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1. Introduction. R. A. Rankin [3] considered the problem of finding, for each integer
n ^ 3, a sequence of positive integers containing no n-term geometric progression. He
constructed such sets Bn having asymptotic density
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For example A3 = 0-71975, A4 = 0-8626, and An -»1 as n -* oo.
Let H(ri) denote the class of all sequences of positive integers that contain no n-term

geometric progression. Rankin wondered whether An is the highest density possible for
members of H{ri). In this paper we find members having higher density, in the cases n ^ 4,
and also find upper estimates for the possible density in all cases n ^ 3.

If £ is a set of non-negative integers containing 0, let Q(E) denote the set of all integers N
of the form

N = n p"i>
where pt is the rth prime and each a, is chosen from E. We call Q(E) the set of integers developed
from the exponent choice set E. We shall simplify the notation by writing

If E contains no n-term arithmetic progression, then Q(E) contains no n-term geometric
progression. Rankin's Bn is the set Q(Cn), where Cn is the set of all non-negative integers
which, when expressed in the scale of In — 3, contain no digit greater than n—2.

For any real x and set Q of positive integers we let Q(x) denote the number of elements of
Q that do not exceed x. If Q has asymptotic density we shall denote it by D(Q).

In Section 2, we either estimate or find the density of a member Q(En) ofH(ri) after proving
the following lemma:

LEMMA 1. If E is any exponent choice set, then D(Q{E)) exists.
For each n ^ 4 we find a set En such that Q(En)eH(n) and

In fact for each n ^ 4 we observe that there are many sets having these properties of En. In
Section 3 we find an upper estimate for the possible density of members of H(ri) for each n ^ 3.
A table comparing some few of the densities we obtain with the corresponding upper estimates
is included at the end of the paper.

t These results are contained in the author's Ph.D. thesis written at the University of Alberta in 1967 under
the direction of Leo Moser.
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138 J. RIDDELL

2. Members of H{n) with density exceeding An(n ^ 4). We prove the following theorem.

THEOREM 1. (i)Ifn is prime, there exists QeH(n) such that

(ii) Ifn is composite, there exists QeH(n) such that

_

is ?//e smallest prime divisor ofn.

(iii) There exists Q e //(4) .swc/i ///a/

D(Q) > 0-8952. (3)

The estimate (3) is somewhat larger than that provided by (2) with n = 4. We give the
proof that the respective densities exceed An in Section 2.1. We first prove part (iii) of the
theorem.

Proof of (i\i). The set
£^0,1,2,4,5,7,8,9

contains no 4-term arithmetic progression. We shall find a lower estimate for
The set Q(E'4) will not contain m if and only if there is a prime p such that

p 3 \ m and p4J(m, or p 6 \ m and p1J(m, or p l o | m .

Given a prime p , the number of such m not exceeding x is

and the density of the set of such numbers m is

,. K(x,p) 1 1 1 1 1

By the principle of inclusion and exclusion,

E K(p)K(q)K(r) + ..., (4)
p p<q p<q<r

where the sums are respectively taken over all the tuples (p), (p, q), (p, q, r ) , . . . of primes satis-
fying the indicated inequalities. Since

(K(p)K(q)K(r)...)<liK(p) E (K(q)K(r)...)< E (^(«)X(r)...), (5a)
p g . . . p q<r<. . . q<r<. , .

(j primes) O'- l primes) O'~l primes)
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and

£ ( % ) X ( # ( r ) . . . ) < ( I % ) y = 0(l) as j->oo. (5b)
p<q<r< . . . p

(j primes)

Hence the series (4) converges. We have estimated the first four terms and found that

) > 1-0-107569+0-002875-0-000023 > 0-8952.

Before proceeding with the remaining parts of the theorem, we prove Lemma 1, using the
method developed above.

Proof of Lemma 1. Given an exponent choice set E and a prime/>, we can define a quantity
KE(p) corresponding to K(p) above. If E contains 1, then the series S in KE corresponding to
(4) converges. For, the first term ofKE(p) will be l/p" with a ̂  2, so that £ K^p) < £ 1/p2 < 1;

p p

hence we can obtain the inequalities (5) with KE in place of K. Therefore D(Q(E)) exists and
is the sum of the series 5. If 1 $E, then £.K£(p) diverges, for the first term of KE{p) is \jp.

However, in this case £>(£>(£)) = 0, because Q(E) c Q(0,2,3,4,...), the set of squarefull
numbers, and this set has density 0. We refer the reader to the solution by P. T. Bateman [2]
of a problem proposed by D. J. Newman which shows that, if Q = Q(0,2,3,4,...), then
Q(x) = O(x*). Hence Lemma 1.

Proof of (i).

En:

If n is prime,

0,

n,

2n,

then the set

1,

n+\,

2«+l ,

2 , . . . ,

n + 2,...,

2n + 2,...,

n-2,

2n-2,

3n-2,

(n-2)n, (n-2)n+\, (n-2)n + 2,...,(«-1)«-2

contains no n-term arithmetic progression. For if En contained such progressions, one of
them would have its first term among 0, l, . . . ,n—2, and all of them would have common
difference less than n. However, i f O ^ a ^ n — 2 and 1 ̂  d ̂  n— 1, some term of the pro-
gression

a, a+d, a+2d,...,a+(n-l)d

is congruent to —1 modulo n and hence is not in En. This is because (d,n) = 1, whence
0,d,2d,...,(n—l)dform a complete residue system modulo n.

Now, with s = a + it {a, freal),

l _ n / y l\_nl-l/pC-1>'l-l/pf-1>"=

)N
s VV-.s-P"/ V 1-1/PS 1-1/P"1 C{(n-
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140 J. RIDDELL

We now employ the following lemma (see Ayoub [1]):

LEMMA 2. If

N = l

(7)
s - 1

Defining

otherwise,

we have

and with g = g ^ ) ,

y 1
 = y aW

Zj \TS 2-1 \TS '
NeQ(En)ly N = l •'»

Lemma 1 assures us that D(Q(En)) = lim Q(_x)/x exists, and by Lemma 2 we can find this
x-*ao

l im i t f r o m (7) . I t is t h e r e s idue of (6) a t t h e s imp le p o l e s = l . T h u s

COO

and hence part (i) of Theorem 1.
Note that we could adjoin integers to the above set En and still have a set free of n-term

progressions, thus obtaining an even denser member of H(n).

Proof of (n). Suppose that n is composite, and that h is the smallest prime divisor of n.
Then the set

0, 1, 2 , . . . , n-2,

n, n + l, n+2,..., 2n-2,

En:
(h-2)n, (h-2)n + l, (h-

(h-\)n, (h- ,..., hn-h-l

contains no «-term arithmetic progression. For consider any progression with first term a
and common difference d such that

0 S a < a + d< a + 2d< ... < a+(n-l)dS h(n-l)-l.
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Evidently d<h. Hence {d,ri)=l. Therefore a,a+d,...,a+(n— \)d form a complete
residue system modulo n, whence this progression contains one of n— 1, In— 1,..., (h— \)n— 1,
and is not contained in En.

We shall obtain the lower estimate (2) for D(Q(En)). The numbershn-h,hn-h+\
hn—2 cannot be included in En since each of these is the nth term of an arithmetic progression
having difference h and first n— 1 terms in En. Using Lemma 2 we find that

^ (8)

and (2) will follow when we make allowance for the exclusion of hn — 1, hn—h +1,..., hn—2.
Given any exponent choice set E and set of positive integers F disjoint from E, we shall

denote by Q(E&F) the set of integers developed from the exponent choice set £ u f with
always at least one element from each of E and F included among the exponents chosen (we
always include the 0 from E). Then

Q(E) u Q(E & F) = QiE u F). (9)

By Lemma 1, D{Q(E)) and D(Q(EKJF)) exist. Therefore, since the sets on the left side of (9)
are disjoint, D(Q(E&F) exists and

(10)

Now, writing G = {hn—h, hn—h + l,...,fm—2}, we have by (10)

D(Q(En)) = D(Q(En u G))-D(Q(Ett &G)). (11)

Furthermore,

Q(En&G)^Q({0,l,2,...,hn-h-l}&G) = Q(0,l,2,...,hn-2)-Q(0,l,2 hn-h-i),

where we have applied (9). Hence, by (10),

D(Q(En&G))<D(Q(0,l,2,...,hn-2))-D(Q(0,l,2,...,hn-h-l))
_ l l
= £(hn-l)~t;(hn-li)'

Hence, from (8) and (11), the result follows, and the proof of Theorem 1 is now complete.
One can again adjoin integers to En, in the case n is composite, and obtain a still denser

member of H(n). For example if n is even, and / is the smallest prime divisor of n — 1, then the
set

E'n = {0,1,2,.. . , / ( n - l )} -{« - l , 2 (n - l ) , 3 (n - l ) , . . . , ( / - l ) (n - l ) }

contains no n-term arithmetic progression. We found earlier that D(Q(Ei)) > 0-8952. By
comparison the estimate (2) in the case n = 4, found using EA = {0,1,2,4,5}, is 0-88796 to
five places, and estimating from above, we find using (10) that

0-89093.
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2.1. Comparison of the densities. We shall show that

2n-1) « 2 n - 2 )

for n ^ 4, and that

r ! ! , 1 3 )

for 3 ^ h Sj n—2. From (12) it will follow that the density in Theorem l(ii), in the case n is
even, exceeds An. If n is an odd composite number and h is the smallest prime divisor of n,
then 3 ̂  h ^ y/n and (13) will hold. Furthermore in this case the right side of (13), and hence
that of (2), exceeds C(«)/(C(»-l)C(2n)), as does the quantity C(»)/[C(»-l)C{(n-l)»}] of (1) in
the case n is prime. Hence by (12) the densities in Theorem l(i), (ii) will have been shown to
exceed An in any case.

We use the following easily proved lemma:

LEMMA 3. For integers a > 1 and b > 0,

.< . c o o - 1

To prove (12) we first show that

• m_.2\ 1 O r " = J yLH'

and then that

2 n - 4 C(w)
C(2n2)

for n ^ 5. This will imply (12) for « ^ 5. For n = 4 we find, using tables, that the left side of
(12) exceeds 0-88796 while A4 < 0-8627.

We observe that

C(2n2) < C{(n-l)(2n-3)} < f[ C{(n-l)(2n-3)*},

so that if we prove

|K{(2n-3)*}<C(2n-4) (16)

for n ^ 3 we shall have (14). Writing m = 2« -3 , we shall prove

C(m - 1 ) > 1 + 2(C(m) - 1 ) > I I C(w*) (17)
) c = l

for m ^ 3, and this will yield (16). The first inequality of (17) is immediate from Lemma 3.
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Again, from the lemma,

and writing x = 2m(£(m)— 1) one can show by comparing logarithms that

for m ^ 3, whence follows the second inequality of (17).
The inequality (15) is equivalent to

C ( 2 H - 2 ) - C ( 2 H - 1 ) C(n)
<l) C(2»-l)C(2»-2) <C(2n)'

and the second term on the left side here is less than £(«— l)(C(2n—2)- l)/£2(2w). Replacing
that second term by this quantity and multiplying through by (2(2w)((2«2), we find that the
left side of the resulting inequality is less than

C(2n)C2(2« - 4)+C(2nX(« " 1)(C(2« - 2) - 1 ) .

For n ^ 6 one can show by Lemma 3 that this quantity is less than C(«)C(2«)C(2n2), giving
(18) for n ^ 6, while for n = 5, (18) can be proved using tables. Hence (12).

The proof of (13) involves manipulations similar to those in the proof of (15).

3. Upper estimates. Let

= sup{lMn = sup{lira
U-oo x

where H^ri) is that subset of H(n) whose members have asymptotic density. We prove the
following theorem.

THEOREM 2. For every n^.3,

The proof of Theorem 2 depends on Theorem 3 below, which is concerned with geometric
progressions of integral ratio r. Let / denote the set of positive integers. For any integer r > 1
let R = R(n, r) denote the set of geometric progressions in / of n terms and ratio r, and let
H(n, r) denote the class of all sequences in / that contain no progression of R. Further, let
Hx(n,r) be the class of all sequences QeH(n,r) for which limQ(x)/x exists. We define

M *P = sup < lim sup: QeH( n,r)\,

Mnp = sup< lim
Q(X)

b e - o o X
Qetfi
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THEOREM 3. (i) No integer appears in more than n progressions of R.

(ii) There is exactly one subset of I with the property: Each element of the set appears in n
progressions of R and each progression of R contains exactly one element of the set.

(iii) Let S be the set in (ii). If T c I and I- Te H{n, r), then T(x) ^ S(x) for every x.

(iv) I-SeH^n.r) and lim S(x)/x = (r-l)/(rn-1).

Tf analogously to M*p we defined

QeH(n)\,M* = sup < lim sup

we might expect that similarly Mn = M*. Perhaps this would be so if one considered only
geometric progressions with integral ratio, but it seems doubtful in the general case.

Proof of Theorem 3. Let us separate R into families Fk of progressions:

k, kr, kr2, . . . .fcr""1;

kr, kr2, kr3, ...,kr";

Fk:

kr*-1, kr", krn+1,...,kr2"-2;

kr", kr"*1, krn+2 kr2"'1;

where kel, rjfk. Clearly (J Fk = R, and no integer appears in more than n progressions of

r}k

one family. Furthermore, if Vk denotes the set of all integers appearing in the progressions of
Fk> then the sets Vk are pairwise disjoint. For if kr" = lrv and k ^ I, then u # v and either
r | k or r | /. (i) follows.

The integers kr"~1, kr2"'1, kr3"'1,... each appear in exactly n of the progressions of Fk,
and each progression of Fk contains exactly one of them; it is clear that this is the only set of
integers with this property. Since the Vk are pairwise disjoint, the set

S = (J {kr"-1,kr2n-1,kr3"-1,...}
k=l

has the property required in (ii). It is clear that I—SeH(n,r).
Proceeding to (iii), we observe that if each Fk is separated into blocks of « progressions

each, starting with the first member of the family, then in order that /— Te H(n, r), T must
contain at least one integer from each block of each family. Since S contains exactly one
integer from each block, T(x) ^ S(x) for every x.
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The number of integers

r'"-\2rin-\...,{r-iyn-\{r + \yn-\... (19)

not exceeding x is

- ,provided that 1 ̂  i _: m = —- , while if i > m, the integers (19) all exceed x. Hence

L n J

so that S has density

,. S(x) » r - l r - 1

and we have proved (iv).
From (iv), Mn > p^ l - ( r - l ) / ( r " - l ) . On the other hand, by (iii), if UeH(n,r), then

U(x)^[I-S](x) for every x, so that M*r g 1 - ( r - l)/(r"-1). Since M , , r | M , * , by
definition, (v) follows.

Proof of Theorem 2. The theorem follows immediately from the observation that
Mn ^ Mn<r for any r. We choose r = 2 since Mn r is smallest for that value of r.

In the case n = 3 we have obtained the better estimate

M3 < 0.8339. (20)

This compares with the estimate 6/7 = 0-8571... of Theorem 2. We find (20) by considering
what integers must be removed from / in order to eliminate, in addition to all 3-term progres-
sions of ratio 2, certain progressions of ratio 3. The details are too lengthy to be included here.

The most dense members of H(n) discussed in Sections 1 and 2 provide lower estimates for
Mn. We compare these with our upper esimates for Mn for some few values of n:

n
3
4
5
8

lower estimate
,43 = 0-7197...

0-8952
0-9580
0-9957

upper estimate
0-8339

14/15 = 0-9333
30/31=0-9677...

254/255 = 0-9960... .
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