A Comment on "p $<\mathrm{t}^{\prime \prime}$

Saharon Shelah

Abstract. Dealing with the cardinal invariants \mathfrak{p} and t of the continuum, we prove that $\mathfrak{m}=\mathfrak{p}=$ $\aleph_{2} \Rightarrow t=\aleph_{2}$. In other words, if $\mathbf{M A}_{\aleph_{1}}$ (or a weak version of this) holds, then (of course $\aleph_{2} \leq \mathfrak{p} \leq \mathrm{t}$ and) $\mathfrak{p}=\aleph_{2} \Rightarrow \mathfrak{p}=t$. The proof is based on a criterion for $\mathfrak{p}<t$.

Introduction

We are interested in two cardinal invariants of the continuum, \mathfrak{p} and t. The cardinal \mathfrak{p} measures when a family of infinite subsets of ω with finite intersection property has a pseudo-intersection. A relative is t , which deals with towers, i.e., families well ordered by almost inclusion. These are closely related classical cardinal invariants. Rothberger $[7,8]$ proved (stated in our terminology) that $\mathfrak{p} \leq \mathrm{t}$ and $\mathfrak{p}=\aleph_{1} \Rightarrow \mathfrak{p}=\mathrm{t}$, and he asked if $\mathfrak{p}=\mathrm{t}$.

Our main result is Corollary 2.5, stating that $\mathfrak{m}=\mathfrak{p}=\aleph_{2} \Rightarrow \mathfrak{p}=\mathfrak{t}$, where \mathfrak{m} is the minimal cardinal λ such that Martin's Axiom for λ dense sets fails (i.e., $\neg \mathbf{M A}_{\lambda}$). Considering that $\mathrm{m} \geq \aleph_{1}$ is a theorem (of ZFC), the parallelism with Rothberger's theorem is clear. The reader may conclude that probably $\mathfrak{m}=\mathfrak{p} \Rightarrow \mathfrak{p}=\mathfrak{t}$; this is not unreasonable, but we believe that eventually one should be able to show

$$
\operatorname{CON}\left(\mathfrak{m}=\lambda+\mathfrak{p}=\lambda+\mathfrak{t}=\lambda^{+}\right) .
$$

In Section 1 we present a characterization of $\mathfrak{p}<t$ that is crucial for the proof of Corollary 2.5, and which also sheds some light on the strategy to approach the question of $\mathfrak{p}<\mathrm{t}$ presented in [9].

Notation Our notation is rather standard and compatible with that of classical textbooks (like Bartoszyński and Judah [3]). In forcing we keep the older convention that the stronger condition is the larger one.
(1) Ordinal numbers will be denoted by the lower case initial letters of the Greek alphabet $(\alpha, \beta, \gamma, \ldots)$ and also by i, j (with possible sub and superscripts).
(2) Cardinal numbers will be called $\kappa, \kappa_{i}, \lambda$.
(3) A bar above a letter denotes that the considered object is a sequence; usually \bar{X} will be $\left\langle X_{i}: i<\zeta\right\rangle$, where ζ is the length $\ell g(\bar{X})$ of \bar{X}. Sometimes our sequences will be indexed by a set of ordinals, say $S \subseteq \lambda$, and then \bar{X} will typically be $\left\langle X_{\delta}: \delta \in S\right\rangle$.

[^0](4) The set of all infinite subsets of the set ω of natural numbers is denoted by $[\omega]^{\aleph_{0}}$, and the relation of almost inclusion on $[\omega]^{\aleph_{0}}$ is denoted by \subseteq^{*}. Thus for $A, B \in$ $[\omega]^{\aleph_{0}}$ we write $A \subseteq^{*} B$ if and only if $A \backslash B$ is finite.
(5) The relations of eventual dominance on the Baire space ${ }^{\omega} \omega$ are called \leq^{*} and $<^{*}$. Thus, for $f, g \in{ }^{\omega} \omega$,

- $f \leq^{*} g$ if and only if $\left(\forall^{\infty} n<\omega\right)(f(n) \leq g(n))$ and
- $f<^{*} g$ if and only if $\left(\forall^{\infty} n<\omega\right)(f(n)<g(n))$.

1 A Criterion

In this section our aim is to prove Theorem 1.12, stating that $\mathfrak{p}<\mathrm{t}$ implies the existence of a peculiar cut in $\left({ }^{\omega} \omega,<^{*}\right)$. This also gives the background for our attempts in [9] to make progress on the consistency of $\mathfrak{p}<\mathrm{t}$.

Definition 1.1 (1) We say that a set $A \in[\omega]^{\aleph_{0}}$ is a pseudo-intersection of a family $\mathcal{B} \subseteq[\omega]^{\aleph_{0}}$ if $A \subseteq \subseteq^{*} B$ for all $B \in \mathcal{B}$.
(2) A sequence $\left\langle X_{\alpha}: \alpha<\kappa\right\rangle \subseteq[\omega]^{\aleph_{0}}$ is a tower if $X_{\beta} \subseteq^{*} X_{\alpha}$ for $\alpha<\beta<\kappa$ but the family $\left\{X_{\alpha}: \alpha<\kappa\right\}$ has no pseudo-intersection.
(3) \mathfrak{p} is the minimal cardinality of a family $\mathcal{B} \subseteq[\omega]^{\aleph_{0}}$ such that the intersection of any finite subcollection of \mathcal{B} is infinite but \mathcal{B} has no pseudo-intersection, and t is the smallest size of a tower.

A lot of results have been accumulated on these two cardinal invariants. For instance:

- Bell [4] showed that \mathfrak{p} is the first cardinal μ for which $\mathbf{M A}_{\mu}$ (σ-centered) fails.
- Szymański proved that \mathfrak{p} is regular (see, e.g., Fremlin [5, Proposition 21K]).
- Piotrowski and Szymański [6] showed that $\mathrm{t} \leq \operatorname{add}(\mathcal{M})$ (so also $\mathrm{t} \leq \mathfrak{b}$).

For more results and discussion we refer the reader to [3, §1.3, §2.2].
Definition 1.2 We say that a family $\mathcal{B} \subseteq[\omega]^{\aleph_{0}}$ exemplifies \mathfrak{p} if:

- \mathcal{B} is closed under finite intersections (i.e., $A, B \in \mathcal{B} \Rightarrow A \cap B \in \mathcal{B}$), and
- \mathcal{B} has no pseudo-intersection and $|\mathcal{B}|=\mathfrak{p}$.

Proposition 1.3 Assume $\mathfrak{p}<t$ and let \mathcal{B} exemplify \mathfrak{p}. Then there are a cardinal $\kappa=\operatorname{cf}(\kappa)<\mathfrak{p}$ and $a \subseteq^{*}$-decreasing sequence $\left\langle A_{i}: i<\kappa\right\rangle \subseteq[\omega]^{\aleph_{0}}$ such that
(a) $A_{i} \cap B$ is infinite for every $i<\kappa$ and $B \in \mathcal{B}$, and
(b) if A is a pseudo-intersection of $\left\{A_{i}: i<\kappa\right\}$, then for some $B \in \mathcal{B}$ the intersection $A \cap B$ is finite.

Proof Fix an enumeration $\mathcal{B}=\left\{B_{i}: i<\mathfrak{p}\right\}$. By induction on $i<\mathfrak{p}$ we try to choose $A_{i} \in[\omega]^{\aleph_{0}}$ such that
(i) $A_{i} \subseteq^{*} A_{j}$ whenever $j<i$;
(ii) $B \cap A_{i}$ is infinite for each $B \in \mathcal{B}$;
(iii) if $i=j+1$, then $A_{i} \subseteq B_{j}$.

If we succeed, then $\left\{A_{i}: i<\mathfrak{p}\right\}$ has no pseudo-intersection, so $\mathfrak{t} \leq \mathfrak{p}$, a contradiction. So for some $i<\mathfrak{p}$ we cannot choose A_{i}. Such an i is easily a limit ordinal; let $\kappa=\operatorname{cf}(i)$ (so $\kappa \leq i<\mathfrak{p}$). Pick an increasing sequence $\left\langle j_{\varepsilon}: \varepsilon<\kappa\right\rangle$ with limit i. Then $\left\langle A_{j_{\varepsilon}}: \varepsilon<\kappa\right\rangle$ is as required.

Remark 1.4. Concerning Proposition 1.3, let us note that Todorčević and Veličković used this idea in [10, Thm 1.5] to exhibit a σ-linked poset of size \mathfrak{p} that is not σ-centered.

Lemma 1.5 Assume that

(i) $\bar{A}=\left\langle A_{i}: i<\delta\right\rangle$ is a sequence of members of $[\omega]^{\aleph_{0}}, \delta<\mathrm{t}$,
(ii) $\bar{B}=\left\langle B_{n}: n<\omega\right\rangle \subseteq[\omega]^{\aleph_{0}}$ is \subseteq^{*}-decreasing,
(iii) for each $i<\delta$ and $n<\omega$ the intersection $A_{i} \cap B_{n}$ is infinite, and
(iv) $(\forall i<j<\delta)(\exists n<\omega)\left(A_{j} \cap B_{n} \subseteq^{*} A_{i} \cap B_{n}\right)$.

Then for some $A \in[\omega]^{\aleph_{0}}$ we have

$$
(\forall i<\delta)\left(A \subseteq^{*} A_{i}\right) \text { and }(\forall n<\omega)\left(A \subseteq^{*} B_{n}\right)
$$

Proof Without loss of generality $B_{n+1} \subseteq B_{n}$ and $\varnothing=\bigcap\left\{B_{n}: n<\omega\right\}$ (as we may use $\left.B_{n}^{\prime}=\bigcap_{\ell \leq n} B_{\ell} \backslash\{0, \ldots, n\}\right)$. For each $i<\delta$, let $f_{i} \in{ }^{\omega} \omega$ be defined by

$$
f_{i}(n)=\min \left\{k \in B_{n} \cap A_{i}: k>f_{i}(m) \text { for every } m<n\right\}+1 .
$$

Since $\mathrm{t} \leq \mathfrak{b}$, there is $f \in{ }^{\omega} \omega$ such that $(\forall i<\kappa)\left(f_{i}<^{*} f\right)$ and $n<f(n)<f(n+1)$ for $n<\omega$. Let

$$
B^{*}=\bigcup\left\{\left(B_{n+1} \cap[n, f(n+1)): n<\omega\right\} .\right.
$$

Then $B^{*} \in[\omega]^{\aleph_{0}}$ as for n large enough,

$$
\min \left[A_{0} \cap B_{n+1} \backslash[0, n)\right] \leq f_{0}(n+1)<f(n+1)
$$

Clearly for each $n<\omega$ we have $B^{*} \backslash[0, f(n)) \subseteq B_{n}$, and hence $B^{*} \subseteq^{*} B_{n}$. Moreover, $(\forall i<\kappa)\left(A_{i} \cap B^{*} \in[\omega]^{\aleph_{0}}\right)$ (as above) and $(\forall i<j<\kappa)\left(A_{j} \cap B^{*} \subseteq^{*} A_{i} \cap B^{*}\right)$ (remember assumption (iv)). Now applying $\mathrm{t}>\delta$ to $\left\langle A_{i} \cap B^{*}: i<\delta\right\rangle$ we get a pseudo-intersection A, which is as required.

Definition 1.6 (1) Let \mathbf{S} be the family of all sequences $\bar{\eta}=\left\langle\eta_{n}: n \in B\right\rangle$ such that $B \in[\omega]^{\aleph_{0}}$, and for $n \in B, \eta_{n} \in{ }^{[n, k)} 2$ for some $k \in(n, \omega)$. We let $\operatorname{dom}(\bar{\eta})=B$ and let $\operatorname{set}(\bar{\eta})=\bigcup\left\{\operatorname{set}\left(\eta_{n}\right): n \in \operatorname{dom}(\bar{\eta})\right\}$, where $\operatorname{set}\left(\eta_{n}\right)=\left\{\ell: \eta_{n}(\ell)=1\right\}$.
(2) For $\bar{A}=\left\langle A_{i}: i<\alpha\right\rangle \subseteq[\omega]^{\aleph_{0}}$, let

$$
\mathbf{S}_{\bar{A}}=\left\{\bar{\eta} \in \mathbf{S}:(\forall i<\alpha)\left(\operatorname{set}(\bar{\eta}) \subseteq^{*} A_{i}\right) \text { and }(\forall n \in \operatorname{dom}(\bar{\eta}))\left(\operatorname{set}\left(\eta_{n}\right) \neq \varnothing\right)\right\} .
$$

(3) For $\bar{\eta}, \bar{\nu} \in \mathbf{S}$, let $\bar{\eta} \leq^{*} \bar{\nu}$ mean that for every n large enough,

$$
n \in \operatorname{dom}(\bar{\nu}) \Rightarrow n \in \operatorname{dom}(\bar{\eta}) \wedge \eta_{n} \unlhd \nu_{n}
$$

(where $\eta_{n} \unlhd \nu_{n}$ means " η_{n} is an initial segment of ν_{n} ").
(4) For $\bar{\eta}, \bar{\nu} \in \mathbf{S}$, let $\bar{\eta} \leq^{* *} \bar{\nu}$ mean that for every $n \in \operatorname{dom}(\bar{\nu})$ large enough, for some $m \in \operatorname{dom}(\bar{\eta})$ we have $\eta_{m} \subseteq \nu_{n}$ (as functions).
(5) For $\bar{\eta} \in \mathbf{S}$, let $C_{\bar{\eta}}=\left\{\nu \in{ }^{\omega} 2:\left(\exists^{\infty} n\right)\left(\eta_{n} \subseteq \nu\right)\right\}$.

Observation 1.7 (1) If $\bar{\eta} \leq^{*} \bar{\nu}$, then $\bar{\eta} \leq^{* *} \bar{\nu}$, which implies $C_{\bar{\nu}} \subseteq C_{\bar{\eta}}$.
(2) For every $\bar{\eta} \in \mathbf{S}$ and a meagre set $B \subseteq{ }^{\omega}$ 2, there is $\bar{\nu} \in \mathbf{S}$ such that $\bar{\eta} \leq^{*} \bar{\nu}$ and $C_{\bar{\nu}} \cap B=\varnothing$.

Lemma 1.8 (1) If $\bar{A}=\left\langle A_{i}: i\left\langle i^{*}\right\rangle \subseteq[\omega]^{\aleph_{0}}\right.$ has finite intersection property and $i^{*}<\mathfrak{p}$, then $\mathbf{S}_{\bar{A}} \neq \varnothing$.
(2) Every \leq^{*}-increasing sequence of members of \mathbf{S} of length $<t$ has an \leq^{*}-upper bound.
(3) If $\bar{A}=\left\langle A_{i}: i\left\langle i^{*}\right\rangle \subseteq[\omega]^{\aleph_{0}}\right.$ is \subseteq^{*}-decreasing and $i^{*}<\mathfrak{p}$, then every \leq^{*}-increasing sequence of members of $\mathbf{S}_{\bar{A}}$ of length $<\mathfrak{p}$ has an \leq^{*}-upper bound in $\mathbf{S}_{\bar{A}}$.

Proof (1) Let $A \in[\omega]^{\aleph_{0}}$ be such that $\left(\forall i<i^{*}\right)\left(A \subseteq^{*} A_{i}\right)$ (exists as $i^{*}<\mathfrak{p}$). Let $k_{n}=\min (A \backslash(n+1))$, and let $\eta_{n} \in{ }^{\left[n, k_{n}+1\right)} 2$ be defined by

$$
\eta_{n}(\ell)= \begin{cases}0 & \text { if } \ell \in\left[n, k_{n}\right) \\ 1 & \text { if } \ell=k_{n}\end{cases}
$$

Then $\left\langle\eta_{n}: n<\omega\right\rangle \in \mathbf{S}_{\bar{A}}$.
(2) Let $\left\langle\bar{\eta}^{\alpha}: \alpha<\delta\right\rangle$ be a \leq^{*}-increasing sequence and $\delta<\mathrm{t}$. Let $A_{\alpha}^{*}=: \operatorname{dom}\left(\bar{\eta}^{\alpha}\right)$ for $\alpha<\delta$. Then $\left\langle A_{\alpha}^{*}: \alpha<\delta\right\rangle$ is a \subseteq^{*}-decreasing sequence of members of $[\omega]^{\aleph_{0}}$. As $\delta<\mathrm{t}$ there is $A^{*} \in[\omega]^{\aleph_{0}}$ such that $\alpha<\delta \Rightarrow A^{*} \subseteq^{*} A_{\alpha}^{*}$. Now for $n<\omega$ we define

$$
B_{n}=\bigcup\left\{{ }^{[m, k)} 2: m \in A^{*} \text { and } n \leq m<k<\omega\right\}
$$

and for $\alpha<\delta$ we define

$$
A_{\alpha}=\left\{\eta: \text { for some } n \in \operatorname{dom}\left(\bar{\eta}^{\alpha}\right) \text { we have } \eta_{n}^{\alpha} \unlhd \eta\right\}
$$

One easily verifies that the assumptions of Lemma 1.5 are satisfied upon replacing ω by B_{0}. Let $A \subseteq B_{0}$ be given by the conclusion of Lemma 1.5 , and put

$$
A^{\prime}=\left\{n: \text { for some } \eta \in A \text { we have } \eta \in \bigcup\left\{{ }^{[n, k)} 2: k \in(n, \omega)\right\}\right\}
$$

Plainly, the set A^{\prime} is infinite. We let $\bar{\eta}^{*}=\left\langle\eta_{n}: n \in A^{\prime}\right\rangle$ where η_{n} is any member of $A \cap B_{n} \backslash B_{n+1}$.
(3) Assume that $\bar{A}=\left\langle A_{i}: i<i^{*}\right\rangle \subseteq[\omega]^{\aleph_{0}}$ is \subseteq^{*}-decreasing, $i^{*}<\mathfrak{p}$, and $\left\langle\bar{\eta}^{\alpha}: \alpha<\delta\right\rangle \subseteq \mathbf{S}_{\bar{A}}$ is \leq^{*}-increasing, and $\delta<\mathfrak{p}$. Let us consider the following forcing notion \mathbb{P}.

A condition in \mathbb{P}^{p} is a quadruple $p=(\bar{\nu}, u, w, a)=\left(\bar{\nu}^{p}, u^{p}, w^{p}, a^{p}\right)$ such that
(a) $u \in[\omega]^{<\nu_{0}}, \bar{\nu}=\left\langle\nu_{n}: n \in u\right\rangle$, and for $n \in u$ we have:

- $\quad \nu_{n} \in{ }^{\left[n, k_{n}\right)} 2$ for some $k_{n} \in(n, \omega)$, and
- $\operatorname{set}\left(\nu_{n}\right) \neq \varnothing$,
(b) $w \subseteq \delta$ is finite, and
(c) $a \subseteq i^{*}$ is finite.

The order $\leq_{\mathbb{P}}=\leq$ of \mathbb{P}^{P} is given by $p \leq q$ if and only if $(p, q \in \mathbb{P}$) and $)$
(i) $u^{p} \subseteq u^{q}, w^{p} \subseteq w^{q}, a^{p} \subseteq a^{q}$, and $\bar{\nu}^{q} \upharpoonright u^{p}=\bar{\nu}^{p}$,
(ii) If $p \neq q$, then $\max \left(u^{p}\right)<\min \left(u^{q} \backslash u^{p}\right)$ and for $n \in u^{q} \backslash u^{p}$, we have
(a) $\left(\forall \alpha \in w^{p}\right)\left(n \in \operatorname{dom}\left(\bar{\eta}^{\alpha}\right) \wedge \eta_{n}^{\alpha} \triangleleft \nu_{n}^{q}\right)$,
(b) $\left(\forall i \in a^{p}\right)\left(\operatorname{set}\left(\nu_{n}^{q}\right) \subseteq A_{i}\right)$.

Plainly, \mathbb{P} is a σ-centered forcing notion, and the sets

$$
\mathcal{J}_{m}^{\alpha, i}=\left\{p \in \mathbb{P}^{P}: \alpha \in w^{p} \wedge i \in a^{p} \wedge\left|u^{p}\right|>m\right\}
$$

(for $\alpha<\delta, i<i^{*}$ and $m<\omega$) are open and dense in \mathbb{P}. Since $|\delta|+\left|i^{*}\right|+\aleph_{0}<\mathfrak{p}$, we may choose a directed set $G \subseteq \mathbb{P}^{p}$ meeting all the sets $J_{n}^{\alpha, i}$. Putting $\bar{\nu}=\bigcup\left\{\bar{\nu}^{p}: p \in\right.$ $G\}$, we will get an upper bound to $\left\langle\bar{\eta}^{\alpha}: \alpha<\delta\right\rangle$ in $\mathbf{S}_{\bar{A}}$.
Lemma 1.9 Assume the following.
(i) $\mathfrak{p}<\mathrm{t}$ and $\mathcal{B}=\left\{B_{\alpha}: \alpha<\mathfrak{p}\right\}$ exemplifies \mathfrak{p} (see Definition 1.2).
(ii) $\bar{A}=\left\langle A_{i}: i<\kappa\right\rangle \subseteq[\omega]^{\aleph_{0}}$ is \subseteq^{*}-decreasing, $\kappa<\mathfrak{p}$, and conditions (a) and (b) of Proposition 1.3 hold.
(iii) $\operatorname{pr}: \mathfrak{p} \times \mathfrak{p} \rightarrow \mathfrak{p}$ is a bijection satisfying $\operatorname{pr}\left(\alpha_{1}, \alpha_{2}\right) \geq \alpha_{1}, \alpha_{2}$.

Then we can find a sequence $\left\langle\bar{\eta}^{\alpha}: \alpha \leq \mathfrak{p}\right\rangle$ such that
(a) $\bar{\eta}^{\alpha} \in \mathbf{S}_{\bar{A}}$ for $\alpha<\mathfrak{p}$ and $\bar{\eta}^{\mathfrak{p}} \in \mathbf{S}$,
(b) $\left\langle\bar{\eta}^{\alpha}: \alpha \leq \mathfrak{p}\right\rangle$ is \leq^{*}-increasing,
(c) if $\alpha<\mathfrak{p}$ and $n \in \operatorname{dom}\left(\bar{\eta}^{\alpha+1}\right)$ is large enough, then $\operatorname{set}\left(\eta_{n}^{\alpha+1}\right) \cap B_{\alpha} \neq \varnothing$ (hence $\left(\forall^{\infty} n \in \operatorname{dom}\left(\bar{\eta}^{\beta}\right)\right)\left(\operatorname{set}\left(\eta_{n}^{\beta}\right) \cap B_{\alpha} \neq \varnothing\right)$ holds for every $\left.\beta \in[\alpha+1, \mathfrak{p}]\right)$,
(d) if $\alpha=\operatorname{pr}(\beta, \gamma)$, then $\operatorname{set}\left(\eta_{n}^{\alpha+1}\right) \cap B_{\beta} \neq \varnothing$ and $\operatorname{set}\left(\eta_{n}^{\alpha+1}\right) \cap B_{\gamma} \neq \varnothing$ for $n \in$ $\operatorname{dom}\left(\bar{\eta}^{\alpha+1}\right)$, and the truth values of

$$
\min \left(\operatorname{set}\left(\eta_{n}^{\alpha+1}\right) \cap B_{\beta}\right)<\min \left(\operatorname{set}\left(\eta_{n}^{\alpha+1}\right) \cap B_{\gamma}\right)
$$

are the same for all $n \in \operatorname{dom}\left(\bar{\eta}^{\alpha+1}\right)$,
(e) in (d), if $\beta<\kappa$ we can replace B_{β} by A_{β}; similarly with γ; and if $\beta, \gamma<\kappa$ then we can replace both.

Proof We choose $\bar{\eta}^{\alpha}$ by induction on α. For $\alpha=0$, it is trivial; for α limit $<\mathfrak{p}$, we use Lemma 1.8(3) (and $|\alpha|<\mathfrak{p}$). At a successor stage $\alpha+1$, we let β, γ be such that $\operatorname{pr}(\beta, \gamma)=\alpha$ and we choose $B_{\alpha}^{\prime} \in[\omega]^{\aleph_{0}}$ such that $B_{\alpha}^{\prime} \subseteq B_{\alpha} \cap B_{\beta} \cap B_{\gamma}$ and $(\forall i<\kappa)\left(B_{\alpha}^{\prime} \subseteq^{*} A_{i}\right)$. Next, for $n \in \operatorname{dom}\left(\bar{\eta}^{\alpha}\right)$, we choose η_{n}^{\prime} such that $\eta_{n}^{\alpha} \triangleleft \eta_{n}^{\prime}$ and

$$
\varnothing \neq\left\{\ell: \eta_{n}^{\prime}(\ell)=1 \text { and } \ell g\left(\eta_{n}^{\alpha}\right) \leq \ell<\ell g\left(\eta_{n}^{\prime}\right)\right\} \subseteq B_{\alpha}^{\prime}
$$

Then we let $\bar{\eta}^{\alpha+1}=\left\langle\eta_{n}^{\prime}: n \in \operatorname{dom}\left(\bar{\eta}^{\alpha}\right)\right\rangle$. By shrinking the domain of $\bar{\eta}^{\alpha+1}$ there is no problem to take care of clause (d). It should also be clear that we may ensure clause (e) as well.

For $\alpha=\mathfrak{p}$, use Lemma 1.8(2).

Definition 1.10 Let κ_{1}, κ_{2} be infinite regular cardinals. $A\left(\kappa_{1}, \kappa_{2}\right)$-peculiar cut in ${ }^{\omega} \omega$ is a pair $\left(\left\langle f_{i}: i<\kappa_{1}\right\rangle,\left\langle f^{\alpha}: \alpha<\kappa_{2}\right\rangle\right)$ of sequences of functions in ${ }^{\omega} \omega$ such that the following hold:
(a) $\left(\forall i<j<\kappa_{1}\right)\left(f_{j}<^{*} f_{i}\right)$;
(b) $\left(\forall \alpha<\beta<\kappa_{2}\right)\left(f^{\alpha}<^{*} f^{\beta}\right)$;
(c) $\left(\forall i<\kappa_{1}\right)\left(\forall \alpha<\kappa_{2}\right)\left(f^{\alpha}<^{*} f_{i}\right)$;
(d) if $f: \omega \rightarrow \omega$ is such that $\left(\forall i<\kappa_{1}\right)\left(f \leq^{*} f_{i}\right)$, then $f \leq^{*} f^{\alpha}$ for some $\alpha<\kappa_{2}$;
(e) if $f: \omega \rightarrow \omega$ is such that $\left(\forall \alpha<\kappa_{2}\right)\left(f^{\alpha} \leq^{*} f\right)$, then $f_{i} \leq^{*} f$ for some $i<\kappa_{1}$.

Proposition 1.11 If $\kappa_{2}<\mathfrak{b}$, then there is no $\left(\aleph_{0}, \kappa_{2}\right)$-peculiar cut.
Proof Assume towards contradiction that $\mathfrak{b}>\kappa_{2}$, but there is an $\left(\aleph_{0}, \kappa_{2}\right)$-peculiar cut, say $\left(\left\langle f_{i}: i<\omega\right\rangle,\left\langle f^{\alpha}: \alpha<\kappa_{2}\right\rangle\right)$ is such a cut. Let S be the family of all increasing sequences $\bar{n}=\left\langle n_{i}: i<\omega\right\rangle$ with $n_{0}=0$. For $\bar{n} \in S$ and $g \in{ }^{\omega} \omega$, we say that \bar{n} obeys g if $(\forall i<\omega)\left(g\left(n_{i}\right)<n_{i+1}\right)$. Also for $\bar{n} \in S$, define $h_{\bar{n}} \in{ }^{\omega} \omega$ by

$$
h_{\bar{n}} \upharpoonright\left[n_{i}, n_{i+1}\right)=f_{i} \upharpoonright\left[n_{i}, n_{i+1}\right) \quad \text { for } i<\omega
$$

Now, let $g^{*} \in{ }^{\omega} \omega$ be an increasing function such that for every $n<\omega$ and $m \geq g^{*}(n)$ we have

$$
f_{n+1}(m)<f_{n}(m)<\cdots<f_{1}(m)<f_{0}(m)
$$

Note that
(1) if $\bar{n} \in S$ obeys g^{*}, then $(\forall i<\omega)\left(h_{\bar{n}}<^{*} f_{i}\right)$.

Now, for $\alpha<\kappa_{2}$ define $g^{\alpha} \in{ }^{\omega} \omega$ by
(2) $g^{\alpha}(n)=\min \left\{k<\omega: k>n+1 \wedge(\forall i \leq n)(\exists \ell \in[n, k))\left(f^{\alpha}(\ell)<f_{i}(\ell)\right)\right\}$.

Since $\kappa_{2}<\mathfrak{b}$, we may choose $g \in{ }^{\omega} \omega$ such that

$$
g^{*}<g \quad \text { and } \quad\left(\forall \alpha<\kappa_{2}\right)\left(g^{\alpha}<^{*} g\right)
$$

Pick $\bar{n} \in S$ which obeys g and consider the function $h_{\bar{n}}$. It follows from (1) that $h_{\bar{n}}<^{*} f_{i}$ for all $i<\omega$, so by the properties of an $\left(\aleph_{0}, \kappa_{2}\right)$-peculiar cut there is $\alpha<\kappa_{2}$ such that $h_{\bar{n}} \leq^{*} f^{\alpha}$. Then, for sufficiently large $i<\omega$, we have

- $f_{i} \upharpoonright\left[n_{i}, n_{i+1}\right)=h_{\bar{n}} \upharpoonright\left[n_{i}, n_{i+1}\right) \leq f^{\alpha} \upharpoonright\left[n_{i}, n_{i+1}\right)$, and
- $n_{i}<g^{\alpha}\left(n_{i}\right)<g\left(n_{i}\right)<n_{i+1}$.

The latter implies that for some $\ell \in\left[n_{i}, n_{i+1}\right)$ we have $f^{\alpha}(\ell)<f_{i}(\ell)$, contradicting the former.

Theorem 1.12 Assume $\mathfrak{p}<\mathrm{t}$. Then for some regular cardinal κ, there exists a (κ, \mathfrak{p})-peculiar cut in ${ }^{\omega} \omega$ and $\aleph_{1} \leq \kappa<\mathfrak{p}$.
Proof Use Proposition 1.3 and Lemma 1.9 to choose $\mathcal{B}, \kappa, \bar{A}, \operatorname{pr}$ and $\left\langle\bar{\eta}^{\alpha}: \alpha \leq \mathfrak{p}\right\rangle$ so that:
(i) $\mathcal{B}=\left\{B_{\alpha}: \alpha<\mathfrak{p}\right\}$ exemplifies \mathfrak{p},
(ii) $\bar{A}=\left\langle A_{i}: i<\kappa\right\rangle \subseteq[\omega]^{\aleph_{0}}$ is \subseteq^{*}-decreasing, $\kappa=\operatorname{cf}(\kappa)<\mathfrak{p}$ and conditions (a) and (b) of Proposition 1.3 hold,
(iii) $\operatorname{pr}: \mathfrak{p} \times \mathfrak{p} \rightarrow \mathfrak{p}$ is a bijection satisfying $\operatorname{pr}\left(\alpha_{1}, \alpha_{2}\right) \geq \alpha_{1}, \alpha_{2}$,
(iv) the sequence $\left\langle\bar{\eta}^{\alpha}: \alpha \leq \mathfrak{p}\right\rangle$ satisfies conditions (a)-(e) of Lemma 1.9.

It is enough to find a suitable cut $\left\langle f_{i}: i<\kappa\right\rangle,\left\langle f^{\alpha}: \alpha<\mathfrak{p}\right\rangle \subseteq{ }^{A^{*}} \omega$ for some infinite $A^{*} \subseteq \omega$ (as by renaming, A^{*} is ω). Let
(v) $A^{*}=\operatorname{dom}\left(\bar{\eta}^{\mathfrak{p}}\right)$,
(vi) for $i<\kappa$, we let $f_{i}: A^{*} \rightarrow \omega$ be defined by

$$
f_{i}(n)=\min \left\{\ell:\left[\eta_{n}^{p}(n+\ell)=1 \wedge n+\ell \notin A_{i}\right] \text { or } \operatorname{dom}\left(\eta_{n}^{\mathfrak{p}}\right)=[n, n+\ell)\right\},
$$

(vii) for $\alpha<\mathfrak{p}$, we let $f^{\alpha}: A^{*} \rightarrow \omega$ be defined by

$$
f^{\alpha}(n)=\min \left\{\ell+1:\left[\eta_{n}^{\mathfrak{p}}(n+\ell)=1 \wedge n+\ell \in B_{\alpha}\right] \text { or } \operatorname{dom}\left(\eta_{n}^{\mathfrak{p}}\right)=[n, n+\ell)\right\} .
$$

Note that (by the choice of f_{i}, i.e., clause (vi)):
(viii) $\bigcup\left\{\left[n, n+f_{i}(n)\right) \cap \operatorname{set}\left(\eta_{n}^{\mathfrak{p}}\right): n \in A^{*}\right\} \subseteq^{*} A_{i}$ for every $i<\kappa$.

Also,
$(\circledast)_{1}^{\mathrm{a}} f_{j} \leq^{*} f_{i}$ for $i<j<\kappa$.
[Because, if $i<j<\kappa$, then $A_{j} \subseteq^{*} A_{i}$, and hence for some n^{*} we have that $A_{j} \backslash n^{*} \subseteq$ A_{i}. Therefore, for every $n \in A^{*} \backslash n^{*}$ in the definition of f_{i}, f_{j} in clause (vi), if ℓ can serve as a candidate for $f_{i}(n)$ then it can serve for $f_{j}(n)$, so (as we use the minimum there) $f_{j}(n) \leq f_{i}(n)$. Consequently $f_{j} \leq^{*} f_{i}$.]

Now, we want to argue that we may find a subsequence of $\left\langle f_{i}: i<\kappa\right\rangle$ which is $<^{*}$-decreasing. For this it is enough to show that
$(\circledast)_{1}^{\mathrm{b}}$ for every $i<\kappa$, for some $j \in(i, \kappa)$ we have $f_{j}<^{*} f_{i}$.
So assume towards contradiction that for some $i(*)<\kappa$, we have

$$
(\forall j)\left(i(*)<j<\kappa \Rightarrow \neg\left(f_{j}<^{*} f_{i(*)}\right)\right) .
$$

For $j<\kappa$ put $B_{j}^{*}=:\left\{n \in A^{*}: f_{j}(n) \geq f_{i(*)}(n)\right\}$. Then $B_{j}^{*} \in\left[A^{*}\right]^{\aleph_{0}}$ is $\subseteq^{*}{ }_{-}$ decreasing, so there is a pseudo-intersection B^{*} of $\left\langle B_{j}^{*}: j<\kappa\right\rangle$ (so $B^{*} \in\left[A^{*}\right]^{\aleph_{0}}$ and $\left.(\forall j<\kappa)\left(B^{*} \subseteq^{*} B_{j}^{*}\right)\right)$. Now, let $A^{\prime}=\bigcup\left\{\operatorname{set}\left(\eta_{n}^{\mathfrak{p}}\right) \cap\left[n, n+f_{i(*)}(n)\right): n \in B^{*}\right\}$.
$(*) A^{\prime}$ is an infinite subset of ω.
[Because, by Lemma 1.9(a) we have $\bar{\eta}^{0} \in \mathbf{S}_{\bar{A}}$ and hence set $\left(\bar{\eta}^{0}\right) \subseteq^{*} A_{i(*)}$ and $(\forall n \in$ $\operatorname{dom}\left(\bar{\eta}^{0}\right)\left(\operatorname{set}\left(\eta_{n}^{0}\right) \neq \varnothing\right)$ (see Definition 1.6(2)). By Lemma 1.9(b) we know that for every large enough $n \in \operatorname{dom}\left(\bar{\eta}^{\mathfrak{p}}\right)$, we have $n \in \operatorname{dom}\left(\bar{\eta}^{0}\right)$ and $\eta_{n}^{0} \unlhd \eta_{n}^{p}$. For every large enough $n \in \operatorname{dom}\left(\bar{\eta}^{0}\right)$, we have $\operatorname{set}\left(\bar{\eta}^{0}\right) \backslash\{0, \ldots, n-1\} \subseteq A_{i(*)}$, and hence for every large enough $n \in \operatorname{dom}\left(\bar{\eta}^{\mathfrak{p}}\right)$, we have $\eta_{n}^{0} \unlhd \eta_{n}^{p}$ and $\varnothing \neq \operatorname{set}\left(\eta_{n}^{0}\right) \subseteq A_{i(*)}$. Consequently, for large enough $n \in B^{*},\left[n, n+f_{i(*)}(n)\right) \cap \operatorname{set}\left(\eta_{n}^{\mathfrak{p}}\right) \neq \varnothing$ and we are done.]
$(* *) A^{\prime} \subseteq^{*} A_{j}$ for $j \in(i(*), \kappa)$ (and hence for all $j<\kappa$).
[Because $f_{j} \upharpoonright B^{*}={ }^{*} f_{i(*)} \upharpoonright B^{*}$ for $j \in(i(*), \kappa)$.]
$(* * *) A^{\prime} \cap B_{\alpha}$ is infinite for $\alpha<\mathfrak{p}$.
[Because, by clauses (c) and (a) of Lemma 1.9, for every large enough $n \in \operatorname{dom}\left(\bar{\eta}^{\alpha+1}\right)$, we have $\operatorname{set}\left(\eta_{n}^{\alpha+1}\right) \cap B_{\alpha} \neq \varnothing$ and $\operatorname{set}\left(\eta_{n}^{\alpha+1}\right) \subseteq A_{i(*)}$.]
Properties $(*)-(* * *)$ contradict Proposition 1.3(b), finishing the proof of $(*)_{1}^{\mathrm{b}}$.
Thus passing to a subsequence if necessary, we may assume that
$(\circledast)_{1}^{c}$ the demand in (a) of Definition 1.10 is satisfied, i.e., $f_{j}<^{*} f_{i}$ for $i<j<\kappa$.
Now,
$(\circledast)_{2}(\forall i<\kappa)(\forall \alpha<\mathfrak{p})\left(f^{\alpha}<^{*} f_{i}\right)$.
[Because if $i<\kappa, \alpha<\mathfrak{p}$, then for large enough $n \in A^{*}$ we have that $\operatorname{set}\left(\eta_{n}^{\alpha+1}\right) \subseteq A_{i}$, $\operatorname{set}\left(\eta_{n}^{\alpha+1}\right) \cap B_{\alpha} \neq \varnothing$, and $\eta_{n}^{\alpha+1} \unlhd \eta_{n}^{p}$. Then for those n we have $f^{\alpha}(n) \leq f_{i}(n)$. Now we may conclude that actually $f^{\alpha}<^{*} f_{i}$.]
$(\circledast)_{3}^{\mathrm{a}}$ The set (of functions) $\left\{f_{i}: i<\kappa\right\} \cup\left\{f^{\alpha}: \alpha<\mathfrak{p}\right\}$ is linearly ordered by \leq^{*}.
$(\circledast)_{3}^{\mathrm{b}}$ In fact, if $f^{\prime}, f^{\prime \prime}$ are in the family then either $f^{\prime}=^{*} f^{\prime \prime}$ or $f^{\prime}<^{*} f^{\prime \prime}$ or $f^{\prime \prime}<^{*} f^{\prime}$.
[This follows from $(\circledast)_{1},(\circledast)_{2}$, and clauses (d) and (e) of Lemma 1.9.]
Choose inductively a sequence $\bar{\alpha}=\left\langle\alpha(\varepsilon): \varepsilon<\varepsilon^{*}\right\rangle \subseteq \mathfrak{p}$ such that:

- $\alpha(\varepsilon)$ is the minimal $\alpha \in \mathfrak{p} \backslash\{\alpha(\zeta): \zeta<\varepsilon\}$ satisfying $(\forall \zeta<\varepsilon)\left(f^{\alpha(\zeta)}<^{*} f^{\alpha}\right)$, and
- we cannot choose $\alpha\left(\varepsilon^{*}\right)$.

We ignore (until $\left(\circledast_{7}\right)$) the question of the value of ε^{*}. Now,
$(\circledast)_{4}\left\langle f_{i}: i<\kappa\right\rangle,\left\langle f^{\alpha(\varepsilon)}: \varepsilon<\varepsilon^{*}\right\rangle$ satisfy clauses (a)-(c) of Definition 1.10.
[This follows from $(\circledast)_{1}-(\circledast)_{3}$ and the choice of $\alpha(\varepsilon)$'s above.]
$(\circledast)_{5}\left\langle f_{i}: i<\kappa\right\rangle,\left\langle f^{\alpha(\varepsilon)}: \varepsilon<\varepsilon^{*}\right\rangle$ satisfy clause (e) of Definition 1.10.
[To see this, assume towards contradiction that $f: A^{*} \rightarrow \omega$ and

$$
(\forall i<\kappa)\left(f \leq^{*} f_{i}\right) \text { but }\left(\forall \varepsilon<\varepsilon^{*}\right)\left(\neg\left(f \leq^{*} f^{\alpha(\varepsilon)}\right)\right)
$$

Clearly, without loss of generality, we may assume that $[n, n+f(n)) \subseteq \operatorname{dom}\left(\eta_{n}^{\mathfrak{p}}\right)$ for $n \in A^{*}$. Let $A^{\prime}=\bigcup\left\{[n, n+f(n)) \cap \operatorname{set}\left(\eta_{n}^{p}\right): n \in A^{*}\right\}$. Now for every $i<\kappa, A^{\prime} \subseteq^{*}$ A_{i} because $f \leq^{*} f_{i}$ and by the definition of f_{i}. Also, for every $\alpha<\mathfrak{p}$, the intersection $A^{\prime} \cap B_{\alpha}$ is infinite. For it follows from the choice of the sequence $\bar{\alpha}$ that for some $\varepsilon<\varepsilon^{*}$ we have $\neg\left(f^{\alpha(\varepsilon)}<^{*} f^{\alpha}\right.$), and thus $f^{\alpha} \leq^{*} f^{\alpha(\varepsilon)}$ (remembering $\left.(\circledast)_{3}\right)$. Hence, if $n \in A^{*}$ is large enough, then $f^{\alpha}(n) \leq f^{\alpha(\varepsilon)}(n)$ and for infinitely many $n \in A^{*}$ we have $f^{\alpha}(n) \leq f^{\alpha(\varepsilon)}(n)<f(n) \leq f_{0}(n) \leq\left|\operatorname{dom}\left(\eta_{n}^{\mathfrak{p}}\right)\right|$. For every such n we have $n+f^{\alpha}(n)-1 \in A^{\prime} \cap B_{\alpha}$. Together, A^{\prime} contradicts clause (ii) of the choice of $\left\langle A_{i}: i<\kappa\right\rangle,\left\langle B_{\alpha}: \alpha<\mathfrak{p}\right\rangle$, specifically the property stated in Proposition 1.3(b).]
$(\circledast)_{6}\left\langle f_{i}: i<\kappa\right\rangle,\left\langle f^{\alpha(\varepsilon)}: \varepsilon<\varepsilon^{*}\right\rangle$ satisfy clause (e) of Definition 1.10.
[Assume towards contradiction that $f: A^{*} \rightarrow \omega$, and

$$
\left(\forall \varepsilon<\varepsilon^{*}\right)\left(f^{\alpha(\varepsilon)} \leq^{*} f\right) \text { but }(\forall i<\kappa)\left(\neg\left(f_{i} \leq^{*} f\right)\right)
$$

It follows from $(\circledast)_{1}$ (and the assumption above) that we may choose an infinite set $A^{* *} \subseteq A^{*}$ such that $(\forall i<\kappa)\left(\left(f \upharpoonright A^{* *}\right)<^{*}\left(f_{i} \upharpoonright A^{* *}\right)\right)$. Let

$$
A^{\prime \prime}=\bigcup\left\{[n, n+f(n)) \cap \operatorname{set}\left(\eta_{n}^{\mathfrak{p}}\right): n \in A^{* *}\right\} \subseteq \omega
$$

Since $\left(f \upharpoonright A^{* *}\right)<^{*}\left(f_{i} \upharpoonright A^{* *}\right)$, we easily see that $A^{\prime \prime} \subseteq^{*} A_{i}$ for all $i<\kappa$ (remember (viii)). As in the justification for $(\circledast)_{5}$ above, if $\alpha<\mathfrak{p}$, then for some $\varepsilon<\varepsilon^{*}$ we have $f^{\alpha} \leq^{*} f^{\alpha(\varepsilon)}$ and we may conclude from our assumption towards contradiction that $f^{\alpha} \leq^{*} f$ for all $\alpha<\mathfrak{p}$. As in $(\circledast)_{5}$ we conclude that for every $\alpha<\mathfrak{p}$ the intersection $A^{\prime \prime} \cap B_{\alpha}$ is infinite, contradicting the choice of $\left\langle A_{i}: i<\kappa\right\rangle,\left\langle B_{\alpha}: \alpha<\mathfrak{p}\right\rangle$.]
$(\circledast)_{7} \varepsilon^{*}=\mathfrak{p}$.
[Because the sequence $\langle\alpha(\varepsilon): \varepsilon<\mathfrak{p}\rangle$ is an increasing sequence of ordinals $<\mathfrak{p}$, hence $\varepsilon^{*} \leq \mathfrak{p}$. If $\varepsilon^{*}<\mathfrak{p}$, then by the Bell theorem we get a contradiction to $(\circledast)_{4^{-}}$ $(\circledast)_{6}$ above; cf. Proposition 2.1 below.]

So $\left\langle f_{i}: i<\kappa\right\rangle,\left\langle f^{\alpha(\varepsilon)}: \varepsilon<\mathfrak{p}\right\rangle$ are as required: clauses (a)-(c) of Definition 1.10 hold by $(\circledast)_{4}$, clause (d) by \circledast_{5}, and clause (e) by $(\circledast)_{6}$. Finally, since $\mathrm{t} \leq \mathrm{b}$, we may use Proposition 1.11 to conclude that (under our assumption $\mathfrak{p}<\mathrm{t}$) there is no (\aleph_{0}, \mathfrak{p})-peculiar cut and hence $\kappa \geq \aleph_{1}$.

Remark 1.13. The existence of (κ, \mathfrak{p})-peculiar cuts for $\kappa<\mathfrak{p}$ is independent from $" Z F C+p=t$ ". We will address this issue in a forthcoming paper [9].

2 Peculiar Cuts and MA

Proposition 2.1 Assume that $\kappa_{1} \leq \kappa_{2}$ are infinite regular cardinals and there exists a $\left(\kappa_{1}, \kappa_{2}\right)$-peculiar cut in ${ }^{\omega} \omega$. Then for some σ-centered forcing notion (\mathbb{O}) of cardinality κ_{1} and a sequence $\left\langle\mathcal{J}_{\alpha}: \alpha<\kappa_{2}\right\rangle$ of open dense subsets of $(\mathbb{O}$, there is no directed $G \subseteq(\mathbb{O}$) such that $\left(\forall \alpha<\kappa_{2}\right)\left(G \cap \mathcal{J}_{\alpha} \neq \varnothing\right)$. Hence $\mathbf{M A}_{\kappa_{2}}(\sigma$-centered $)$ fails and thus $\mathfrak{p} \leq \kappa_{2}$.

Proof Let $\left(\left\langle f_{i}: i<\kappa_{1}\right\rangle,\left\langle f^{\alpha}: \alpha<\kappa_{2}\right\rangle\right)$ be a $\left(\kappa_{1}, \kappa_{2}\right)$-peculiar cut in ${ }^{\omega} \omega$. Define a forcing notion (\mathbb{O}) as follows.

A condition in (\mathbb{O}) is a pair $p=(\rho, u)$ such that $\rho \in^{\omega>} \omega$ and $u \subseteq \kappa_{1}$ is finite.
The order $\leq_{\mathbb{Q}}=\leq$ of (\mathbb{O}) is given by $\left(\rho_{1}, u_{1}\right) \leq\left(\rho_{2}, u_{2}\right)$ if and only if (both are in (\mathbb{O}) and) the following hold:
(a) $\rho_{1} \unlhd \rho_{2}$,
(b) $u_{1} \subseteq u_{2}$,
(c) if $n \in\left[\ell g\left(\rho_{1}\right), \ell g\left(\rho_{2}\right)\right)$ and $i \in u_{1}$, then $f_{i}(n) \geq \rho_{2}(n)$.

Plainly, (\mathbb{O}) is a forcing notion of cardinality κ_{1}. It is σ-centered, since for each $\rho \in{ }^{\omega>} \omega$, the set $\{(\eta, u) \in(\mathbb{O}): \eta=\rho\}$ is directed.

For $j<\kappa_{1}$, let $\mathcal{J}_{j}=\{(\rho, u) \in(\mathbb{O}): j \in u\}$, and for $\alpha=\omega \beta+n<\kappa_{2}$, let

$$
\left.\mathcal{J}^{\alpha}=\{(\rho, u) \in \mathbb{O}):(\exists m<\ell g(\rho))\left(m \geq n \wedge \rho(m)>f^{\beta}(m)\right)\right\}
$$

Clearly $\mathcal{J}_{j}, \mathcal{J}^{\alpha}$ are dense open subsets of \mathbb{O}. Suppose towards contradiction that there is a directed $G \subseteq \mathbb{O}$ intersecting all $\mathfrak{J}^{\alpha}, \mathcal{J}_{j}$ for $j<\kappa_{1}, \alpha<\kappa_{2}$. Put $g=\bigcup\{\rho$: $(\exists u)((\rho, u) \in G)\}$. Then

- g is a function; its domain is ω (as $G \cap J^{n} \neq \varnothing$ for $n<\omega$), and
- $g \leq^{*} f_{i}\left(\right.$ as $\left.G \cap \mathcal{J}_{i} \neq \varnothing\right)$, and
- $\left\{n<\omega: f^{\alpha}(n)<g(n)\right\}$ is infinite (as $G \cap J^{\omega \alpha+n} \neq \varnothing$ for every n).

The properties of the function g clearly contradict our assumptions on $\left\langle f_{i}: i<\kappa_{1}\right\rangle$, $\left\langle f^{\alpha}: \alpha<\kappa_{2}\right\rangle$.

Corollary 2.2 If there exists an $\left(\aleph_{0}, \kappa_{2}\right)$-peculiar cut, then $\operatorname{cov}(\mathcal{M}) \leq \kappa_{2}$.
Theorem 2.3 Let $\operatorname{cf}\left(\kappa_{2}\right)=\kappa_{2}>\aleph_{1}$. Assume $\mathbf{M A}_{\aleph_{1}}$ holds. Then there is no (\aleph_{1}, κ_{2})-peculiar cut in ${ }^{\omega} \omega$.

Proof Suppose towards contradiction that $\operatorname{cf}\left(\kappa_{2}\right)=\kappa_{2}>\aleph_{1},\left(\left\langle f_{i}: i<\omega_{1}\right\rangle,\left\langle f^{\alpha}\right.\right.$: $\left.\left.\alpha<\kappa_{2}\right\rangle\right)$ is an $\left(\aleph_{1}, \kappa_{2}\right)$-peculiar cut and $\mathbf{M} \mathbf{A}_{\aleph_{1}}$ holds true. We define a forcing notion (O) as follows.

A condition in (\mathbb{O}) is a pair $p=(u, \bar{\rho})=\left(u^{p}, \bar{\rho}^{p}\right)$ such that
(a) $u \subseteq \omega_{1}$ is finite, $\bar{\rho}=\left\langle\rho_{i}: i \in u\right\rangle=\left\langle\rho_{i}^{p}: i \in u\right\rangle$,
(b) for some $n=n^{p}$, for all $i \in u$ we have $\rho_{i} \in{ }^{n} \omega$,
(c) for each $i \in u$ and $m<n^{p}$ we have $\rho_{i}(m) \leq f_{i}(m)$,
(d) if $i_{0}=\max (u)$ and $m \geq n^{p}$, then $f_{i_{0}}(m)>2 \cdot\left|u^{p}\right|+885$.
(e) $\left\langle f_{i} \upharpoonright\left[n^{p}, \omega\right): i \in u\right\rangle$ is $<$-decreasing.

The order $\leq_{\mathbb{Q}}=\leq o f(\mathbb{O})$ is given by $p \leq q$ if and only if $(p, q \in(\mathbb{O})$ and $)$
(f) $u^{p} \subseteq u^{q}$,
(g) $\rho_{i}^{p} \unlhd \rho_{i}^{q}$ for every $i \in u^{p}$,
(h) if $i<j$ are from u^{p}, then $\rho_{i}^{q} \upharpoonright\left[n^{p}, n^{q}\right)<\rho_{j}^{q} \upharpoonright\left[n^{p}, n^{q}\right)$,
(i) if $i<j, i \in u^{q} \backslash u^{p}$ and $j \in u^{p}$, then for some $m \in\left[n^{p}, n^{q}\right)$ we have $f_{j}(m)<\rho_{i}^{q}(m)$.
Claim 2.3.1 (O) is a ccc forcing notion of size \aleph_{1}.
Proof of the Claim Plainly, the relation $\leq_{\mathbb{Q}}$ is transitive and $\mid\left(\mathbb{O} \mid=\aleph_{1}\right.$. Let us argue that the forcing notion (\mathbb{O}) satisfies the ccc.

Let $p_{\varepsilon} \in(\mathbb{O})$ for $\varepsilon<\omega_{1}$. Without loss of generality $\left\langle p_{\varepsilon}: \varepsilon<\omega_{1}\right\rangle$ is without repetition. Applying the Δ-Lemma we can find an unbounded set $\mathcal{U} \subseteq \omega_{1}$ and $m(*)<n(*)<\omega$ and $n^{\prime}<\omega$ such that for each $\varepsilon \in \mathcal{U}$ we have the following:
(i) $\left|u^{p_{\varepsilon}}\right|=n(*)$ and $n^{p_{\varepsilon}}=n^{\prime}$; let $u^{p_{\varepsilon}}=\left\{\alpha_{\varepsilon, \ell}: \ell<n(*)\right\}$ and $\alpha_{\varepsilon, \ell}$ increases with ℓ;
(ii) $\alpha_{\varepsilon, \ell}=\alpha_{\ell}$ for $\ell<m(*)$ and $\rho_{\varepsilon, \ell}=\rho_{\ell}^{*}$ for $\ell<n(*)$;
(iii) if $\varepsilon<\zeta$ are from \mathcal{U} and $k, \ell \in[m(*), n(*))$, then $\alpha_{\varepsilon, \ell}<\alpha_{\zeta, k}$.

Let $\varepsilon<\zeta$ be elements of \mathcal{U} such that $[\varepsilon, \zeta) \cap \mathcal{U}$ is infinite. Pick $k^{*}>n^{\prime}$ such that for each $k \geq k^{*}$ we have

- the sequence $\left\langle f_{\alpha}(k): \alpha \in\left\{\alpha_{\varepsilon, \ell}: \ell<n(*)\right\} \cup\left\{\alpha_{\zeta, \ell}: \ell<n(*)\right\}\right\rangle$ is strictly decreasing,
- $f_{\alpha_{\zeta, n(*)-1}}(k)>885 \cdot(n(*)+1)$,
- $f_{\alpha_{\zeta, m(*)}}(k)+n(*)+885<f_{\alpha_{\varepsilon, n(*)-1}}(k)$.
(The choice is possible because $\left\langle f_{i}: i<\omega_{1}\right\rangle$ is $<^{*}$-decreasing and by the selection of ε, ζ we also have $\lim _{k \rightarrow \infty}\left(f_{\alpha_{\varepsilon, n(*)-1}}(k)-f_{\alpha_{\zeta, m(*)}}(k)\right)=\infty$.)

Now define $q=\left(u^{q}, \bar{\rho}^{q}\right)$ as follows:

- $u^{q}=u^{p_{\varepsilon}} \cup u^{p_{\zeta}}, n^{q}=k^{*}+1$;
- if $n<n^{\prime}, i \in u^{p_{\varepsilon}}$, then $\rho_{i}^{q}(n)=\rho_{i}^{p_{\varepsilon}}(n)$;
- if $n<n^{\prime}, i \in u^{p_{\zeta}}$, then $\rho_{i}^{q}(n)=\rho_{i}^{p_{\zeta}}(n)$;
- if $i=\alpha_{\varepsilon, \ell}, \ell<n(*), n \in\left[n^{\prime}, k^{*}\right)$, then $\rho_{i}^{q}(n)=\ell$, and if $j=\alpha_{\zeta, \ell}, m(*) \leq \ell<$ $n(*)$, then $\rho_{j}^{q}(n)=n(*)+\ell+1 ;$
- if $j=\alpha_{\zeta, \ell}, \ell<n(*)$, then $\rho_{j}^{q}\left(k^{*}\right)=\ell$, and if $i=\alpha_{\varepsilon, \ell}, m(*) \leq \ell<n(*)$, then $\rho_{i}^{q}\left(k^{*}\right)=f_{\alpha_{\zeta, m(*)}}\left(k^{*}\right)+\ell+1$.
It is well defined (as $\rho_{\alpha_{\varepsilon, \ell}}^{p_{\varepsilon}}=\rho_{\alpha_{G, \ell}}^{p_{\zeta}}$ for $\ell<m(*)$). Also $q \in(\mathbb{O})$. Lastly, one easily verifies that $p_{\varepsilon} \leq_{\mathbb{Q}} q$ and $p_{\zeta} \leq_{\mathbb{Q}} q$, so indeed $\mathbb{O}_{\mathbb{Q}}$ satisfies the ccc.

For $i<\omega_{1}$ and $n<\omega$, let
$\mathcal{J}_{i, n}=\left\{p \in \mathbb{O}_{\mathcal{Q}}:\left[u^{p} \nsubseteq i\right.\right.$ or for no $q \in \mathbb{O}_{\mathcal{O}}$ we have $\left.p \leq_{\mathbb{Q}} q \wedge u^{q} \nsubseteq i\right]$ and $\left.n^{p} \geq n\right\}$.
Plainly, the sets $\mathcal{J}_{i, n}$ are open dense in \mathbb{O}. Also, for each $i<\omega_{1}$ there is $p_{i}^{*} \in \mathbb{O}$ such that $u^{p_{i}}=\{i\}$. It follows from Claim 2.3.1 that for some $i(*), p_{i(*)}^{*} \vdash_{\mathbb{O}}$ " $\{j<$ $\left.\omega_{1}: p_{j}^{*} \in G\right\}$ is unbounded in ω_{1} ". Note also that if p is compatible with $p_{i(*)}^{*}$ and $p \in \mathcal{J}_{i, n}$ then $u_{p} \nsubseteq i$.

Since we have assumed $\mathbf{M} \mathbf{A}_{\aleph_{1}}$ and (\mathbb{O}) satisfies the ccc (by Claim 2.3.1), we may find a directed set $G \subseteq\left(\mathbb{O}\right.$) such that $p_{i(*)}^{*} \in G$ and $\mathcal{J}_{i, n} \cap G \neq \varnothing$ for all $n<\omega$ and $i<\omega_{1}$. Note that then the set $\mathcal{U}:=\bigcup\left\{u^{p}: p \in G\right\}$ is unbounded in ω_{1}.

For $i \in \mathcal{U}$ let $g_{i}=\bigcup\left\{\rho_{i}^{p}: p \in G\right\}$. Clearly each $g_{i} \in{ }^{\omega} \omega$ (as G is directed, $\mathcal{J}_{i, n} \cap G \neq \varnothing$ for $i<\omega_{1}, n<\omega$). Also $g_{i} \leq f_{i}$ by clause (c) of the definition of $(\mathbb{O}$, and $\left\langle g_{i}: i \in \mathcal{U}\right\rangle$ is $<^{*}$-increasing by clause (h) of the definition of $\leq_{\mathbb{Q}}$. Hence for each $i<j$ from \mathcal{U} we have $g_{i}<^{*} g_{j} \leq^{*} f_{j}<^{*} f_{i}$. Thus by property (d) of Definition 1.10 of a peculiar cut, for every $i \in \mathcal{U}$ there is $\gamma(i)<\kappa_{2}$ such that $g_{i}<^{*} f^{\gamma(i)}$. Let $\gamma(*)=\sup \{\gamma(i): i \in \mathcal{U}\}$. Then $\gamma(*)<\kappa_{2}$ (as $\left.\kappa_{2}=\operatorname{cf}\left(\kappa_{2}\right)>\aleph_{1}\right)$. Now, for each $i \in \mathcal{U}$ we have $g_{i}<^{*} f^{\gamma(*)}<^{*} f_{i}$, and thus for $i \in \mathcal{U}$ we may pick $n_{i}<\omega$ such that

$$
n \in\left[n_{i}, \omega\right) \Rightarrow g_{i}(n)<f^{\gamma(*)}(n)<f_{i}(n)
$$

For some n^{*} the set $\mathcal{U}_{*}=\left\{i \in \mathcal{U}: n_{i}=n^{*}\right\}$ is unbounded in ω_{1}. Let $j \in \mathcal{U}_{*}$ be such that $\mathcal{U}_{*} \cap j$ is infinite. Pick $p \in G$ such that $j \in u^{p}$ and $n^{p}>n^{*}$ (remember $G \cap \mathcal{J}_{j, n^{*}+1} \neq \varnothing$ and G is directed). Since u^{p} is finite, we may choose $i \in \mathcal{U}_{*} \cap j \backslash u^{p}$, and then $q \in G$ such that $q \geq p$ and $i \in u^{q}$. If follows from clause (i) of the definition of the order \leq of (\mathbb{O}) that there is $n \in\left[n^{p}, n^{q}\right)$ such that $f_{j}(n)<\rho_{i}^{q}(n)=g_{i}(n)$. Since $n>n^{*}=n_{i}=n_{j}$, we get $f_{j}(n)<g_{i}(n)<f^{\gamma(*)}(n)<f_{j}(n)$, a contradiction.

Remark 2.4. The proof of Theorem 2.3 actually used Hausdorff gaps on which much is known (see, e.g., Abraham and Shelah [1,2]). More precisely, the proof could be presented as a two-step argument:
(1) from $\mathbf{M} \mathbf{\aleph}_{\aleph_{1}}$ one gets that every decreasing ω_{1}-sequence is half of a Hausdorff gap, and
(2) if $\kappa_{2}=\operatorname{cf}\left(\kappa_{2}\right)>\aleph_{1}$, then the ω_{1}-part of a peculiar $\left(\omega_{1}, \kappa_{2}\right)$-cut cannot be half of a Hausdorff gap.

Corollary 2.5 If $\mathbf{M A}_{\aleph_{1}}$, then $\mathfrak{p}=\aleph_{2} \Leftrightarrow t=\aleph_{2}$. In other words,

$$
\mathfrak{m}=\mathfrak{p}=\aleph_{2} \Rightarrow \mathrm{t}=\aleph_{2}
$$

Acknowledgments We thank Andreas Blass for detailed comments on an earlier version of this paper and David Fremlin for historical information.

References

[1] U. Abraham and S. Shelah, Lusin sequences under CH and under Martin's Axiom. Fund. Math. 169(2001), no. 2, 97-103.
[2] Ladder gaps over stationary sets. J. Symbolic Logic 69(2004), no. 2, 518-532.
[3] T. Bartoszyński and H. Judah, Set Theory. On the structure of the real line. A K Peters, Wellesley, MA, 1995.
[4] M. G. Bell, On the combinatorial principle $P(\mathfrak{c})$. Fund. Math. 114(1981), no. 2, 149-157.
[5] D. H. Fremlin, Consequences of Martin's Axiom. Cambridge Tracts in Mathematics 84, Cambridge University Press, Cambridge, MA, 1984.
[6] Z. Piotrowski and A. Szymański, Some remarks on category in topological spaces. Proc. Amer. Math. Soc. 101(1987), no. 1, 156-160.
[7] F. Rothberger, Sur un ensemble toujours de première catégorie qui est dépourvu de la propriété λ. Fund. Math. 32(1939), 294-300.
[8] \longrightarrow, On some problems of Hausdorff and Sierpiński. Fund. Math. 35(1948), 29-46.
[9] S. Shelah. Large continuum, oracles.arXiv:LO.0707.1818.
[10] S. Todorčević and B. Veličković, Martin's axiom and partitions. Compositio Mathematica 63(1987), 391-408.

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
and
Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA
e-mail: shelah@math.huji.ac.il

[^0]: Received by the editors July 18, 2006; revised May 20, 2007.
 The author acknowledges support from the United States-Israel Binational Science Foundation (Grant no. 2002323). Publication 885.

 AMS subject classification: Primary 03E17; secondary: 03E05, 03E50.
 (C)Canadian Mathematical Society 2009.

