie algebras. Let $m \geq 2$ and let L_{m} be the free Lie algebra of rank m freely generated by x_{1}, \ldots, x_{m}. We shall study the free metabelian Lie algebra $L_{m} / L_{m}^{\prime \prime}$ of rank m freely generated by y_{1}, \ldots, y_{m} where $y_{t}=x_{t}+$ $L_{m}^{\prime \prime}, i=1, \ldots, m$. From now on we write $F=L_{m} / L_{m}^{\prime \prime}$ and use all the notation previously developed for $F=F_{m}(\mathrm{U})$ in the special case where U is the variety of all metabelian Lie algebras. In particular, recall that $E=\operatorname{End} F, A=\operatorname{Aut} F$ and $G=\mathrm{GL}_{m}(K)$. Furthermore T will denote the group of all tame automorphisms of F. We use commutator notation for the Lie multiplication in F : thus F^{k}, as used previously, now denotes $[F, F, \ldots, F]$ with k factors.

Let $\Omega=K\left[t_{1}, \ldots, t_{m}\right]$ be the (commutative, associative, unitary) polynomial algebra over K freely generated by variables t_{1}, \ldots, t_{m}. For $k \geq 0$ write $\Omega_{(k)}$ for the homogeneous component of Ω of degree k and $\Omega^{(k)}=\oplus_{i \geq k} \Omega_{(l)}$. Note that every element of the derived algebra F^{\prime} of F may be written in the form

$$
\sum_{1 \leq u, \leq \leq m}\left[y_{l}, y_{j}\right] f_{y}\left(\operatorname{ad} y_{1}, \ldots, \operatorname{ad} y_{m}\right)
$$

where $f_{\nu_{j}}\left(t_{1}, \ldots, t_{m}\right) \in \Omega$ for all i, j. (For each $v \in F$, ad $v: F \rightarrow F$ is defined by $u(\operatorname{ad} v)=$ [u, v] for all $u \in F$.)

We shall use a special case of the idea of the wreath product of Lie algebras as introduced by Shmel'kin [14]. Let A_{m} and B_{m} be abelian Lie algebras (in other words vector spaces over K) with bases $\left\{a_{1}, \ldots, a_{m}\right\}$ and $\left\{t_{m}, \ldots, t_{m}\right\}$, respectively, and let C_{m} be the free right Ω-module with free generators a_{1}, \ldots, a_{m}. Then the wreath product $A_{m} \operatorname{wr} B_{m}$ is defined to be the vector space $C_{m} \oplus B_{m}$ made into a Lie algebra over K in such a way that C_{m} and B_{m} are abelian subalgebras and

$$
\left[a_{l} f\left(t_{1}, \ldots, t_{m}\right), t_{j}\right]=a_{l} f\left(t_{1}, \ldots, t_{m}\right) t_{j}
$$

for all $f\left(t_{1}, \ldots, t_{m}\right) \in \Omega$ and all $i, j \in\{1, \ldots, m\}$. Thus C_{m} is an ideal and A_{m} wr B_{m} is metabelian.

As a special case of Shmel'kin's embedding theorem [14, Theorem 1], the homomorphism $\varepsilon: F \rightarrow A_{m}$ wr B_{m} defined by $\varepsilon\left(y_{l}\right)=a_{l}+t_{l}(1 \leq i \leq m)$ is a Lie algebra monomorphism. If

$$
f=\sum\left[y_{l}, y_{J}\right] f_{l j}\left(\operatorname{ad} y_{1}, \ldots, \operatorname{ad} y_{m}\right)
$$

then

$$
\varepsilon(f)=\sum\left(a_{l} t_{j}-a_{J} t_{l}\right) f_{v_{j}}\left(t_{1}, \ldots, t_{m}\right) .
$$

LEmma 3.1. The element $\sum_{l=1}^{m} a_{v} f_{l}\left(t_{1}, \ldots, t_{m}\right)$ of C_{m} belongs to $\varepsilon\left(F^{\prime}\right)$ if and only if $\sum_{l=1}^{m} t_{l} f_{l}\left(t_{1}, \ldots, t_{m}\right)=0$.

Proof. This follows from [14, Theorem 2]. It may also be proved directly as in [4, Proposition 3.1].

Our next objective is to give a matrix representation for $I E$ which is similar to the well known representation for endomorphisms of a free metabelian group (see [4]).

Let $M=M_{m}(\Omega)$ be the associative algebra of all $m \times m$ matrices with entries from Ω. For $k \geq 0$ let $M_{(k)}=M_{m}\left(\Omega_{(k)}\right)$ be the subspace of M consisting of those matrices $\left(f_{l j}\right)$ such that $f_{l j} \in \Omega_{(k)}$ for all i, j and let $M^{(k)}=\oplus_{l \geq k} M_{(l)}$. The series $M=M^{(0)} \supseteq M^{(1)} \supseteq \cdots$ determines a topology on M with completion \hat{M} where $\hat{M}=\widehat{\oplus}_{l} \geq 0$ M $M_{(l)}$ (complete direct sum). Thus \hat{M} may be identified with the algebra of all $m \times m$ matrices over the formal power series algebra $K\left[\left[t_{1}, \ldots, t_{m}\right]\right]$.

Let S be the subspace of M defined by

$$
S=\left\{\left(f_{v^{\prime}}\right) \in M: \sum_{l=1}^{m} t_{t} f_{l j}=0, j=1, \ldots, m\right\}
$$

and, for $k \geq 1$, let $S_{(k)}=S \cap M_{(k)}$ and $S^{(k)}=S \cap M^{(k)}$. It is easily verified that $S=\oplus_{k \geq 1} S_{(k)}$ and $S^{(k)}=\oplus_{l \geq k} S_{(l)}, k \geq 1$. The condition $\sum_{l=1}^{m} t_{l} f_{l j}=0, j=1, \ldots, m$, may be written as $\left(t_{1}, \ldots, t_{m}\right)\left(f_{y}\right)=(0, \ldots, 0)$, or, alternatively, $\left(t_{1}, \ldots, t_{m}\right)\left(1+\left(f_{y}\right)\right)=\left(t_{1}, \ldots, t_{m}\right)$, where 1 denotes the identity matrix. Thus S is a right ideal of M and $1+S$ is a multiplicative semigroup. We write \hat{S} for the closure of S in \hat{M} and $\hat{S}^{(k)}$ for the closure of $S^{(k)}, k \geq 1$. Thus $\hat{S}=\widehat{\oplus}_{k \geq 1} S_{(k)}$ and $\hat{S}^{(k)}=\widehat{\oplus}_{l \geq k} S_{(l)}$.

For $\phi \in I E$ we can write $\phi\left(y_{j}\right)=y_{j}+f_{j}$ with $f_{j} \in F^{\prime}, j=1, \ldots, m$. Thus, by Lemma 3.1, we can write

$$
\varepsilon\left(\phi\left(y_{J}\right)\right)=a_{J}+t_{J}+\sum_{l=1}^{m} a_{J} f_{l j}, \quad j=1, \ldots, m
$$

where the $f_{l /}$ are elements of Ω such that $\left(f_{l j}\right) \in S$. Let $\mu(\phi)$ denote the endomorphism of the free Ω-module C_{m} defined by

$$
\mu(\phi)\left(a_{J}\right)=a_{J}+\sum_{i=1}^{m} a_{l} f_{y}, \quad j=1, \ldots, m
$$

and identify the endomorphism algebra of C_{m} with M in the obvious way. Thus $\mu(\phi) \in$ $1+S$ for all $\phi \in I E$.

PRoposition 3.2. The mapping μ :IE $\rightarrow 1+S$ is a semigroup isomorphism such that, for all $k \geq 2, \mu\left(I_{k} E\right)=1+S^{(k-1)}$ and $\mu(I A)$ is the set of invertible matrices of $1+S$. Furthermore μ extends to a continuous group isomorphism $\hat{\mu}: I \hat{E} \rightarrow 1+\hat{S}$.

Proof. It is straightforward to check that μ is a semigroup monomorphism. By Lemma 3.1, for every matrix $\left(f_{l j}\right) \in S$ there exist elements $f_{1}, \ldots, f_{m} \in F^{\prime}$ such that $\varepsilon\left(f_{J}\right)=\sum_{l=1}^{m} a_{l} f_{l}, j=1, \ldots, m$, and consequently the element ϕ of $I E$ defined by $\phi\left(y_{j}\right)=$ $y_{J}+f_{j}, j=1, \ldots, m$, satisfies $\mu(\phi)=1+\left(f_{j}\right)$. Thus μ is surjective.

It may easily be verified that, for $f \in F$ and $k \geq 2, \varepsilon(f) \in \sum_{l=1}^{m} a_{l} \Omega^{(k-1)}$ if and only if $f \in F^{k}$. Thus

$$
\mu\left(I_{k} E\right)=1+\left(S \cap M^{(k-1)}\right)=1+S^{(k-1)}
$$

Since $1+S$ is the set of matrices fixing $\left(t_{1}, \ldots, t_{m}\right)$, the inverse of an invertible matrix of $1+S$ also belongs to $1+S$. Thus, for $\phi \in I E$, we have $\phi \in I A$ if and only if $\mu(\phi)$ is invertible.

By the above description of $\varepsilon(f)$ for $f \in F^{k}$, we see that, for $\phi, \psi \in I E$ and $k \geq 2$, $\phi \equiv_{k} \psi$ if and only if $\mu(\phi)-\mu(\psi) \in M^{(k-1)}$. Hence μ sends Cauchy sequences of $I E$ to Cauchy sequences of M. It follows easily that μ extends to a continuous semigroup isomorphism $\hat{\mu}: I \hat{E} \rightarrow 1+\hat{S}$. Since $I \hat{E}$ is a group (by Lemma 2.2) so is $1+\hat{S}$, and $\hat{\mu}$ is a group isomorphism.

Since S is a graded associative algebra, $S=\oplus_{k \geq 1} S_{(k)}$, it has the structure of a graded Lie algebra over K under the commutator operation defined by $\left[s_{1}, s_{2}\right]=s_{1} s_{2}-s_{2} s_{1}$ for all $s_{1}, s_{2} \in S$.

PROPOSITION 3.3. For $k \geq 2, \hat{\mu}$ induces a semigroup epimorphism $\mu_{k}: I_{k} \hat{E} \rightarrow S_{(k-1)}$ from $I_{k} \hat{E}$ to the additive group $S_{(k-1)}$. The maps μ_{k} induce vector space isomorphisms $\bar{\mu}_{k}: \bar{I}_{k} E \rightarrow S_{(k-1)}$ and an isomorphism of graded Lie algebras from $\mathcal{L}(E)$ to S.

Proof. Clearly $\hat{\mu}\left(I_{k} \hat{E}\right)=1+\hat{S}^{(k-1)}$ for all $k \geq 2$. There is a group homomorphism from $1+\hat{S}^{(k-1)}$ on to the additive group $S_{(k-1)}$ defined by $1+u_{(k-1)}+u_{(k)}+\cdots \mapsto u_{(k-1)}$, where $u_{(i)} \in S_{(i)}$ for all i. This induces a group isomorphism δ_{k} from $\left(1+\hat{S}^{(k-1)}\right) /\left(1+\hat{S}^{(k)}\right)$ to $S_{(k-1)}$. Thus we obtain a group epimorphism $\mu_{k}: I_{k} \hat{E} \rightarrow S_{(k-1)}$ and a group isomorphism $\bar{\mu}_{k}: \bar{I}_{k} E \rightarrow S_{(k-1)}$. It is easy to check that $\bar{\mu}_{k}$ is a vector space isomorphism. Since $\hat{\mu}: I \hat{E} \rightarrow 1+\hat{S}$ is a group isomorphism and $\hat{\mu}\left(I_{k} \hat{E}\right)=1+\hat{S}^{(k-1)}$ for all $k \geq 2$ we obtain an isomorphism from $\mathcal{L}(E)$ to the graded Lie ring

$$
\mathcal{L}(1+\hat{S})=\bigoplus_{k \geq 2}\left(1+\hat{S}^{(k-1)}\right) /\left(1+\hat{S}^{(k)}\right)
$$

It is easy to prove that the maps δ_{k} give an isomorphism of graded Lie rings from $\mathcal{L}(1+\hat{S})$ to $S=\oplus_{k \geq 2} S_{(k-1)}$. (One can calculate directly or use the logarithm map and the Campbell-Hausdorff formula.) Thus the maps $\bar{\mu}_{k}$ give an isomorphism of graded Lie rings from $\mathcal{L}(E)$ to S. Clearly this isomorphism is also an isomorphism of Lie algebras over K.

By Proposition 3.2, $I E \cong 1+S$. We next calculate the action of G on $1+S$ which corresponds to the action of G by conjugation on $I E$. Let G act in the natural way on $\Omega_{(1)}$ and extend this action so that G becomes a group of unitary algebra automorphisms of Ω. Let $\phi \in I E$ and $\mu(\phi)=1+\left(f_{i j}\right)$. It is easy to see that, for all $g \in G$,

$$
\mu\left(g \phi g^{-1}\right)=g\left(1+\left(g\left(f_{i j}\right)\right)\right) g^{-1}
$$

where $\left.\left(g f_{i j}\right)\right) \in M, g \in G \subseteq M$ and the triple product on the right hand side is the matrix product in M. We can identify M with $\Omega \otimes_{K} M_{m}(K)$. Then the action of G on $1+S$ is the restriction to $1+S$ of the "diagonal" action of G on $\Omega \otimes_{K} M_{m}(K)$ where G acts on Ω as described above and G acts by conjugation on $M_{m}(K)$. From now on when we regard M or a subspace of M as a $K G$-module it is always assumed that the G-action is the one just described. It is straightforward to prove the following fact.

LEMMA 3.4. The maps $\bar{\mu}_{k}: \bar{I}_{k} E \rightarrow S_{(k-1)}, k \geq 2$, are $K G$-module isomorphisms. Here $S_{(k-1)}$ is a submodule of $M_{(k-1)}=\Omega_{(k-1)} \otimes_{K} M_{m}(K)$.

We shall now summarise some properties of (finite dimensional) rational $K G$ modules. For the purposes of this paper we may define a rational $K G$-module as one
which is isomorphic to a module of the form (det) ${ }^{-n} \otimes_{K} V$ where V is a polynomial module, n is a non-negative integer, and (det) $)^{-n}$ is as defined in Section 1. Most of the properties of rational modules we need follow from elementary properties of polynomial modules as given in [10].

For $i, j \in\{1, \ldots, m\}$, let $e_{l j}$ be the element of $M_{m}(K)$ or of $M=M_{m}(\Omega)$ which has entry 1 in the (i, j)-th position and 0 elsewhere. For $z_{1}, \ldots, z_{m} \in K \backslash\{0\}$ let

$$
d\left(z_{1}, \ldots, z_{m}\right)=z_{1} e_{11}+\cdots+z_{m} e_{m m}
$$

be the corresponding diagonal element of G. If W is any rational $K G$-module and $\alpha=$ ($\alpha_{1}, \ldots, \alpha_{m}$) is any ordered m-tuple of integers, the weight space W^{α} of W is defined to be the set of those elements w of W for which $d\left(z_{1}, \ldots, z_{m}\right)(w)=z_{1}^{\alpha_{1}} \cdots z_{m}^{\alpha_{m}} w$ for all $z_{1}, \ldots, z_{m} \in K \backslash\{0\}$. The elements of W^{α} are called homogeneous of weight α. Each rational module W is the vector space direct sum of its weight spaces: $W=\oplus_{\alpha} W^{\alpha}$. If $w \in W$ and $w=\sum_{\alpha} w_{\alpha}$ with $w_{\alpha} \in W^{\alpha}$ for each α then we shall call w_{α} the component of w of weight α. Every rational module is a direct sum of irreducible ones. The only irreducible rational modules (up to isomorphism) are the modules (det) ${ }^{-n} \otimes_{K} N(\lambda)$, where $n \geq 0$ and $N(\lambda)$ is the irreducible polynomial module corresponding to $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{m} \geq 0$ as in Section 1 . The weight spaces of $(\operatorname{det})^{-n} \otimes_{K} N(\lambda)$ and $N(\lambda)$ are related by

$$
\left((\operatorname{det})^{-n} \otimes_{K} N(\lambda)\right)^{\left(\alpha_{1}-n,, \alpha_{m}-n\right)}=(\operatorname{det})^{-n} \otimes_{K} N(\lambda)^{\left(\alpha_{1},, \alpha_{m}\right)}
$$

Furthermore, $N(\lambda)^{\alpha} \neq\{0\}$ only if $\alpha_{1}, \ldots, \alpha_{m}$ are non-negative integers satisfying $\alpha_{1}+$ $\cdots+\alpha_{m}=\lambda_{1}+\cdots+\lambda_{m}$, and the dimension of $N(\lambda)^{\alpha}$ in this case is the number of semistandard tableaux of shape λ and content α. (In the terminology of [11], $\operatorname{dim} N(\lambda)^{\alpha}$ is the number of tableaux of shape λ and weight α : see also [9, Proposition 1.3].)

Regard $M_{m}(K)$ as a $K G$-module, as before, with G acting by conjugation. Then $M_{m}(K)$ is easily seen to be rational, and for $i, j \in\{1, \ldots, m\}$ the element $e_{l j}$ is homogeneous of weight $\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)$ where $\varepsilon_{r}=0$ for $r \notin\{i, j\}, \varepsilon_{l}=\varepsilon_{j}=0$ if $i=j$, and $\varepsilon_{l}=1$ and $\varepsilon_{J}=-1$ if $i \neq j$. It follows that the module $M_{(k-1)}=\Omega_{(k-1)} \otimes_{K} M_{m}(K)$ is also rational and for all non-negative integers $\alpha_{1}, \ldots, \alpha_{m}$ with $\alpha_{1}+\cdots+\alpha_{m}=k-1$ the element $t_{1}^{\alpha_{1}} \cdots t_{m}^{\alpha_{m}} \otimes e_{l j}$ is homogeneous of weight $\left(\alpha_{1}+\varepsilon_{1}, \ldots, \alpha_{m}+\varepsilon_{m}\right)$ where $\varepsilon_{1}, \ldots, \varepsilon_{m}$ are as above. Consequently each weight space of $M_{(k-1)}$ is spanned by those elements $t_{1}^{\alpha_{1}} \cdots t_{m}^{\alpha_{m}} \otimes e_{l j}$ which belong to it, and the weight components of any element of $M_{(k-1)}$ may be calculated by expressing it as a linear combination of elements $t_{1}^{\alpha_{1}} \cdots t_{m}^{\alpha_{m}} \otimes \boldsymbol{e}_{l j}$.

We shall now begin a detailed study of $A=$ Aut F. For $\phi \in I_{k} E \subseteq I_{k} \hat{E}$ it will be convenient to write $\bar{\phi}=\phi I_{k+1} \hat{E}$ to denote the corresponding element of $\bar{I}_{k} E$.

For each element f of the subalgebra $F\left(y_{2}, \ldots, y_{m}\right)$ of F generated by y_{2}, \ldots, y_{m} we define $\tau_{f} \in A$ by $\tau_{f}\left(y_{1}\right)=y_{1}+f$ and $\tau_{f}\left(y_{t}\right)=y_{t}(i \neq 1)$. By the description of Aut L_{m} given in the introduction, each τ_{f} is tame and the group T of tame automorphisms of F is generated by G together with the set of elements τ_{f}. If $f=f_{1}+\cdots+f_{n}$ where $f_{l} \in F\left(y_{2}, \ldots, y_{m}\right)_{(l)}, i=1, \ldots, n$, then $\tau_{f_{1}} \in G$ and $\tau_{f}=\tau_{f_{1}} \cdots \tau_{f_{n}}$. Thus T is generated
by G together with those τ_{f} for which f is homogeneous of degree at least 2 . Since $g \tau_{f}=$ $\left(g \tau_{f} g^{-1}\right) g$ for all $g \in G, T$ can be written as a product of subgroups,

$$
T=\left\langle g \tau_{f} g^{-1}: g \in G, f \in \bigcup_{k \geq 2} F\left(y_{2}, \ldots, y_{m}\right)_{(k)}\right\rangle G .
$$

Since $I T \cap G=\{1\}$ it follows that

$$
I T=\left\langle g \tau_{f} g^{-1}: g \in G, f \in \bigcup_{k \geq 2} F\left(y_{2}, \ldots, y_{m}\right)_{(k)}\right\rangle .
$$

For $k \geq 2$ let P_{k} be the $K G$-submodule of $\bar{I}_{k} E$ generated by those elements $\bar{\tau}_{f}$ for which $f \in F\left(y_{2}, \ldots, y_{m}\right)_{(k)}$. Note that when $m=2$ we have $P_{k}=\{0\}$ for all k. For $f \in F\left(y_{2}, \ldots, y_{m}\right)_{(k)} \subseteq F_{(k)}$ we can write f as a finite $\operatorname{sum} f=\sum_{\alpha} f_{\alpha}$ where each α has the form $\alpha=\left(\alpha_{2}, \ldots, \alpha_{m}\right)$ for non-negative integers $\alpha_{2}, \ldots, \alpha_{m}$ with $\alpha_{2}+\cdots+\alpha_{m}=k$ and where $f_{\alpha} \in F_{\alpha}\left(y_{2}, \ldots, y_{m}\right)$ is the multi-homogeneous component of f corresponding to α. Then τ_{f} is the product of the automorphisms $\tau_{f_{\alpha}}$. Hence P_{k} is generated by those $\bar{\tau}_{f}$ for which $f \in F\left(y_{2}, \ldots, y_{m}\right)_{(k)}$ and f is multi-homogeneous.

For each $u \in F^{\prime}$ define $\xi_{u} \in E$ by $\xi_{u}\left(y_{t}\right)=y_{t}+\left[y_{t}, u\right], i=1, \ldots, m$. Since F is metabelian it follows that $\xi_{u}(w)=w+[w, u]$ for all $w \in F$ and so ξ_{u} is an automorphism with inverse ξ_{-u}. (In fact, since $[w, u, u]=0$,

$$
\xi_{u}(w)=w+[w, u] / 1!+[w, u, u] / 2!+\cdots=\exp (\operatorname{ad} u)(w)
$$

and so ξ_{u} is an "inner" automorphism.) Let $Q_{2}=\{0\} \subseteq \bar{I}_{2} E$ and for $k \geq 3$ let $Q_{k}=$ $\left\{\bar{\xi}_{u}: u \in F_{(k-1)}\right\} \subseteq \bar{I}_{k} E$. It is easily verified that if $k \geq 3, \phi \in \operatorname{Aut} F, u, u_{1}, u_{2} \in F_{(k-1)}$ and $a \in K$, then $\phi \xi_{u} \phi^{-1}=\xi_{\phi(u)}, \xi_{u_{1}} \xi_{u_{2}}=\xi_{u_{1}+u_{2}}$ and $a \bar{\xi}_{u}=\bar{\xi}_{a u}$. Hence Q_{k} is a $K G$ submodule of $\bar{I}_{k} E$.

Let $\Phi=K\left\langle s_{1}, \ldots, s_{m}\right\rangle$ be the free associative algebra (without identity) freely generated by variables s_{1}, \ldots, s_{m} and let G act on Φ in the obvious way. (Thus Φ can be identified with the tensor algebra on the natural $K G$-module $N(1)$.) For $k \geq 1$ let $\Phi_{(k)}$ be the homogeneous component of Φ of degree k. Furthermore let $\Phi_{(k)}^{*}$ be the subspace of $\Phi_{(k)}$ spanned by the elements of the form $\sum_{\sigma} s_{l_{\sigma(1)}} \cdots s_{l_{\rho(k)}}$ where $1 \leq i_{1} \leq \cdots \leq i_{k} \leq m$ and σ ranges over all permutations of $\{1, \ldots, k\}$. (This may be identified with the space of symmetric tensors of degree k.) It is well known and easy to prove that $\Phi_{(k)}^{*}$ is a $K G$ submodule of Φ isomorphic to $\Omega_{(k)}$ (the k-th symmetric power of $N(1)$). But $\Omega_{(k)} \cong N(k)$ (see, for example, [10, p. 54]). Thus $\Phi_{(k)}^{*} \cong N(k)$ as $K G$-module.

For each element $h\left(s_{1}, \ldots, s_{m}\right)$ of $\Phi_{(k-1)}^{*}, k \geq 2$, define $\eta_{h} \in I_{k} E$ by $\eta_{h}\left(y_{t}\right)=y_{t}+$ $y_{i} h\left(\operatorname{ad} y_{1}, \ldots\right.$, ad $\left.y_{m}\right), i=1, \ldots, m$. For $k \geq 2$ let $R_{k}=\left\{\bar{\eta}_{h}: h \in \Phi_{(k-1)}^{*}\right\} \subseteq \bar{I}_{k} E$. It is easily verified that if $g \in G, h, h_{1}, h_{2} \in \Phi_{(k-1)}^{*}$ and $a \in K$, then $g \eta_{h} g^{-1}=\eta_{g(h)}$, $\bar{\eta}_{h_{1}} \bar{\eta}_{h_{2}}=\bar{\eta}_{h_{1}+h_{2}}$ and $a \bar{\eta}_{h}=\bar{\eta}_{a h}$. Hence R_{k} is a $K G$-submodule of $\bar{I}_{k} E$.

PROPOSITION 3.5. In the above notation let $k \geq 2$.
(i) $\bar{I}_{k} E=P_{k} \oplus Q_{k} \oplus R_{k}$. Furthermore $P_{k}=\{0\}$ for $m=2$ and $P_{k} \cong(\operatorname{det})^{-1} \otimes_{K}$ $N\left(k, 2,1^{m-3}\right)$ for $m \geq 3, Q_{2}=\{0\}$ and $Q_{k} \cong N(k-2,1)$ for $k \geq 3$, and $R_{k} \cong N(k-1)$.
(ii) $\bar{I}_{k} A=P_{k} \oplus Q_{k}$.

Proof. (i) We apply an idea from the proof of [9, Theorem 2.2]. Assume that $k \geq 3$ and $m \geq 3$. (The other cases are treated similarly.) By Proposition 1.4, we can write $\bar{I}_{k} E=N_{1} \oplus N_{2} \oplus N_{3}$ where $N_{1} \cong(\operatorname{det})^{-1} \otimes_{K} N\left(k, 2,1^{m-3}\right), N_{2} \cong N(k-2,1)$ and $N_{3} \cong N(k-1)$. Suppose $f \in F\left(y_{2}, \ldots, y_{m}\right)_{(k)}$ where f is multi-homogeneous of multidegree $\left(0, \alpha_{2}, \ldots, \alpha_{m}\right)$ in $y_{1}, y_{2}, \ldots, y_{m}$. Then it is easy to verify that $\mu_{k}\left(\tau_{f}\right)$ has the form $\sum_{l=2}^{m} f_{l 1} e_{l 1}$ where $f_{l 1} \in \Omega_{(k-1)}, i=2, \ldots, m$, and where $f_{l 1}=0$ if $\alpha_{l}=0$ and $f_{l 1}$ has multidegree $\left(0, \alpha_{2}, \ldots, \alpha_{t-1}, \alpha_{t}-1, \alpha_{l+1}, \ldots, \alpha_{m}\right)$ if $\alpha_{t}>0$. It follows that $\mu_{k}\left(\tau_{f}\right) \in S_{(k-1)}^{\beta}$ where $\beta=\left(-1, \alpha_{2}, \ldots, \alpha_{m}\right)$. Thus, by Lemma 3.4, $\bar{\tau}_{f} \in\left(\bar{I}_{k} E\right)^{\beta}=N_{1}^{\beta} \oplus N_{2}^{\beta} \oplus N_{3}^{\beta}$. But $N_{2}^{\beta}=N_{3}^{\beta}=\{0\}$ since the first co-ordinate of β is negative. Thus $\bar{\tau}_{f} \in N_{1}$ and so $P_{k} \subseteq N_{1}$. Since N_{1} is irreducible and $P_{k} \neq\{0\}, P_{k}=N_{1}$.

The map $F_{(k-1)} \rightarrow Q_{k}$ defined by $u \mapsto \bar{\xi}_{u}$ is a non-zero $K G$-module epimorphism, and $F_{(k-1)} \cong N(k-2,1)$ by Proposition 1.3. Thus $Q_{k} \cong N(k-2,1)$. Similarly, using the $\operatorname{map} \Phi_{(k-1)}^{*} \rightarrow R_{k}, h \longmapsto \bar{\eta}_{h}$, we obtain $R_{k} \cong N(k-1)$. It follows that $\bar{I}_{k} E=P_{k} \oplus Q_{k} \oplus R_{k}$.
(ii) By Proposition 2.6, $\bar{I}_{k} A$ is a $K G$-submodule of $\bar{I}_{k} E$. Since the τ_{f} and the ξ_{u} are automorphisms, $P_{k} \oplus Q_{k} \subseteq \bar{I}_{k} A$. Let $h=s_{1}^{k-1} \in \Phi_{(k-1)}^{*}$. Thus $\eta_{h}\left(y_{l}\right)=y_{t}+y_{l}\left(\mathrm{ad}^{k-1} y_{1}\right)$ for all i and

$$
\mu\left(\eta_{h}\right)=1+t_{1}^{k-2}\left(\left(-t_{2} e_{12}+t_{1} e_{22}\right)+\cdots+\left(-t_{m} e_{1 m}+t_{1} e_{m m}\right)\right) .
$$

Since $\bar{\eta}_{h} \in R_{k}$ it is enough to prove that $\bar{\eta}_{h} \notin \bar{I}_{k} A$. Suppose to get a contradiction that $\bar{\eta}_{h} \in \bar{I}_{k} A$. Then $\eta_{h} \equiv_{k+1} \phi$ for some $\phi \in I_{k} A$. Hence $\mu\left(\eta_{h}\right) \equiv \mu(\phi)\left(\bmod M^{(k)}\right)$ and the determinants of $\mu\left(\eta_{h}\right)$ and $\mu(\phi)$ are congruent modulo $\Omega^{(k)}$. But

$$
\operatorname{det} \mu\left(\eta_{h}\right)=\left(1+t_{1}^{k-1}\right)^{m-1} \equiv 1+(m-1) t_{1}^{k-1}\left(\bmod \Omega^{(k)}\right)
$$

Hence $\operatorname{det} \mu(\phi) \equiv 1+(m-1) t_{1}^{k-1}\left(\bmod \Omega^{(k)}\right)$. On the other hand, by Proposition 3.2, $\mu(\phi)$ is invertible and so $\operatorname{det} \mu(\phi)$ is a unit of Ω. This is a contradiction.

By Proposition 2.6, $\bar{I}_{k} T$ is a $K G$-submodule of $\bar{I}_{k} A, k \geq 2$. Our main task now is the calculation of these submodules.

Remark 3.6. $\bar{I}_{2} T=P_{2}=\bar{I}_{2} A$ for all $m \geq 2$, since $Q_{2}=\{0\}$. When $m=2$, $\bar{I}_{k} T=\{0\}$ for all $k \geq 2$, since $I T=\{1\}$.

Lemma 3.7. $\quad \bar{I}_{k} T=\bar{I}_{k} A$ for all $m \geq 3, k \geq 4$.
Proof. By Proposition 3.5, $\bar{I}_{k} A=P_{k} \oplus Q_{k}$ and P_{k} and Q_{k} are irreducible $K G$ modules. Since $P_{k} \subseteq \bar{I}_{k} T$ it suffices to show that $Q_{k} \cap \bar{I}_{k} T \neq\{0\}$. Define $\chi_{1} \in I_{k} T$ by

$$
\chi_{1}\left(y_{3}\right)=y_{3}+y_{2}\left(\mathrm{ad}^{k-1} y_{1}\right), \quad \chi_{1}\left(y_{t}\right)=y_{t} \quad(i \neq 3) .
$$

Then, by an easy calculation, $\mu\left(\chi_{1}\right)=1-t_{1}^{k-2} t_{2} e_{13}+t_{1}^{k-1} e_{23}$. Define $g_{1} \in G$ by $g_{1}\left(y_{1}\right)=$ $y_{1}+y_{3}, g_{1}\left(y_{t}\right)=y_{t}(i \neq 1)$. Then

$$
\begin{aligned}
\mu\left(g_{1} \chi_{1} g_{1}^{-1}\right) & =g_{1}\left(1-g_{1}\left(t_{1}^{k-2} t_{2}\right) e_{13}+g_{1}\left(t_{1}^{k-1}\right) e_{23}\right) g_{1}^{-1} \\
& =\left(1+e_{31}\right)\left(1-\left(t_{1}+t_{3}\right)^{k-2} t_{2} e_{13}+\left(t_{1}+t_{3}\right)^{k-1} e_{23}\right)\left(1-e_{31}\right) \\
& =1+\left(t_{1}+t_{3}\right)^{k-2}\left(t_{2}\left(e_{11}+e_{31}-e_{13}-e_{33}\right)+\left(t_{1}+t_{3}\right)\left(e_{23}-e_{21}\right)\right)
\end{aligned}
$$

$$
\mu_{k}\left(g_{1} \chi_{1} g_{1}{ }^{1}\right)=\left(t_{1}+t_{3}\right)^{k}{ }^{2}\left(t_{2}\left(e_{11}+e_{31}-e_{13}-e_{33}\right)+\left(t_{1}+t_{3}\right)\left(e_{23}-e_{21}\right)\right)
$$

If W is any $K G$-submodule of $\left.M_{(k}{ }_{1}\right)$ and we write W as the sum of weight spaces $W=\oplus_{\alpha} W^{\alpha}$ then $W^{\alpha} \subseteq M_{(k-1)}^{\alpha}$ for all α Thus the weight components of an element w of W coincide with those obtaned by regarding w as an element of $M_{(k-1)}$

The component of $\mu_{k}\left(g_{1} \chi_{1} g_{1}{ }^{1}\right)$ of weight $(k-2,1,0, \quad, 0)$ in $M_{(k}$ i) is easily calculated to be

$$
t_{1}^{k}{ }^{3}\left(t_{1}\left(t_{2} e_{11}-t_{1} e_{21}+t_{3} e_{23}-t_{2} e_{33}\right)+(k-2) t_{3}\left(-t_{2} e_{13}+t_{1} e_{23}\right)\right)
$$

Thus, since $\mu_{k}\left(g_{1} \chi_{1} g_{1}{ }^{1}\right) \in \mu_{k}\left(I_{k} T\right)$, there exists $\zeta_{1} \in I_{k} T$ such that

$$
\mu_{k}\left(\zeta_{1}\right)=t_{1}^{k}{ }^{3}\left(t_{1}\left(t_{2} e_{11}-t_{1} e_{21}+t_{3} e_{23}-t_{2} e_{33}\right)+(k-2) t_{3}\left(-t_{2} e_{13}+t_{1} e_{23}\right)\right)
$$

Sımıarly define $\chi_{2} \in I_{k} T$ by

$$
\chi_{2}\left(y_{3}\right)=y_{3}+y_{2}\left(\operatorname{ad}^{k}{ }^{2} y_{1}\right)\left(\operatorname{ad} y_{2}\right), \quad \chi_{2}\left(y_{t}\right)=y_{t} \quad(t \neq 3),
$$

and $g_{2} \in G$ by $g_{2}\left(y_{2}\right)=y_{2}+y_{3}, g_{2}\left(y_{t}\right)=y_{t}(\imath \neq 2)$ By considering the component of $\mu_{k}\left(g_{2} \chi_{2} g_{2}{ }^{1}\right)$ of weight ($\left.k-2,1,0, \quad, 0\right)$, we find that there exists $\zeta_{2} \in I_{k} T$ such that

$$
\mu_{k}\left(\zeta_{2}\right)=t_{1}^{k}{ }^{3}\left(t_{2}\left(t_{2} e_{12}-t_{1} e_{22}-t_{3} e_{13}+t_{1} e_{33}\right)+t_{3}\left(-t_{2} e_{13}+t_{1} e_{23}\right)\right)
$$

Simılarly define $\tau \in I_{2} T$ by $\tau\left(y_{1}\right)=y_{1}+\left[y_{2}, y_{3}\right], \tau\left(y_{t}\right)=y_{t}(t \neq 1)$ and $g_{3} \in G$ by $g_{3}\left(y_{2}\right)=y_{1}+y_{2}, g_{3}\left(y_{t}\right)=y_{t}(t \neq 2)$ Consideration of the component of $\mu_{2}\left(g_{3} \tau g_{3}{ }^{1}\right)$ of weight $(0,0,1,0, \quad, 0)$ shows that there exists $\sigma \in I_{2} T$ such that $\mu_{2}(\sigma)=t_{3} e_{11}-t_{1} e_{31}-$ $t_{3} e_{22}+t_{2} e_{32}$ Finally define $\zeta_{3} \in I_{k-1} T$ by $\zeta_{3}\left(y_{3}\right)=y_{3}+y_{2}\left(\operatorname{ad}^{k} y_{1}\right), \zeta_{3}\left(y_{t}\right)=y_{t}(\imath \neq 3)$ Thus $\mu_{k} \quad 1\left(\zeta_{3}\right)=t_{1}^{k}{ }^{3}\left(-t_{2} e_{13}+t_{1} e_{23}\right)$

We apply Proposition 33 to the subalgebra $\mathcal{L}(T)$ of $\mathcal{L}(E)$ Let $\omega_{1}=\sigma^{1} \zeta_{3}{ }^{1} \sigma \zeta_{3}$ Then $\omega_{1} \in I_{k} T$ and

$$
\begin{aligned}
\mu_{k}\left(\omega_{1}\right) & =\left[\mu_{2}(\sigma), \mu_{k}\right. \\
& \left.1\left(\zeta_{3}\right)\right] \\
& =t_{1}^{k}\left(t_{1}^{2} e_{21}-t_{1} t_{2} e_{11}+t_{2}^{2} e_{12}-t_{1} t_{2} e_{22}-t_{2} t_{3} e_{13}-t_{1} t_{3} e_{23}+2 t_{1} t_{2} e_{33}\right)
\end{aligned}
$$

By Proposition 26 there exist $\omega_{3}, \omega_{0} \in I_{k} T$ such that

$$
\begin{gathered}
\mu_{k}\left(\omega_{3}\right)=\frac{1}{k-3}\left(\mu_{k}\left(\zeta_{1}\right)-\mu_{k}\left(\zeta_{2}\right)+\mu_{k}\left(\omega_{1}\right)\right)=t_{1}^{k}{ }^{3} t_{3}\left(-t_{2} e_{13}+t_{1} e_{23}\right), \\
\mu_{k}\left(\omega_{0}\right)=-\left(\mu_{k}\left(\zeta_{1}\right)+\mu_{k}\left(\zeta_{2}\right)-k \mu_{k}\left(\omega_{3}\right)\right)=t_{1}^{k}{ }^{3}\left(t_{1}\left(-t_{2} e_{11}+t_{1} e_{21}\right)+t_{2}\left(-t_{2} e_{12}+t_{1} e_{22}\right)\right)
\end{gathered}
$$

By replacing y_{3} with $y_{p}(3 \leq p \leq m)$ in the above calculation we obtain automorphisms $\omega_{p} \in I_{k} T$ such that

$$
\mu_{k}\left(\omega_{p}\right)=t_{1}^{k} t_{p}\left(-t_{2} e_{1 p}+t_{1} e_{2 p}\right)
$$

Let $\omega=\omega_{0} \omega_{3} \omega_{4} \quad \omega_{m}$ Then $\omega \in I_{k} T$ and

$$
\mu_{k}(\omega)=\mu_{k}\left(\omega_{0}\right)+\sum_{p 3}^{m} \mu_{k}\left(\omega_{p}\right)=\sum_{p 1}^{m} t_{1}^{k}{ }^{3} t_{p}\left(-t_{2} e_{1 p}+t_{1} e_{2 p}\right)
$$

Hence $\mu_{k}(\omega)=\mu_{k}\left(\xi_{u}\right)$ where $u=-y_{2}\left(\operatorname{ad}^{k}{ }^{2} y_{1}\right)$ Thus $\bar{\omega}=\bar{\xi}_{u}$ is a non-zero element of $Q_{k} \cap \bar{I}_{k} T$

Lemma 3.8. $\quad \bar{I}_{3} T=\bar{I}_{3} A$ for all $m \geq 4$.
Proof. As in Lemma 3.7 it is enough to show that $Q_{3} \cap \bar{I}_{3} T \neq\{0\}$. Define $\sigma_{1}, \sigma_{2} \in$ $I_{2} T$ by $\sigma_{1}\left(y_{4}\right)=y_{4}+\left[y_{1}, y_{3}\right], \sigma_{1}\left(y_{t}\right)=y_{t}(i \neq 4), \sigma_{2}\left(y_{3}\right)=y_{3}+\left[y_{2}, y_{4}\right], \sigma_{2}\left(y_{t}\right)=y_{t}$ $(i \neq 3)$. Thus

$$
\mu_{2}\left(\sigma_{1}\right)=t_{3} e_{14}-t_{1} e_{34}, \quad \mu_{2}\left(\sigma_{2}\right)=t_{4} e_{23}-t_{2} e_{43} .
$$

Let $\gamma_{1}=\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}$. Then $\gamma_{1} \in I_{3} T$ and

$$
\mu_{3}\left(\gamma_{1}\right)=\left[\mu_{2}\left(\sigma_{1}\right), \mu_{2}\left(\sigma_{2}\right)\right]=t_{2}\left(-t_{3} e_{13}+t_{1} e_{33}\right)+t_{1}\left(t_{4} e_{24}-t_{2} e_{44}\right) .
$$

Analogously, define $\rho_{1}, \rho_{2} \in I_{2} T$ by $\rho_{1}\left(y_{4}\right)=y_{4}+\left[y_{2}, y_{3}\right], \rho_{1}\left(y_{t}\right)=y_{t}(i \neq 4), \rho_{2}\left(y_{3}\right)=$ $y_{3}+\left[y_{1}, y_{4}\right], \rho_{2}\left(y_{l}\right)=y_{l}(i \neq 3)$. Let $\gamma_{2}=\rho_{1}^{-1} \rho_{2}^{-1} \rho_{1} \rho_{2} \in I_{3} T$ and $\gamma=\gamma_{1} \gamma_{2}^{-1} \in I_{3} T$. Then

$$
\begin{gathered}
\mu_{3}\left(\gamma_{2}\right)=t_{1}\left(-t_{3} e_{23}+t_{2} e_{33}\right)+t_{2}\left(t_{4} e_{14}-t_{1} e_{44}\right), \\
\mu_{3}(\gamma)=\mu_{3}\left(\gamma_{1}\right)-\mu_{3}\left(\gamma_{2}\right)=t_{3}\left(-t_{2} e_{13}+t_{1} e_{23}\right)+t_{4}\left(-t_{2} e_{14}+t_{1} e_{24}\right) .
\end{gathered}
$$

Now we make use of $\zeta_{1}, \zeta_{2} \in I_{3} T$ as obtained in the proof of Lemma 3.7, but with $k=3$. Let $\psi_{1}=\zeta_{1} \zeta_{2} \in I_{3} T$. Then we have

$$
\begin{gathered}
\mu_{3}\left(\zeta_{1}\right)=t_{1}\left(t_{2} e_{11}-t_{1} e_{21}+t_{3} e_{23}-t_{2} e_{33}\right)+t_{3}\left(-t_{2} e_{13}+t_{1} e_{23}\right), \\
\mu_{3}\left(\zeta_{2}\right)=t_{2}\left(t_{2} e_{12}-t_{1} e_{22}-t_{3} e_{13}+t_{1} e_{33}\right)+t_{3}\left(-t_{2} e_{13}+t_{1} e_{23}\right), \\
\mu_{3}\left(\psi_{1}\right)=t_{1}\left(t_{2} e_{11}-t_{1} e_{21}\right)+t_{2}\left(t_{2} e_{12}-t_{1} e_{22}\right)-3 t_{3}\left(t_{2} e_{13}-t_{1} e_{23}\right) .
\end{gathered}
$$

Similarly there exists $\psi_{2} \in I_{3} T$ such that

$$
\mu_{3}\left(\psi_{2}\right)=t_{1}\left(t_{2} e_{11}-t_{1} e_{21}\right)+t_{2}\left(t_{2} e_{12}-t_{1} e_{22}\right)-3 t_{4}\left(t_{2} e_{14}-t_{1} e_{24}\right) .
$$

Thus there exist $\omega_{0}, \omega_{3} \in I_{3} T$ such that

$$
\begin{gathered}
\mu_{3}\left(\omega_{0}\right)=\frac{1}{2}\left(-\mu_{3}\left(\psi_{1}\right)-\mu_{3}\left(\psi_{2}\right)+3 \mu_{3}(\gamma)\right)=t_{1}\left(-t_{2} e_{11}+t_{1} e_{21}\right)+t_{2}\left(-t_{2} e_{12}+t_{1} e_{22}\right) \\
\mu_{3}\left(\omega_{3}\right)=\frac{1}{3}\left(\mu_{3}\left(\omega_{0}\right)+\mu_{3}\left(\psi_{1}\right)\right)=t_{3}\left(-t_{2} e_{13}+t_{1} e_{23}\right)
\end{gathered}
$$

The proof can now be completed as in Lemma 3.7.
Lemma 3.9. For $m=3$, the Lie algebra $\mathcal{L}(A)$ satisfies $\left[\bar{I}_{2} A, \bar{I}_{2} A\right]=P_{3} \subset{ }_{\neq} \bar{I}_{3} A$.
Proof. By Remark 3.6, $\bar{I}_{2} A=P_{2}$ and, by Proposition 3.5, $\bar{I}_{3} A=P_{3} \oplus Q_{3}$, where P_{3} and Q_{3} are non-isomorphic irreducible modules. Since $\left[P_{2}, P_{2}\right]$ is a submodule of $\bar{I}_{3} A$ it suffices to show that $\left[P_{2}, P_{2}\right]$ does not contain Q_{3} and $\left[P_{2}, P_{2}\right] \neq\{0\}$. Since $Q_{3} \cong N\left(1^{2}\right)$ we have $Q_{3}^{(1,1,0)} \neq\{0\}$. Therefore it suffices to prove that $\{0\} \neq\left[P_{2}, P_{2}\right]^{(1,1,0)} \subseteq P_{3}$. We shall work in $S_{(1)}$ and $S_{(2)}$ (using Proposition 3.3 and Lemma 3.4). Let $V=\bar{\mu}_{2}\left(P_{2}\right)=$ $\mu_{2}\left(I_{2} A\right) \subseteq S_{(1)}$,

$$
C=\bar{\mu}_{3}\left(\left[P_{2}, P_{2}\right]\right)=\left[\bar{\mu}_{2}\left(P_{2}\right), \bar{\mu}_{2}\left(P_{2}\right)\right]=[V, V] \subseteq S_{(2)}
$$

and $D=\bar{\mu}_{3}\left(P_{3}\right) \subseteq S_{(2)}$. We wish to prove that $\{0\} \neq C^{(1,1,0)} \subseteq D$.
Since $V \cong P_{2} \cong(\operatorname{det})^{-1} \otimes_{K} N\left(2^{2}\right), V^{\alpha} \neq\{0\}$ only for

$$
\alpha \in\{(-1,1,1),(1,-1,1),(1,1,-1),(1,0,0),(0,1,0),(0,0,1)\},
$$

when V^{α} is one-dimensional. It is easy to verify that, for all $\alpha, \beta,\left[V^{\alpha}, V^{\beta}\right] \subseteq[V, V]^{\alpha+\beta}$, where $\alpha+\beta$ is the componentwise sum. But $C=\left[\Sigma V^{\alpha}, \Sigma V^{\beta}\right]=\Sigma\left[V^{\alpha}, V^{\beta}\right]$. Thus

$$
C^{(1,1,0)}=\sum_{\alpha+\beta=(1,1,0)}\left[V^{\alpha}, V^{\beta}\right]=\left[V^{(1,1,-1)}, V^{(0,0,1)}\right]+\left[V^{(1,0,0)}, V^{(0,1,0)}\right] .
$$

Let $\pi, \psi \in I_{2} A$ be defined by $\pi\left(y_{3}\right)=y_{3}+\left[y_{2}, y_{1}\right], \pi\left(y_{t}\right)=y_{t}(i \neq 3), \psi\left(y_{2}\right)=y_{2}+\left[y_{3}, y_{1}\right]$, $\psi\left(y_{t}\right)=y_{t}(i \neq 2)$, and let $g \in G$ be given by $g\left(y_{3}\right)=y_{2}+y_{3}, g\left(y_{t}\right)=y_{t}(i \neq 3)$. Let $\theta_{1}=\pi \psi^{-1} g \psi g^{-1} \in I_{2} A$. Then, by easy calculations,

$$
\mu_{2}(\pi)=-t_{2} e_{13}+t_{1} e_{23}, \quad \mu_{2}\left(\theta_{1}\right)=-t_{2} e_{12}+t_{1} e_{22}+t_{3} e_{13}-t_{1} e_{33} .
$$

Similarly there exist $\theta_{2}, \theta_{3} \in I_{2} A$ such that

$$
\begin{aligned}
& \mu_{2}\left(\theta_{2}\right)=-t_{3} e_{23}+t_{2} e_{33}+t_{1} e_{21}-t_{2} e_{11}, \\
& \mu_{2}\left(\theta_{3}\right)=-t_{1} e_{31}+t_{3} e_{11}+t_{2} e_{32}-t_{3} e_{22} .
\end{aligned}
$$

It follows that $V^{(1,1,-1)}, V^{(1,0,0)}, V^{(0,1,0)}, V^{(0,0,1)}$ are spanned by the elements $\mu_{2}(\pi), \mu_{2}\left(\theta_{1}\right)$, $\mu_{2}\left(\theta_{2}\right), \mu_{2}\left(\theta_{3}\right)$, respectively. Thus $C^{(1,1,0)}$ is spanned by $c_{1}=\left[\mu_{2}(\pi), \mu_{2}\left(\theta_{3}\right)\right]$ and $c_{2}=$ [$\left.\mu_{2}\left(\theta_{1}\right), \mu_{2}\left(\theta_{2}\right)\right]$. By direct calculation,

$$
\begin{gathered}
c_{1}=t_{1}\left(t_{2} e_{11}-t_{1} e_{21}\right)+t_{2}\left(-t_{2} e_{12}+t_{1} e_{22}\right)+t_{2} t_{3} e_{13}+t_{1} t_{3} e_{23}-2 t_{1} t_{2} e_{33}, \\
c_{2}=t_{1}\left(-t_{2} e_{11}+t_{1} e_{21}\right)+t_{2}\left(-t_{2} e_{12}+t_{1} e_{22}\right)+3 t_{3}\left(t_{2} e_{13}-t_{1} e_{23}\right) .
\end{gathered}
$$

In particular $C^{(1,1,0)} \neq\{0\}$.
Now we use $\chi_{1}, \chi_{2}, \zeta_{1}, \zeta_{2} \in I_{3} T$ as in the proof of Lemma 3.7 (but with $k=3$). It is easy to see that $\bar{\chi}_{1}, \bar{\chi}_{2} \in P_{3}$. Thus $\mu_{3}\left(\chi_{1}\right), \mu_{3}\left(\chi_{2}\right) \in D$. Because $\mu_{3}\left(\zeta_{1}\right), \mu_{3}\left(\zeta_{2}\right)$ are weight components of $\mu_{3}\left(\chi_{1}\right), \mu_{3}\left(\chi_{2}\right)$ we obtain $\mu_{3}\left(\zeta_{1}\right), \mu_{3}\left(\zeta_{2}\right) \in D$. It is easy to see that $c_{1}=\mu_{3}\left(\zeta_{1}\right)-\mu_{3}\left(\zeta_{2}\right)$ and $c_{2}=-\mu_{3}\left(\zeta_{1}\right)-\mu_{3}\left(\zeta_{2}\right)$. Thus $C^{(1,1,0)} \subseteq D$, as required.

Lemma 3.10. For $m=3, \bar{I}_{3} T=P_{3} \subset \bar{I}_{3} A$.
Proof. As we saw earlier, $I T$ is generated by the automorphisms $g \tau_{f} g^{-1}$ where $g \in$ $G=\mathrm{GL}_{3}(K), f$ is a homogeneous element of $F\left(y_{2}, y_{3}\right)^{\prime}$ and τ_{f} is defined by $\tau_{f}\left(y_{1}\right)=y_{1}+f$, $\tau_{f}\left(y_{2}\right)=y_{2}, \tau_{f}\left(y_{3}\right)=y_{3}$. We have $\mu\left(\tau_{f}\right)=1+f_{2} e_{21}+f_{3} e_{31}$ where $f_{2}, f_{3} \in K\left[t_{2}, t_{3}\right] \subseteq$ $K\left[t_{1}, t_{2}, t_{3}\right]$. Hence $\left(\mu\left(\tau_{f}\right)-1\right)^{2}=0$. Also, for all $g \in G$,

$$
\mu\left(g \tau_{f} g^{-1}\right)=g\left(1+g\left(f_{2}\right) e_{21}+g\left(f_{3}\right) e_{31}\right) g^{-1}
$$

Hence $\left(\mu\left(g \tau_{f} g^{-1}\right)-1\right)^{2}=0$.
Let $\phi \in I_{3} T$. Since $\phi \in I T$, there exist homogeneous elements f_{1}, \ldots, f_{n} of $F\left(y_{2}, y_{3}\right)^{\prime}$ and elements g_{1}, \ldots, g_{n} of G such that $\phi=\phi_{1} \phi_{2} \cdots \phi_{n}$ where $\phi_{l}=g_{l} \tau_{f_{i}} g_{l}^{-1}, i=1, \ldots, n$.
(Note that $\left(g \tau_{f} g^{-1}\right)^{-1}=g \tau_{-f} g^{-1}$.) Write $\mu\left(\phi_{l}\right)=1+u_{t}, i=1, \ldots, n$. Thus each u_{t} is homogeneous of degree at least 1 and

$$
\mu(\phi)=\left(1+u_{1}\right) \cdots\left(1+u_{n}\right) \equiv 1+\left(u_{1}+\cdots+u_{n}\right)+\sum_{l<j} u_{l} u_{j}\left(\bmod M^{(3)}\right) .
$$

Let those u_{l} of degree 1 be v_{1}, \ldots, v_{p} (taken in the same order as in u_{1}, \ldots, u_{n}) and let those u_{l} of degree 2 be w_{1}, \ldots, w_{q}. Then

$$
\mu(\phi) \equiv 1+\left(v_{1}+\cdots+v_{p}\right)+\left(w_{1}+\cdots+w_{q}\right)+\sum_{k<j} v_{l} v_{j}\left(\bmod M^{(3)}\right) .
$$

Since $\phi \in I_{3} T, \mu(\phi) \equiv 1\left(\bmod M^{(2)}\right)$. Thus $v_{1}+\cdots+v_{p}=0$ and

$$
\mu_{3}(\phi)=\left(w_{1}+\cdots+w_{q}\right)+\sum_{i<j} v_{l} v_{j} .
$$

Since $\left(\mu\left(\phi_{l}\right)-1\right)^{2}=0$ for all i we have $v_{1}^{2}=\cdots=v_{p}^{2}=0$. Thus

$$
\begin{gathered}
0=\left(v_{1}+\cdots+v_{p}\right)^{2}=\sum_{l<j}\left(v_{l} v_{J}+v_{j} v_{l}\right), \\
\sum_{k<j} v_{l} v_{j}=\frac{1}{2} \sum_{k<j}\left[v_{l}, v_{j}\right], \\
\mu_{3}(\phi)=\left(w_{1}+\cdots+w_{q}\right)+\frac{1}{2} \sum_{l<j}\left[v_{l}, v_{J}\right] .
\end{gathered}
$$

By the definition of $w_{1}, \ldots, w_{q}, v_{1}, \ldots, v_{p}$ we have $w_{1}, \ldots, w_{q} \in \bar{\mu}_{3}\left(P_{3}\right)$ and $v_{1}, \ldots, v_{p} \in$ $\bar{\mu}_{2}\left(P_{2}\right)=\bar{\mu}_{2}\left(\bar{I}_{2} A\right)$. Thus, by Lemma 3.9, $\left[v_{l}, v_{j}\right] \in \bar{\mu}_{3}\left(P_{3}\right)$ for all i, j. Hence $\mu_{3}(\phi) \in$ $\bar{\mu}_{3}\left(P_{3}\right)$. This holds for all $\phi \in I_{3} T$ and so $\bar{I}_{3} T \subseteq P_{3}$. The result follows since $P_{3} \subseteq \bar{I}_{3} T$ and $Q_{3} \neq\{0\}$.

We now obtain the main result of this section.
TheOrem 3.11. Let T be the group of tame automorphisms of the free metabelian Lie algebra of finite rank $m \geq 2$.
(i) For $m \geq 4, T$ is dense in $A=$ Aut F.
(ii) For $m=2$ and $m=3, T$ is not dense in A and so F possesses non-tame automorphisms.

PROOF. (i) By Corollary 2.9 it suffices to show that $\mathcal{L}(T)=\mathcal{L}(A)$; that is, $\bar{I}_{k} T=\bar{I}_{k} A$ for all $k \geq 2$. This follows from Remark 3.6, Lemma 3.7 and Lemma 3.8.
(ii) It suffices to show that $\mathcal{L}(T) \neq \mathcal{L}(A)$. For $m=2, \mathcal{L}(T)=\{0\}$, by Remark 3.6, and $\mathcal{L}(A) \neq\{0\}$ since $Q_{3} \neq\{0\}$. For $m=3, \mathcal{L}(T) \neq \mathcal{L}(A)$ by Lemma 3.10.

References

1. D J Anıck, Lımıts of tame automorphısms of $k\left[x_{1}, \quad, x_{N}\right]$, J Algebra 82(1983), 459-468
2. S Bachmuth, Automorphisms of free metabelian groups, Trans Amer Math Soc 118(1965), 93-104
3. S Bachmuth and H Y Mochizukı, The nonfinte generation of $\operatorname{Aut}(G)$, G free metabelian of rank 3, Trans Amer Math Soc 270(1982), 693-700
4. $\quad \operatorname{Aut}(F) \rightarrow \operatorname{Aut}\left(F / F^{\prime \prime}\right)$ is surjective for free group F of rank ≥ 4, Trans Amer Math Soc 292(1985), 81-101
5. Yu A Bahturin, Identical relations in Lie algebras, Nauka, Moscow, 1985, Russian, Translation, VNU Science Press, Utrecht, 1987
6. Yu A Bahturin and S Nabıyev, Automorphisms andderivatıons of abelian extensions of some Lie algebras, Abh Math Sem Unıv Hamburg, 62(1992), 43-57
7. O Chein, IA automorphisms of free and free metabelian groups, Comm Pure Appl Math 21(1968), 605629
8. P M Cohn, Subalgebras of free assoclative algebras, Proc London Math Soc (3) 14(1964), 618-632
9. V Drensky and C K Gupta, Automorphisms of free nilpotent Lie algebras, Canad J Math 42(1990), 259-279
10. J A Green, Polynomial representations of GL_{n}, Lecture Notes in Math 830, Springer-Verlag, Berlin Heidelberg-New York, 1980
11. I G Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, Oxford, 1979
12. V A Roman'kov, Groups of automorphisms of free metabelian groups In Problems of relations between abstract and applied algebra, Russian, Novosibirsk, (1985), 53-80
13. J-P Serre, Lie algebras and Lie groups, W A Benjamın Inc, New York-Amsterdam, 1965
14. A L Shmel'kin, Wreath products of Lie algebras and their application in the theory of groups, Trudy Moskov Mat Obshch 29(1973), 247-260, Russian, Translatıon, Trans Moscow Math Soc 29(1973), 239-252

Department of Mathematics

Universtty of Manchester Institute of Sctence and Technology
Manchester, M60 1QD
United Kingdom

Institute of Mathematics
Bulgarian Academy of Sciences
Sofia
Bulgaria

