Canad. Math. Bull. Vol. 16 (4), 1973

MOST INFINITELY DIFFERENTIABLE FUNCTIONS ARE NOWHERE ANALYTIC

BY R. B. DARST

1. Introduction. We define a natural metric, d, on the space, C^{∞} , of infinitely differentiable real valued functions defined on an open subset U of the real numbers, R, and show that C^{∞} is complete with respect to this metric. Then we show that the elements of C^{∞} which are analytic near at least one point of U comprise a first category subset of C^{∞} .

2. First, there exists a sequence $\{U_i\}_{i=1}^{\infty}$ of segments (a_i, b_i) in R which satisfy:

(i) the closure, V_i , of U_i is a compact subset of U;

(ii) $\bigcup_i U_i = U;$

and

(iii) if $x \in U$ and W is an open set containing x, then there exists a positive integer i for which $x \in U_i \subset V_i \subset W$.

Denote by (S, ρ) the metric space of sequences of real numbers, where the distance $\rho(x, y)$ between an element $x = \{x_i\}_{i=0}^{\infty}$ of S and an element $y = \{y_i\}_{i=0}^{\infty}$ of S is defined by

$$\rho(x, y) = \sum_{i=0}^{\infty} 2^{-i} \frac{|x_i - y_i|}{1 + |x_i - y_i|}.$$

Let T be the metric space of S valued functions defined on U. For $u, v \in T$, let d_i be the semi-metric defined by

$$d_i(u, v) = \sup_{x \in V_i} \rho(u(x), v(x)),$$

and then let

$$\delta(u, v) = \sum_{i=1}^{\infty} 2^{-i} d_i(u, v).$$

Then (T, δ) is a complete metric space.

Next, we define a linear map, ϕ , of C^{∞} into T by

$$(\phi f)(x) = (f(x), f^{(1)}(x), \ldots)$$

Finally, we define $d(f, g) = \delta(\phi(f), \phi(g))$, where f and $g \in C^{\infty}$. In view of Theorem 7.17 of [3] we see that (C^{∞}, d) is a complete metric space.

Let $A = \{f \in C^{\infty} : \exists x \in U \text{ such that } f \text{ is analytic at } x\}$. We wish to show that A is a first category subset of C^{∞} . To this end, we remind the reader (cf. [1, p. 26,

Example 4]) that if f is analytic at a point x of U, then f is analytic on a neighborhood of some V_i and there exists a positive integer n such that $f \in A_{i,n}$, where

$$A_{i,n} = \left\{ f \in C^{\infty} : \sup_{x \in V_i} |f^{(k)}(x)| \le n^k \cdot k!, \, k = 0, \, 1, \, \ldots \right\}.$$

Consequently, it suffices to show that $A_{i,n}$ is a closed and nowhere dense subset of C^{∞} . We leave it to the reader to check that $A_{i,n}$ is closed. Suppose $f \in C^{\infty}$ and $\varepsilon > 0$. Denote by N the set of elements g of C^{∞} satisfying $d(f,g) < \varepsilon$. If $f \notin A_{i,n}$, then $N \notin A_{i,n}$. Suppose $f \in A_{i,n}$. Let $x_0 \in U_i$. Then choose λ to be a positive number which is so small that the restriction of $f + \lambda e^{-1/(x-x_0)^2}$ to U is in $N - A_{i,n}$.

In closing, we remind the reader that May showed in [2] that A is a proper subset of C^{∞} ; we have shown that A is a rather small subset of C^{∞} .

References

1. Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968.

2. W. Rudin, Principles of mathematical analysis, 2nd ed., McGraw-Hill, New York, 1964.

3. L. E. May, On C^{∞} functions analytic on sets of small measure, Canad. Math. Bull. 12 (1969), 25–30.

COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO