SHIDLOVSKY'S MULTIPLICITY ESTIMATE AND IRRATIONALITY OF ZETA VALUES

STÉPHANE FISCHLER

(Received 18 September 2017; accepted 23 October 2017; first published online 18 June 2018)

Communicated by M. Coons

Abstract

In this paper we follow the approach of Bertrand-Beukers (and of Bertrand's later work), based on differential Galois theory, to prove a very general version of Shidlovsky's lemma that applies to Padéapproximation problems at several points, both at functional and numerical levels (that is, before and after evaluating at a specific point). This allows us to obtain a new proof of the Ball-Rivoal theorem on irrationality of infinitely many values of the Riemann zeta function at odd integers, inspired by the proof of the Siegel-Shidlovsky theorem on values of E-functions: Shidlovsky's lemma is used to replace Nesterenko's linear independence criterion with Siegel's, so that no lower bound is needed on the linear forms in zeta values. The same strategy provides a new proof, and a refinement, of Nishimoto's theorem on values of L-functions of Dirichlet characters.

2010 Mathematics subject classification: primary 11J72; secondary 11M06, 34M03.
Keywords and phrases: irrationality, zeta values, Padé approximation, Shidlovsky's lemma.

1. Introduction

Very few results are known on the arithmetic nature of $\zeta(s)$, where ζ is the Riemann zeta function and $s \geq 2$ is an integer. If s is even, $\zeta(s)$ is a rational multiple of π^{s} and therefore, a transcendental number. Apéry has proved [2] that $\zeta(3)$ is irrational, but there is no odd integer $s \geq 5$ for which $\zeta(s)$ is known to be irrational. The next major step is due to Ball-Rivoal [3, 22]:

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{Q}} \operatorname{Spa}_{\mathbb{Q}}(1, \zeta(3), \zeta(5), \ldots, \zeta(a)) \geq \frac{1+o(1)}{1+\log 2} \log a \tag{1.1}
\end{equation*}
$$

as $a \rightarrow \infty$, where a is odd. In particular, $\zeta(s)$ is irrational for infinitely many odd integers s.

The proofs of these results rely on very ingenious explicit constructions; many authors have tried to make them more natural by establishing connections to various settings (see, for instance, [9] for a survey). One of these is the Padé approximation:

[^0]the construction appears as the (unique) solution of a Padé-approximation problem. This has been done for Apéry's theorem in several ways, including works of Beukers [6] and Sorokin [26, 27]. On the other hand, the Ball-Rivoal theorem is proved by considering
$$
S(z)=\sum_{t=1}^{\infty} \frac{(t-r n)_{r n}(t+n+1)_{r n}}{(t)_{n+1}^{a}} z^{-t}
$$
where r and n are positive integers (with $1 \leq r<a / 2$ and $n \rightarrow \infty$), and $z=1$; recall that Pochhammer's symbol is defined by $(\alpha)_{p}=\alpha(\alpha+1) \ldots(\alpha+p-1)$. This function $S(z)$ is the unique solution, up to proportionality, of the following Padé-approximation problem [10]: find polynomials P_{1}, \ldots, P_{a+2} of degree at most n such that
\[

\left\{$$
\begin{align*}
S(z):=P_{a+2}(z)+\sum_{i=1}^{a} P_{i}(z) \mathrm{Li}_{i}(1 / z)=O\left(z^{-r n-1}\right), & z \rightarrow \infty \tag{1.2}\\
\widetilde{S}(z):=P_{a+1}(z)+\sum_{i=1}^{a} P_{i}(z)(-1)^{i} \mathrm{Li}_{i}(z)=O\left(z^{(r+1) n+1}\right), & z \rightarrow 0 \\
T(z):=\sum_{i=1}^{a} P_{i}(z)(-1)^{i-1} \frac{(\log z)^{i-1}}{(i-1)!}=O\left((z-1)^{(a-2 r) n+a-1}\right), & z \rightarrow 1
\end{align*}
$$\right.
\]

In the present paper we give a new proof of the Ball-Rivoal theorem, in which this Padé-approximation problem plays a central role. Our strategy is inspired by the Siegel-Shidlovsky theorem on values of E-functions (see, for instance, [25, Ch. 3]): we prove a general version of Shidlovsky's lemma and use it to find sufficiently many values of k, bounded from above independently from n, such that the derivatives $S^{(k-1)}(1)-\widetilde{S}^{(k-1)}(1)$ are linearly independent linear forms in $1, \zeta(3), \zeta(5), \ldots, \zeta(a)$. This allows us to apply Siegel's linear independence criterion (instead of Nesterenko's) and deduce the lower bound (1.1).

In order to state our version of Shidlovsky's lemma, we need some notation. To begin with, given $\sigma \in \mathbb{C} \cup\{\infty\}$, recall that the Nilsson class at σ is the set of finite sums

$$
f(z)=\sum_{e \in \mathbb{C}} \sum_{i \in \mathbb{N}} \lambda_{i, e} h_{i, e}(z)(z-\sigma)^{e}(\log (z-\sigma))^{i}
$$

where $\lambda_{i, e} \in \mathbb{C}, h_{i, e}$ is holomorphic at σ, and $z-\sigma$ should be understood as $1 / z$ if $\sigma=\infty$. If such a function $f(z)$ is not identically zero, we may assume that $h_{i, e}(\sigma) \neq 0$ for any i, e; then the (generalized) order of f at σ, denoted by $\operatorname{ord}_{\sigma} f$, is the minimal real part of an exponent e such that $\lambda_{i, e} \neq 0$ for some i.

Let q be a positive integer, and $A \in M_{q}(\mathbb{C}(z))$. We fix $P_{1}, \ldots, P_{q} \in \mathbb{C}[z]$ and $n \in \mathbb{N}=$ $\{0,1,2, \ldots\}$ such that $\operatorname{deg} P_{i} \leq n$ for any i. Then with any solution $Y={ }^{t}\left(y_{1}, \ldots, y_{q}\right)$ of the differential system $Y^{\prime}=A Y$ is associated a remainder $R(Y)$ defined by

$$
R(Y)(z)=\sum_{i=1}^{q} P_{i}(z) y_{i}(z)
$$

Let Σ be a finite subset of $\mathbb{C} \cup\{\infty\}$. For each $\sigma \in \Sigma$, let $\left(Y_{j}\right)_{j \in J_{\sigma}}$ be a family of solutions of $Y^{\prime}=A Y$ such that the functions $R\left(Y_{j}\right), j \in J_{\sigma}$, are \mathbb{C}-linearly independent and belong to the Nilsson class at σ; here $\sigma \in \mathbb{C} \cup\{\infty\}$ might be a singularity of the differential system $Y^{\prime}=A Y$. The Padé-approximation problem (1.2) is a special case of this setting, with $q=a+2, \Sigma=\{0,1, \infty\}, J_{\sigma}=\{\sigma\}$ for any $\sigma \in \Sigma, R\left(Y_{\infty}\right)(z)=S(z)$, $R\left(Y_{0}\right)(z)=\widetilde{S}(z)$, and $R\left(Y_{1}\right)(z)=T(z)$ (see Section 2 for details). In most cases all $R\left(Y_{j}\right)$ are holomorphic at σ for $j \in J_{\sigma}$, but a term in $\log (z-\sigma)$ is necessary to fit Beukers' problem for $\zeta(3)$ [6] into this setting.

We agree that $J_{\sigma}=\emptyset$ if $\sigma \notin \Sigma$, and let $M(z)=\left[P_{k, i}(z)\right]_{1 \leq i, k \leq q} \in M_{q}(\mathbb{C}(z))$ where the rational functions $P_{k, i} \in \mathbb{C}(z)$ are defined for $k \geq 1$ and $1 \leq i \leq q$ by

$$
\left(\begin{array}{c}
P_{k, 1} \tag{1.3}\\
\vdots \\
P_{k, q}
\end{array}\right)=\left(\frac{d}{d z}+{ }^{t} A\right)^{k-1}\left(\begin{array}{c}
P_{1} \\
\vdots \\
P_{q}
\end{array}\right)
$$

Obviously the poles of the coefficients $P_{k, i}$ of M are among those of A. These rational functions $P_{k, i}$ play an important role because they are used to differentiate the remainders [25, Ch. 3, Section 4]:

$$
\begin{equation*}
R(Y)^{(k-1)}(z)=\sum_{i=1}^{q} P_{k, i}(z) y_{i}(z) \tag{1.4}
\end{equation*}
$$

The following multiplicity estimate appears essentially (see below) in [4, Théorème 2].

Theorem 1.1. There exists a positive constant c_{1}, which depends only on A and Σ, such that if

$$
\begin{equation*}
\sum_{\sigma \in \Sigma} \sum_{j \in J_{\sigma}} \operatorname{ord}_{\sigma}\left(R\left(Y_{j}\right)\right) \geq(n+1) q-n \# J_{\infty}-\tau \tag{1.5}
\end{equation*}
$$

with $0 \leq \tau \leq n-c_{1}$, then $\operatorname{det} M(z)$ is not identically zero.
The special case where $\Sigma=\{0\}, \# J_{0}=1$, and Y_{j} is analytic at 0 is essentially Shidlovsky's lemma (see [25, Ch. 3, Lemma 8]). When $\Sigma \subset \mathbb{C}, \# J_{\sigma}=1$ for any σ, and all functions Y_{j} are obtained by analytic continuation from a single one, analytic at all $\sigma \in \Sigma$, this result was proved by Bertand-Beukers [5] with more details on the constant c_{1}. Then Bertrand has allowed [4, Théorème 2] an arbitrary number of solutions at each σ, proving Theorem 1.1 under the additional assumptions that $\infty \notin \Sigma$ and the functions $Y_{j}, j \in J_{\sigma}$, are analytic at σ.

Our proof of Theorem 1.1 (like that of [4, Théorème 2]) follows the strategy of [5], based on differential Galois theory. The point is that we allow Σ to contain ∞, and/or singularities of the differential system $Y^{\prime}=A Y$; moreover, the functions $Y_{j}, j \in J_{\sigma}$, are not assumed to be holomorphic at σ. These features make Theorem 1.1 general enough to cover essentially all Padé-approximation problems related to polylogarithms we have found in the literature, for instance, the ones mentioned above. In such a
setting, τ in Equation (1.5) appears as the difference between the number of unknowns and the number of equations.

Then we evaluate at a point α, going from functional to numerical linear forms (see [25, Ch. 3, Lemma 10] for the classical setting). The point here is that we allow α to be a singularity of the differential system $Y^{\prime}=A Y$, and/or an element of Σ (in our proof of the Ball-Rivoal theorem, $\alpha=1$ is both).

Theorem 1.2. There exists a positive constant c_{2}, which depends only on A and Σ, with the following property. Assume that, for some $\alpha \in \mathbb{C}$:
(i) If α is a singularity of the differential system $Y^{\prime}=A Y$, it is a regular one and all nonzero exponents at α have positive real parts.
(ii) Equation (1.5) holds for some τ with $0 \leq \tau \leq n-c_{1}$.
(iii) All rational functions $P_{k, i}$, with $1 \leq i \leq q$ and $1 \leq k<\tau+c_{2}$, are holomorphic at $z=\alpha$.

Then the matrix $\left[P_{k, i}(\alpha)\right]_{1 \leq i \leq q, 1 \leq k<\tau+c_{2}} \in M_{q, \tau+c_{2}-1}(\mathbb{C})$ has rank at least $q-\# J_{\alpha}$.
In particular, assertion (i) holds if the differential system $Y^{\prime}=A Y$ has a basis of local solutions at α with coordinates in $\mathbb{C}[\log (z-\alpha)]\left[\left[(z-\alpha)^{e}\right]\right]$ for some positive rational number e. As far as we know, Theorem 1.2 is the first general result in which α is allowed to be a singularity. The case where α is not a singularity is much easier, and assumptions (i) and (iii) are then trivially satisfied.

If $\alpha \notin \Sigma$ then $J_{\alpha}=\emptyset$ so that we obtain a matrix of maximal rank q. On the other hand, if $\alpha \in \Sigma$ then the corresponding $\# J_{\alpha}$ linearly independent linear combinations of the rows of the matrix $\left[P_{k, i}(z)\right]_{i, k}$ are holomorphic at α and (probably) vanish at α : the lower bound $q-\# J_{\alpha}$ is the best possible.

Using a zero estimate such as Theorem 1.2 is the key point in the classical proof of the Siegel-Shidlovsky theorem on values of E-functions. Following a similar but different strategy, Nikishin constructed explicitly [19] linearly independent linear forms in $1, \mathrm{Li}_{1}(\alpha), \ldots, \mathrm{Li}_{a}(\alpha)$ to prove that these numbers are linearly independent over \mathbb{Q} when $\alpha=u / v$ is a rational number with v sufficiently large in terms of $|u|$. His approach was used by several authors, including Marcovecchio [15] to bound from below the dimension of the \mathbb{Q}-vector space spanned by these numbers, for any fixed algebraic number α with $|\alpha|<1$ (thereby generalizing to nonreal numbers α Rivoal's result [23] based on Nesterenko's linear independence criterion). The zero estimate used by Marcovecchio is similar to Theorem 1.2 but deals only with a specific situation in which (essentially) $\tau=1$ in Equation (1.5), $\alpha \notin \Sigma$, and α is not a singularity. Moreover, he does not define $P_{k, i}$ for $k \geq 2$ using Equation (1.3) (that is, differentiating the remainders as in the proof of the Siegel-Shidlovsky theorem): following Nikishin he uses an additional parameter instead.

In this paper we use Theorem 1.2 to obtain a new proof, and a refinement, of the following result of Nishimoto [20] on L-functions $L(\chi, s)=\sum_{n=1}^{\infty}\left(\chi(n) / n^{s}\right)$ associated with Dirichlet characters χ. He proved it with d instead of N in the lower bound (1.6); see Section 4.1 for this easy improvement.

Theorem 1.3. Let χ be a Dirichlet character modulo d, of conductor N. Let $p \in\{0,1\}$ and $a \geq 2$. Denote by $\delta_{\chi, p, a}$ the dimension of the \mathbb{Q}-vector space spanned by 1 and the numbers $L(\chi, s)$ with $2 \leq s \leq a$ and $s \equiv p \bmod 2$. Then,

$$
\begin{equation*}
\delta_{\chi, p, a} \geq \frac{1+o(1)}{N+\log 2} \log a \tag{1.6}
\end{equation*}
$$

where $o(1)$ is a sequence that depends on N and a, and tends to 0 as $a \rightarrow \infty$ (for any $N)$.

If p and χ have the same parity then $L(\chi, s) \pi^{-s}$ is a nonzero algebraic number for any $s \geq 2$ such that $s \equiv p$ mod 2 (see, for instance, [18, Ch. VII, Section 2]): this result is interesting when p and χ have opposite parities.

Nishimoto's proof is similar to Ball-Rivoal's, except that obtaining the lower bound necessary to apply Nesterenko's criterion is very technical: the saddle point method has to be used because cancellations take place (see [17]). In this paper we present an alternative proof of Theorem 1.3, based on the zero estimate stated above. It makes it unnecessary to use the saddle point method, since Siegel's criterion is applied instead of Nesterenko's. In the special case $d=N=1$ (so that $\chi(n)=1$ for any n, and $L(\chi, s)=\zeta(s))$ this is exactly the proof of the Ball-Rivoal theorem mentioned above. As Zudilin pointed out to us, using the same strategy, it could be possible to generalize to any algebraic number $q,|q|>1$, the results on q-zeta values proved in [14] when $1 / q$ is an integer. Another question asked by Zudilin is whether Galochkin's lemma ([11], see also [29, Lemma 1.4]) can be used in this approach.

We also obtain the following refinement of Theorem 1.3, by improving the arithmetic estimates.

Theorem 1.4. In the setting of Theorem 1.3, if N is a multiple of 4 then Equation (1.6) can be replaced with

$$
\delta_{\chi, p, a} \geq \frac{1+o(1)}{(N / 2)+\log 2} \log a .
$$

When χ is the nonprincipal character $\bmod d=4$, so that $N=4$, this result was proved by Rivoal-Zudilin [24] as a first step towards the (conjectural) irrationality of Catalan's constant $L(\chi, 2)=\sum_{k=0}^{\infty}(-1)^{k} /(2 k+1)^{2}$.

The structure of this paper is as follows. We first give, in Section 2, our proof of the Ball-Rivoal theorem. Then Section 3 is devoted to Shidlovsky's lemma: we prove Theorems 1.1 and 1.2. Finally, in Section 4 we prove, in detail, a general result which contains Theorem 1.3, Theorem 1.4, and the Ball-Rivoal theorem; in particular, Section 4.6 is devoted to Siegel's linear independence criterion.

2. A new proof of the Ball-Rivoal theorem

In this section we provide the new proof of the Ball-Rivoal theorem obtained as a special case of the proof of Theorem 4.1 in Section 4 below (namely $N=1, f(n)=1$
for any $n, p=1, z_{0}=1, i_{0}=2, \xi_{1}=0$, and $\xi_{j}=\zeta(j)$ for any $\left.j \geq 2\right)$. Of course we refer to Section 4 for more details.

Let a, r, r^{\prime}, n be such that a is odd and $r, r^{\prime}<a / 2$. It turns out that the best estimates come from the case where r and r^{\prime} have essentially the same size, so we shall restrict in Section 4 to the case $r^{\prime}=r$; however, the proof works in the same way if $r^{\prime} \neq r$. Consider the rational function

$$
F(t)=n!^{a-r-r^{\prime}} \frac{(t-r n)_{r n}(t+n+1)_{r^{\prime} n}}{(t)_{n+1}^{a}}
$$

where $(\alpha)_{k}=\alpha(\alpha+1) \ldots(\alpha+k-1)$ is Pochhammer's symbol, and let

$$
S_{0}(z)=\sum_{t=n+1}^{\infty} F(-t) z^{t}, \quad S_{\infty}(z)=\sum_{t=1}^{\infty} F(t) z^{-t}
$$

For any $k \geq 1$ we let

$$
\begin{equation*}
\Lambda_{k}=S_{0}^{(k-1)}(1)-S_{\infty}^{(k-1)}(1) \tag{2.1}
\end{equation*}
$$

where $S^{(k-1)}$ is the $(k-1)$ th derivative of S; if $r^{\prime}=r$ and $k=1$ this is essentially the linear form used in [3] and [22]. We shall use a symmetry phenomenon to get rid of even zeta values, but it does not appear exactly as in the original proof of BallRivoal. Indeed, even if $r^{\prime}=r, S_{0}^{(k-1)}(1)$ and $S_{\infty}^{(k-1)}(1)$ involve both odd and even zeta values when $k \geq 2$: they are values at $z=1$ of hypergeometric series which are no longer well-poised. The cancellation of even zeta values comes at a different stage, by considering Λ_{k} in Equation (2.1). Indeed there exist integers $s_{k, i}, 2 \leq i \leq a$, and u_{k}, v_{k} such that for any $k \leq\left(a-r-r^{\prime}\right) n+a-1$, both

$$
d_{n}^{a} S_{0}^{(k-1)}(1)=u_{k}+\sum_{i=2}^{a}(-1)^{i} s_{k, i} \zeta(i)
$$

and

$$
d_{n}^{a} S_{\infty}^{(k-1)}(1)=v_{k}+\sum_{i=2}^{a} s_{k, i} \zeta(i)
$$

where $d_{n}=\operatorname{lcm}(1,2, \ldots, n)$, so that $d_{n}^{a} \Lambda_{k}=d_{n}^{a} S_{0}^{(k-1)}(1)-d_{n}^{a} S_{\infty}^{(k-1)}(1)$ is a \mathbb{Z}-linear combination of 1 and odd zeta values:

$$
d_{n}^{a} \Lambda_{k}=s_{k, a+1}-2 \sum_{\substack{2 \leq i \leq a \\ i \text { odd }}} s_{k, i} \zeta(i),
$$

with $s_{k, a+1}=u_{k}-v_{k}$. Using Theorem 1.2 we prove that the matrix $\left[s_{k, i}\right]_{2 \leq i \leq a+1,1 \leq k \leq c_{2}}$ has maximal rank, equal to a (see below). This enables one to apply Siegel's linear independence criterion (see Section 4.6) instead of Nesterenko's: no lower bound on $\left|\Lambda_{k}\right|$ is needed. The upper bounds on $\left|s_{k, j}\right|$ and $\left|\Lambda_{k}\right|$ are essentially the same as in the proof of Ball-Rivoal, because k is bounded from above by a constant c_{2} (independent from n); therefore, we obtain the same lower bound:

$$
\operatorname{dim}_{\mathbb{Q}} \operatorname{Span}_{\mathbb{Q}}(1, \zeta(3), \zeta(5), \ldots, \zeta(a)) \geq \frac{1+o(1)}{1+\log 2} \log a
$$

Let us focus now on the functional aspects of this proof, which play an important role (whereas the proof of Ball-Rivoal can be written with $z=1$ throughout). For simplicity we restrict ourselves to the case $r^{\prime}=r$. The functions $S_{0}(z)$ and $S_{\infty}(z)$ are solutions of the following Padé-approximation problem: find polynomials P_{1}, \ldots, P_{a+2} of degree at most n such that:

$$
\left\{\begin{align*}
S_{0}(z):=P_{a+1}(z)+\sum_{i=1}^{a} P_{i}(z)(-1)^{i} \mathrm{Li}_{i}(z)=O\left(z^{(r+1) n+1}\right), & z \rightarrow 0, \tag{2.2}\\
S_{\infty}(z):=P_{a+2}(z)+\sum_{i=1}^{a} P_{i}(z) \mathrm{Li}_{i}(1 / z)=O\left(z^{-r n-1}\right), & z \rightarrow \infty \\
\sum_{i=1}^{a} P_{i}(z)(-1)^{i-1} \frac{(\log z)^{i-1}}{(i-1)!}=O\left((z-1)^{(a-2 r) n+a-1}\right), & z \rightarrow 1
\end{align*}\right.
$$

This is exactly the Padé-approximation problem of [10, Théorème 1], stated in the introduction: it has a unique solution up to proportionality, $(n+1)(a+2)$ unknowns and $(n+1)(a+2)-1$ equations. Let $A \in M_{a+2}(\mathbb{C}(z))$ denote the following matrix:

$$
A=\left[\begin{array}{cccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & \frac{1}{z-1} & \frac{1}{z(1-z)} \\
\frac{-1}{z} & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & \frac{-1}{z} & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{-1}{z} & \ldots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \frac{-1}{z} & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{array}\right]
$$

and consider the following solutions of the differential system $Y^{\prime}=A Y$:

$$
\begin{gathered}
Y_{0}(z)={ }^{t}\left(-\mathrm{Li}_{1}(z), \mathrm{Li}_{2}(z), \ldots,(-1)^{a} \mathrm{Li}_{a}(z), 1,0\right), \\
Y_{\infty}(z)={ }^{t}\left(\operatorname{Li}_{1}(1 / z), \mathrm{Li}_{2}(1 / z), \ldots, \mathrm{Li}_{a}(1 / z), 0,1\right), \\
Y_{1}(z)={ }^{t}\left(1,-\log z, \frac{(\log z)^{2}}{2}, \ldots,(-1)^{a-1} \frac{(\log z)^{a-1}}{(a-1)!}, 0,0\right) .
\end{gathered}
$$

Let $\Sigma=\{0,1, \infty\}$ and $J_{0}=\{0\}, J_{1}=\{1\}, J_{\infty}=\{\infty\}$. Then with the notation in the introduction, we have $R\left(Y_{0}\right)=S_{0}(z), R\left(Y_{\infty}\right)=S_{\infty}(z)$, and $R\left(Y_{1}\right)$ is the left-hand side of the third equation of (2.2); Equation (1.5) stated in the introduction holds with $\tau=1$ as a consequence of the Padé-approximation problem (2.2). In general, τ corresponds in Equation (1.5) to the difference between the number of unknowns and the number of equations. To apply Theorem 1.2 it is not useful to prove that the problem has a
unique solution up to proportionality: the upper bound $\tau \leq n / 2$, for instance, would be sufficient since n is taken arbitrarily large.

Defining $P_{k, i}$ as in the introduction by Equation (1.3), Equation (1.4) yields for any $k \geq 1$:

$$
\begin{align*}
& S_{0}^{(k-1)}(z)=P_{k, a+1}(z)+\sum_{i=1}^{a} P_{k, i}(z)(-1)^{i} \operatorname{Li}_{i}(z) \quad \text { and } \\
& S_{\infty}^{(k-1)}(z)=P_{k, a+2}(z)+\sum_{i=1}^{a} P_{k, i}(z) \operatorname{Li}_{i}(1 / z) \tag{2.3}
\end{align*}
$$

Moreover, $P_{k, i}$ is a rational function of which 0 is the only possible pole if $i \leq a$. If $i=a+1$ or $i=a+2$, both 0 and 1 may be poles of $P_{k, i}$; but if $k \leq(a-2 r) n+a-1$, the functions $S_{0}^{(k-1)}(z)$ and $S_{\infty}^{(k-1)}(z)$ have finite limits as $z \rightarrow 1$ so that 1 is not a pole.

Finally, Theorem 1.2 applies at $\alpha=1$: the matrix $\left[P_{k, i}(1)\right]_{1 \leq i \leq a+2,1 \leq k \leq c_{2}}$ has rank at least $a+1$. Actually, $P_{k, 1}(1)=0$ for any $k \leq(a-2 r) n+a-1$ (which can be seen by letting z tend to 1 in Equation (2.3)) so that the first row of this matrix is zero (provided n is large enough) and its rank is exactly $a+1$. Since the coefficients $s_{k, i}$ defined above are given by $s_{k, i}=d_{n}^{a} P_{k, i}(1)$ for $2 \leq i \leq a$ and $s_{k, a+1}=d_{n}^{a}\left(P_{k, a+1}(1)-P_{k, a+2}(1)\right)$, the matrix $\left[s_{k, i}\right]_{2 \leq i \leq a+1,1 \leq k \leq c_{2}}$ has rank a : Siegel's criterion (stated and proved in Section 4.6) applies.

3. Zero estimates

In this section we prove Theorems 1.1 and 1.2. We start with the functional part of the proof (Section 3.1), in which we follow the approach of Bertrand-Beukers [5] to generalize Shidlovsky's lemma (see Theorem 3.1). Then in Section 3.2 we deduce Theorems 1.1 and 1.2 stated in the introduction: the important point is to evaluate at α, which may be a singularity and/or an element of Σ.
3.1. Functional zero estimate. Throughout this section we consider a positive integer q and a matrix $A \in M_{q}(\mathbb{C}(X))$. We let $P_{1}, \ldots, P_{q} \in \mathbb{C}[X]$ with $\operatorname{deg} P_{i} \leq n$ for any i. We also denote by Ω a simply connected open subset of \mathbb{C} in which A has no pole. We assume that Ω is obtained from \mathbb{C} by removing finitely many half-lines, so that Ω is dense in \mathbb{C}, and denote by \mathcal{H} the space of functions holomorphic on Ω. A solution Y of the differential system $Y^{\prime}=A Y$ will always be a column matrix in $M_{q, 1}(\mathcal{H})$, identified with the corresponding element $\left(y_{1}, \ldots, y_{q}\right)$ of \mathcal{H}^{q}. Since P_{1}, \ldots, P_{q} are fixed, to such a solution is associated a remainder $R(Y)$ defined on Ω by

$$
R(Y)(z)=\sum_{i=1}^{q} P_{i}(z) y_{i}(z)
$$

Let Σ be a finite subset of $\mathbb{P}^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\}$. For each $\sigma \in \Sigma$, let $\left(Y_{j}\right)_{j \in J_{\sigma}}$ be a family of solutions of $Y^{\prime}=A Y$ such that:

- For any $j \in J_{\sigma}$, the function $R\left(Y_{j}\right)$ belongs to the Nilsson class at σ.
- The functions $R\left(Y_{j}\right)$, for $j \in J_{\sigma}$, are linearly independent over \mathbb{C}.

The point is that we do not assume any relation (or lack of relation) between the families $\left(Y_{j}\right)_{j \in J_{\sigma}}$ at distinct points σ, except of course that all are solutions of the same differential system. To prove Theorems 1.1 and 1.2 we may omit all pairs (j, σ) with $j \in J_{\sigma}$ such that $\operatorname{ord}_{\sigma}\left(R\left(Y_{j}\right)\right) \leq 0$, so that we shall assume from now on that $\operatorname{ord}_{\sigma}\left(R\left(Y_{j}\right)\right) \geq 0$ for any $j \in J_{\sigma}$.

Finally, we let $J_{\sigma}=\emptyset$ when $\sigma \notin \Sigma$.
Defining $P_{k, i}(z)$ and $M(z)$ as in the introduction, our functional multiplicity estimate is the following generalization of Bertrand-Beukers' version of Shidlovsky's lemma; if $\infty \notin \Sigma$ and the functions $Y_{j}, j \in J_{\sigma}$, are analytic at σ it is due to Bertrand [4, Théorème 2]. The constant c_{1} is the same as in Theorem 1.1 (that we shall deduce from Theorem 3.1 at the beginning of Section 3.2).

Theorem 3.1. Let μ denote the order of a nonzero differential operator $L \in \mathbb{C}(z)[d / d z]$ such that $L\left(R\left(Y_{j}\right)\right)=0$ for any σ and any $j \in J_{\sigma}$. Then,

$$
\sum_{\sigma \in \Sigma} \sum_{j \in J_{\sigma}} \operatorname{ord}_{\sigma}\left(R\left(Y_{j}\right)\right) \leq(n+1)\left(\mu-\# J_{\infty}\right)+c_{1}
$$

where c_{1} is a constant that depends only on A and Σ.
In the special case where $\Sigma \subset \mathbb{C}, J_{\sigma}$ consists of a single element j_{σ}, and the function $Y_{j_{\sigma}}$ is the same for all σ and is analytic at all σ, this is exactly [5, Théorème 2] except that we did not try to make the constant c_{1} explicit (we refer to [5], and to [1, Appendix of Ch. III] in the Fuchsian case, for discussions on effectivity, which are not relevant for our purposes). Indeed we have fixed a simply connected open subset Ω for convenience only: analytic continuation from a point of Σ to another could be performed along any fixed path.

Let us prove Theorem 3.1 now, following the strategy of [5].
Given $\sigma \in \mathbb{P}^{1}(\mathbb{C})$, we let \mathcal{A}_{σ} denote the set of all finite sums

$$
\begin{equation*}
\sum_{\alpha \in E} \sum_{Q \in \mathcal{P}} \sum_{j=0}^{J} u_{\alpha, Q, j}(z-\sigma)(z-\sigma)^{\alpha}(\log (z-\sigma))^{j} \exp \left(Q\left((z-\sigma)^{-1 / q!}\right)\right), \tag{3.1}
\end{equation*}
$$

where $E \subset \mathbb{C}$ and $\mathcal{P} \subset \mathbb{C}[X]$ are finite subsets, $J \geq 0$, and $u_{\alpha, Q, j}(z-\sigma) \in \mathbb{C}\left[\left[(z-\sigma)^{1 / q!}\right]\right]$ for any α, Q, j. Here and below, we agree that $z-\sigma$ stands for $1 / z$ si $\sigma=\infty$. Then the differential system $Y^{\prime}=A Y$ has a complete system of formal solutions in \mathcal{A}_{σ}^{q}. Moreover, we let \mathcal{K}_{σ} denote the fraction field of \mathcal{A}_{σ}, and F_{σ} denote the differential subfield of \mathcal{K}_{σ} generated over $\mathbb{C}(z)$ by all components of all solutions of $Y^{\prime}=A Y$ in \mathcal{K}_{σ}^{q}. Then the differential extension $F_{\sigma} / \mathbb{C}(z)$ is Picard-Vessiot, and we denote by G_{σ} its group of differential automorphisms.

To prove Theorem 3.1 we may assume that $0 \in \Sigma$, that μ is the minimal order of a nonzero differential operator that annihilates $R\left(Y_{j}\right)$ for any $j \in J_{\sigma}$ and any $\sigma \in \Sigma$, and that the coefficient of $(d / d z)^{\mu}$ in L is 1 .

Given $\sigma \in \Sigma$ and $j \in J_{\sigma}$, all components of Y_{j} are holomorphic on the cut plane Ω, and can be seen as elements of \mathcal{A}_{0}. Indeed, if 0 is a regular singularity (or an ordinary point) of the system $Y^{\prime}=A Y$ then all components of Y_{j} have a generalized Taylor expansion at the origin in \mathcal{A}_{0} (of the form (3.1) with $\mathcal{P}=\{0\}$). In the general case, we identify each component of Y_{j} with its asymptotic expansion at 0 in a fixed large sector (see [21]). By definition of F_{0}, all components of Y_{j} (seen in \mathcal{A}_{0}) belong to F_{0} so that $R\left(Y_{j}\right) \in F_{0}$. We consider the \mathbb{C}-vector space $V \subset F_{0}$ spanned by the images $\gamma\left(R\left(Y_{j}\right)\right)$ of all $R\left(Y_{j}\right), j \in J_{\sigma}, \sigma \in \Sigma$, under all $\gamma \in G_{0}$. Since the kernel of $L: F_{0} \rightarrow F_{0}$ is stable under G_{0}, we have $V \subset \operatorname{ker} L$ so that $m \leq \mu$, where $m=\operatorname{dim}_{\mathbb{C}} V$. Let $\left(R_{1}, \ldots, R_{m}\right)$ be a basis of V, such that $R_{i}=\gamma_{i}\left(R\left(Y_{j_{i}}\right)\right)$ with $\gamma_{i} \in G_{0}$ and $j_{i} \in J_{\sigma_{i}}$ for any $i \in\{1, \ldots, m\}$.

Arguing as in the proof of [5, Proposition 3],

$$
L y=\frac{1}{W\left(R_{1}, \ldots, R_{m}\right)} \operatorname{det}\left[\begin{array}{cccc}
y & y^{\prime} & \ldots & y^{(m)} \\
R_{1} & R_{1}^{\prime} & \ldots & R_{1}^{(m)} \\
\vdots & \vdots & & \vdots \\
R_{m} & R_{m}^{\prime} & \ldots & R_{m}^{(m)}
\end{array}\right]
$$

where $W\left(R_{1}, \ldots, R_{m}\right)=\operatorname{det}\left[R_{i}^{(j-1)}\right]_{1 \leq i, j \leq m}$ is the Wronskian determinant. In particular, $m=\mu$ and $V=\operatorname{ker} L$.

Now we claim that for any $\sigma \in \mathbb{P}^{1}(\mathbb{C})$ there exist μ solutions $Y^{[\sigma, j]}=\left(y_{1}^{[\sigma, j]}, \ldots, y_{q}^{[\sigma, j]}\right)$ of $Y^{\prime}=A Y$ in F_{σ}^{q}, with $1 \leq j \leq \mu$, such that $R\left(Y^{[\sigma, 1]}\right), \ldots, R\left(Y^{[\sigma, \mu]}\right)$ span the \mathbb{C}-vector space of solutions of $L y=0$ in F_{σ}. Indeed, as in [5, Corollaire], using a differential isomorphism $F_{0} \rightarrow F_{\sigma}$ we may assume $\sigma=0$. Then for any $i \in\{1, \ldots, m\}, \gamma_{i}\left(Y_{j_{i}}\right) \in F_{0}^{q}$ is a solution of $Y^{\prime}=A Y$ and $\pi_{0}\left(\gamma_{i}\left(Y_{j_{i}}\right)\right)=R\left(\gamma_{i}\left(Y_{j_{i}}\right)\right)=\gamma_{i}\left(R\left(Y_{j_{i}}\right)\right)=R_{i}$ so that the claim is proved since $\left(R_{1}, \ldots, R_{m}\right)$ is a basis of $V=\operatorname{ker} L$.

Let us recall the following terminology from [5]: an element of \mathcal{A}_{σ} has rank $\leq \kappa \in(1 / q!) \mathbb{N}$ and generalized order $\geq r$ if it is of the form (3.1) with $\operatorname{deg} Q \leq q!\kappa$ for any $Q \in \mathcal{P}$ and $\operatorname{Re} \alpha \geq r$ for any $\alpha \in E$. The differential operator L has rank $\leq \kappa$ at σ and $\left(r_{1}, \ldots, r_{\mu}\right) \in \mathbb{R}^{\mu}$ is an admissible system of exponents of L at σ if the differential equation $L y=0$ has a complete system of solutions $\left(y_{1}, \ldots, y_{\mu}\right)$ in $\mathcal{A}_{\sigma}^{\mu}$ such that each y_{i} has rank $\leq \kappa$ and generalized order $\geq r_{i}$.

Given $\sigma \in \mathbb{P}^{1}(\mathbb{C})$ all functions $y_{i}^{[\sigma, j]}$ with $1 \leq i \leq q$ and $1 \leq j \leq \mu$ have rank $\leq \kappa_{\sigma}$ and generalized order $\geq r_{\sigma}$ for some $\kappa_{\sigma} \in(1 / q!) \mathbb{N}$ and $r_{\sigma} \in \mathbb{R}$ which depend only on A and σ (see [5, Proposition 1]). If $\sigma \neq \infty, R\left(Y^{[\sigma, j]}\right)=\sum_{i=1}^{q} P_{i}(z) y_{i}^{[\sigma, j]}(z)$ has rank $\leq \kappa_{\sigma}$ and generalized order $\geq r_{\sigma}$; these functions make up a complete system of solutions of L (using the claim above). Moreover, if $\sigma \in \Sigma \backslash\{\infty\}$ then for any $j \in J_{\sigma}$ the function $R\left(Y_{j}\right)$ can be seen as an element of \mathcal{A}_{σ} with rank ≤ 0 and generalized order $\geq \operatorname{ord}_{\sigma}\left(R\left(Y_{j}\right)\right)$. Combining these \mathbb{C}-linearly independent solutions of $L y=0$ with suitable functions $R\left(Y^{[\sigma, j]}\right)$, we obtain that L has rank $\leq \kappa_{\sigma}$ at σ and an admissible system of exponents of L at σ consists in r_{σ} repeated $\mu-\# J_{\sigma}$ times, and $\operatorname{ord}_{\sigma}\left(R\left(Y_{j}\right)\right)$ for each $j \in J_{\sigma}$. In the same way, at infinity, for any $j \in J_{\infty}$ the function $R\left(Y_{j}\right) \in \mathcal{A}_{\infty}$ has rank ≤ 0 and generalized order $\geq \operatorname{ord}_{\infty}\left(R\left(Y_{j}\right)\right)$. To obtain a complete system of solutions of $L y=0$ in \mathcal{A}_{∞} we use also $\mu-\# J_{\infty}$ functions $R\left(Y^{[\infty, j]}\right)$, which have rank $\leq \kappa_{\sigma}$ and generalized
order $\geq r_{\infty}-n$ since $\operatorname{deg} P_{i}(z) \leq n$ for any $i \in\{1, \ldots, q\}$. Therefore, L has rank $\leq \kappa_{\infty}$ at ∞ and an admissible system of exponents of L at ∞ consists in $r_{\infty}-n$ repeated $\mu-\# J_{\infty}$ times, and $\operatorname{ord}_{\infty}\left(R\left(Y_{j}\right)\right)$ for each $j \in J_{\infty}$.

So far we have found an upper bound on the rank of L, and an admissible system of exponents of L, at any $\sigma \in \Sigma$. Enlarging Σ if necessary, we may assume that it contains ∞ and all poles of A. Then for any $\sigma \in \mathbb{P}^{1}(\mathbb{C}) \backslash \Sigma$ the differential system $Y^{\prime}=A Y$ has a complete system of solutions holomorphic at σ, and therefore, the same property holds for the differential equation $L y=0$ using the claim above. Accordingly, Σ contains ∞ and all nonapparent singularities of L, so that the Corollary of [5, Théorème 3] provides an inequality involving upper bounds on the ranks of L and admissible systems of exponents of L at all points of Σ, namely:

$$
\begin{aligned}
&\left(\mu-\# J_{\infty}\right)\left(r_{\infty}-n\right)+\left(\sum_{j \in J_{\infty}} \operatorname{ord}_{\infty}\left(R\left(Y_{j}\right)\right)\right)-\left(\kappa_{\infty}+1\right) \mu(\mu-1) / 2 \\
&+\sum_{\sigma \in \Sigma \backslash\{\infty\}}\left[\left(\mu-\# J_{\sigma}\right) r_{\sigma}+\left(\sum_{j \in J_{\sigma}} \operatorname{ord}_{\sigma}\left(R\left(Y_{j}\right)\right)\right)-\left(\kappa_{\sigma}+1\right) \mu(\mu-1) / 2\right] \leq-\mu(\mu-1)
\end{aligned}
$$

so that

$$
\left(\sum_{\sigma \in \Sigma} \sum_{j \in J_{\sigma}} \operatorname{ord}_{\sigma}\left(R\left(Y_{j}\right)\right)\right)-(n+1)\left(\mu-\# J_{\infty}\right) \leq c_{1}
$$

where c_{1} is a constant that can be written down explicitly in terms of $\Sigma, \mu, \kappa_{\sigma}, r_{\sigma}$, and $\# J_{\sigma}$ for $\sigma \in \Sigma$. This concludes the proof of Theorem 3.1.
3.2. Numerical zero estimate. In this section we prove Theorems 1.1 and 1.2 stated in the introduction. The proof falls into three steps; the first one is Theorem 1.1.

Step 1. $M(z) \in M_{q}(\mathbb{C}(z))$ is an invertible matrix.
As in [25], if M is singular in $M_{q}(\mathbb{C}(z))$ then there is a nontrivial linear relation with coefficients in $\mathbb{C}(z)$ between the $\operatorname{rk}(M)+1$ first columns of M; this provides a differential operator L of order $\mu=\operatorname{rk}(M)$ to which Theorem 3.1 applies, in contradiction with Equation (1.5) since $\tau \leq n-c_{1}$. Indeed, for any solution Y of the differential system $Y^{\prime}=A Y$,

$$
{ }^{t} Y M=\left[R(Y) R(Y)^{\prime} \ldots R(Y)^{(q-1)}\right] .
$$

Step 2. Determination of det $M(z)$ up to factors of bounded degree.
Let S denote the set of finite singularities of the differential system $Y^{\prime}=A Y$, that is, poles of coefficients of A. For any $s \in S$, let N_{s} denote the maximal order of s as a pole of a coefficient of A; let $N_{s}=0$ for $s \in \mathbb{C} \backslash S$. Then Equation (1.3) shows that $(z-s)^{(k-1) N_{s}} P_{k, i}(z)$ is holomorphic at $z=s$ for any $k \geq 1$ and any $i \in\{1, \ldots, q\}$. Therefore, $\operatorname{det} M(z) \cdot \prod_{s \in S}(z-s)^{q(q-1) N_{s}}$ has no pole: is it a polynomial.

Now let $\sigma \in \Sigma$, and denote by $T_{\sigma} \in M_{\# J_{\sigma}, q}(\mathcal{H})$ the matrix with rows ${ }^{t} Y_{j}, j \in J_{\sigma}$. The vector-valued functions $Y_{j}, j \in J_{\sigma}$, are linearly independent over \mathbb{C} because the functions $R\left(Y_{j}\right)$ are, therefore, the $\# J_{\sigma}$ first elements of a basis of solutions \mathcal{B} of the differential system $Y^{\prime}=A Y$. The Wronskian determinant of \mathcal{B} may vanish at σ if σ
is a singularity, but even in this case it has generalized order $\leq c_{0}(\sigma)$ at σ (with the terminology of Section 3.1) where $c_{0}(\sigma)$ is a constant depending only on A and σ (not on \mathcal{B}). On the other hand, all components of all elements of \mathcal{B} have generalized order $\geq r_{\sigma}$ at σ (as in Section 3.1). Therefore, there exists a subset I_{σ} of $\{1, \ldots, q\}$, with $\# I_{\sigma}=q-\# J_{\sigma}$, such that the determinant of the submatrix of T_{σ} corresponding to the columns indexed by $\{1, \ldots, q\} \backslash I_{\sigma}$ has generalized order $\leq c(\sigma)$ at σ, where $c(\sigma)=c_{0}(\sigma)-r_{\sigma} \# I_{\sigma}$ depends only on A and σ. Increasing $c_{0}(\sigma)$ and $c(\sigma)$ if necessary, we may assume that $c(\sigma) \in \mathbb{N}$.

Let $P_{\sigma} \in M_{q}(\mathcal{H})$ denote the matrix of which the $\# J_{\sigma}$ first rows are that of T_{σ}, and the other rows are the ${ }^{t} e_{i}, i \in I_{\sigma}$, where $\left(e_{1}, \ldots, e_{q}\right)$ is the canonical basis of $M_{q, 1}(\mathbb{C})$. Then $P_{\sigma} M$ has its first rows equal to $\left[R\left(Y_{j}\right) R\left(Y_{j}\right)^{\prime} \ldots R\left(Y_{j}\right)^{(q-1)}\right]$ with $j \in J_{\sigma}$, and its last rows equal to $\left[P_{1, i} \ldots P_{q, i}\right]$ with $i \in I_{\sigma}$. Therefore, all coefficients in the row corresponding to $j \in J_{\sigma}$ have order at σ at least $\operatorname{ord}_{\sigma} R\left(Y_{j}\right)-q+1$, and (if $\sigma \neq \infty$) all coefficients in the row corresponding to $i \in I_{\sigma}$ are either holomorphic at σ, or have a pole of order at most $(q-1) N_{\sigma}$ is $\sigma \in S$. Since $N_{\sigma}=0$ if $\sigma \notin S$, we have for any $\sigma \in \Sigma \backslash\{\infty\}:$

$$
\operatorname{ord}_{\sigma} \operatorname{det}\left(P_{\sigma} M\right) \geq\left(\sum_{j \in J_{\sigma}} \operatorname{ord}_{\sigma} R\left(Y_{j}\right)\right)-(q-1) \# J_{\sigma}-(q-1) N_{\sigma}\left(q-\# J_{\sigma}\right)
$$

Since $\operatorname{det} P_{\sigma}$ has generalized order $\leq c(\sigma)$ at σ,

$$
\operatorname{ord}_{\sigma} \operatorname{det}(M) \geq\left(\sum_{j \in J_{\sigma}} \operatorname{ord}_{\sigma} R\left(Y_{j}\right)\right)-c(\sigma)
$$

Now let

$$
Q_{2}(z)=\left(\prod_{s \in S}(z-s)^{q(q-1) N_{s}}\right) \cdot\left(\prod_{\sigma \in \Sigma \backslash\{\infty\}}(z-\sigma)^{c(\sigma)}\right)
$$

so that $Q_{2}(z) \operatorname{det} M(z)$ is a polynomial and vanishes at any $\sigma \in \Sigma \backslash\{\infty\}$ with order at least $\sum_{j \in J_{\sigma}} \operatorname{ord}_{\sigma} R\left(Y_{j}\right)$. To bound from above the degree of this polynomial, we define P_{∞} as above if $\infty \in \Sigma$, and let P_{∞} denote the identity matrix (and $J_{\infty}=\emptyset$) otherwise. Then for some nonnegative integer t we have $R\left(Y_{j}\right)^{(k-1)}=O\left(z^{-\operatorname{ord}_{\infty} R\left(Y_{j}\right)}(\log z)^{t}\right)$ as $|z| \rightarrow \infty$ for any $j \in J_{\infty}$ and any $k \geq 1$, and $P_{k, i}(z)=O\left(z^{n+(q-1) d}\right)$ for any $i \in I_{\infty}$ and any $k \in\{1, \ldots, q\}$ (where d is greater than or equal to the degree of all coefficients of $A)$. Since $\operatorname{det} M(z)$ is a rational function we $\operatorname{deduce} \operatorname{det} M(z)=O\left(z^{u}\right)$ as $|z| \rightarrow \infty$, with

$$
u=\left(q-\# J_{\infty}\right)(n+(q-1) d)-\sum_{j \in J_{\infty}} \operatorname{ord}_{\infty} R\left(Y_{j}\right)
$$

so that

$$
\operatorname{deg}\left(Q_{2}(z) \operatorname{det} M(z)\right) \leq u+\operatorname{deg} Q_{2} \leq \sum_{\sigma \in \Sigma \backslash\{\infty\}} \sum_{j \in J_{\sigma}} \operatorname{ord}_{\sigma} R\left(Y_{j}\right)+\tau+c_{1}
$$

using Equation (1.5), where c_{1} depends only on A and Σ (since $0 \leq \# J_{\sigma} \leq q$ for any σ). To sum up, we have found a polynomial Q_{1} of degree at most $\tau+c_{1}$ such that

$$
\operatorname{det} M(z)=\frac{Q_{1}(z)}{Q_{2}(z)} \prod_{\sigma \in \Sigma \backslash\{\infty\}}(z-\sigma)^{\left\lceil\sum_{j \in J \sigma} \operatorname{ord}_{\sigma} R\left(Y_{j}\right)\right\rceil},
$$

where $\lceil\omega\rceil$ is the least integer greater than or equal to ω.

Step 3. Evaluation at α.
To begin with, we denote by \mathcal{L}_{α} the \mathbb{C}-vector space spanned by the functions $h(z)(z-\alpha)^{e}(\log (z-\alpha))^{i}$ with h holomorphic at $\alpha, i \in \mathbb{N}$, and $e \in \mathbb{C}$ such that either $e=0$ or $\operatorname{Re}(e)>0$.

Let $q_{\alpha}=\# J_{\alpha}$ and $q_{\alpha}^{\prime}=q-q_{\alpha}$, where $J_{\alpha}=\emptyset$ if $\alpha \notin \Sigma$; for simplicity we assume that $J_{\alpha}=\left\{1, \ldots, q_{\alpha}\right\}$. Since the solutions $Y_{1}, \ldots, Y_{q_{\alpha}}$ of the differential system $Y^{\prime}=A Y$ are linearly independent over \mathbb{C}, there exist solutions $Y_{q_{\alpha}+1}, \ldots, Y_{q}$ such that $\left(Y_{1}, \ldots, Y_{q}\right)$ is a local basis of solutions at α. Let \boldsymbol{Y} be the matrix with columns Y_{1}, \ldots, Y_{q}; then ${ }^{t} \mathcal{Y}_{M}$ is the matrix $\left[R\left(Y_{i}\right)^{(k-1)}\right]_{1 \leq i, k \leq q}$, and assumption (i) of Theorem 1.2 yields $\boldsymbol{y} \in M_{q}\left(\mathcal{L}_{\alpha}\right)$.

For any subset E of $\{1, \ldots, q\}$ of cardinality $q_{\alpha}^{\prime}=q-q_{\alpha}$, we denote by Δ_{E} the determinant of the submatrix of $\left[R\left(Y_{i}\right)^{(k-1)}\right]$ obtained by considering only the rows with index $i \geq q_{\alpha}+1$ and the columns with index $k \in E$, and by $\widetilde{\Delta}_{E}$ the one obtained by removing these rows and columns. Then Laplace expansion by complementary minors yields

$$
\begin{equation*}
\operatorname{det} \mathcal{Y}(z) \cdot \operatorname{det} M(z)=\sum_{\substack{E \subset\{1, \ldots, q\} \\ \# E=q_{\alpha}^{\prime}}} \varepsilon_{E} \Delta_{E}(z) \widetilde{\Delta}_{E}(z) \tag{3.2}
\end{equation*}
$$

with $\varepsilon_{E} \in\{-1,1\}$. Now $\operatorname{det} \mathcal{Y}$ is the Wronskian of Y_{1}, \ldots, Y_{q} : it is a solution of the first order differential equation

$$
\begin{equation*}
w^{\prime}(z)=w(z) \operatorname{trace}(A(z)) \tag{3.3}
\end{equation*}
$$

Moreover, it is nonzero, and belongs to \mathcal{L}_{α}. Therefore, we have $\varpi_{1}:=\operatorname{ord}_{\alpha} \operatorname{det} \mathcal{Y}(z) \geq$ 0 . Moreover, $\varpi_{2}:=\operatorname{ord}_{\alpha} \operatorname{det} M(z) \in \mathbb{N}$ using Step 1 and the assumption that all entries of $M(z)$ are rational functions holomorphic at α. Then Equation (3.2) provides a subset E such that

$$
\begin{equation*}
\varpi_{3}:=\operatorname{ord}_{\alpha} \Delta_{E}(z) \leq \varpi_{1}+\varpi_{2}-\operatorname{ord}_{\alpha} \widetilde{\Delta}_{E}(z) . \tag{3.4}
\end{equation*}
$$

Now letting $\omega_{\alpha}=\left\lceil\sum_{j \in J_{\alpha}} \operatorname{ord}_{\alpha} R\left(Y_{j}\right)\right\rceil$ if $\alpha \in \Sigma$ and $\omega_{\alpha}=0$ otherwise, Step 2 shows that $\varpi_{2} \leq \omega_{\alpha}+\tau+c_{1}$. Moreover, the (generalized) order at α of any nonzero solution of Equation (3.3), and in particular ϖ_{1}, can be bounded from above in terms of A only. At last, for any $i \in J_{\alpha}=\left\{1, \ldots, q_{\alpha}\right\}$ and any $k \in\{1, \ldots, q\}$ we have $\operatorname{ord}_{\alpha} R\left(Y_{i}\right)^{(k-1)} \geq$ $\operatorname{ord}_{\alpha} R\left(Y_{i}\right)-(q-1)$ so that $\operatorname{ord}_{\alpha} \Delta_{E}(z) \geq \omega_{\alpha}-q_{\alpha}(q-1)$. Therefore, Equation (3.4) yields $\varpi_{3} \leq \tau+c_{3}$ for some constant c_{3} depending only on A and Σ. Using this upper bound we shall prove now that ϖ_{3} is a nonnegative integer, and $\Delta_{E}^{\left(\omega_{3}\right)}(z)$ has a finite nonzero limit as z tends to α.

Since $\mathcal{Y} \in M_{q}\left(\mathcal{L}_{\alpha}\right)$ and $P_{i, k}$ has no pole at α for $k \leq q$, we have $\Delta_{E}(z) \in \mathcal{L}_{\alpha}$ so that

$$
\begin{equation*}
\Delta_{E}(z)=\sum_{e \in \mathcal{E}} \sum_{i=0}^{I} \lambda_{i, e} h_{i, e}(z)(z-\alpha)^{e}(\log (z-\alpha))^{i} \tag{3.5}
\end{equation*}
$$

where $h_{i, e}(z)$ is holomorphic at α and \mathcal{E} is a finite subset of \mathbb{C} such that for any $e \in \mathcal{E}$, either $e=0$ or $\operatorname{Re}(e)>0$. Moreover, we may assume that $e-e^{\prime} \notin \mathbb{Z}$ for any distinct $e, e^{\prime} \in \mathcal{E}$, and that for any $e \in \mathcal{E}$ there exists i such that $\lambda_{i, e} h_{i, e}(\alpha) \neq 0$. Finally, the
integer I can be chosen in terms of A only, since the exponents of $\log (z-\alpha)$ in local solutions at α of $Y^{\prime}=A Y$ are bounded.

We choose the constant c_{2} of Theorem 1.2 to be $c_{2}=c_{3}+I+q+1$. For any nonnegative integer $\varpi \leq c_{2}+\tau-q-1$, the ϖ th derivative $\Delta_{E}^{(\varpi)}(z)$ is a \mathbb{Z}-linear combination of determinants of matrices of the form

$$
N_{k_{1}, \ldots, k_{q_{\alpha}^{\prime}}}=\left[R\left(Y_{q_{\alpha}+i}\right)^{\left(k_{j}-1\right)}\right]_{1 \leq i, j \leq q_{\alpha}^{\prime}}
$$

with $1 \leq k_{1}<\cdots<k_{q_{\alpha}^{\prime}} \leq q+\varpi<c_{2}+\tau$. Since $Y_{i} \in M_{q, 1}\left(\mathcal{L}_{\alpha}\right)$ and $P_{k, i}$ is assumed to be holomorphic at α for any i and any $k<\tau+c_{2}$, we have $R\left(Y_{i}\right)^{(k-1)} \in \mathcal{L}_{\alpha}$. Accordingly $\operatorname{det} N_{k_{1}, \ldots, k_{q_{\alpha}^{\prime}}} \in \mathcal{L}_{\alpha}$, and finally $\Delta_{E}^{(\pi)}(z) \in \mathcal{L}_{\alpha}$ for any nonnegative integer $\varpi \leq c_{2}+\tau-q-1$. Therefore, in the expression (3.5), all pairs (e, i) such that $\lambda_{i, e} h_{i, e}(\alpha) \neq 0$ and $\operatorname{Re}(e)+i \leq c_{2}+\tau-q-1$ satisfy $e \in \mathbb{N}$ and $i=0$. Now recall that $\varpi_{3}=\operatorname{ord}_{\alpha} \Delta_{E}(z) \leq \tau+c_{3}=c_{2}+\tau-q-1-I$. Then there is a term (e, i) in Equation (3.5) such that $\lambda_{i, e} h_{i, e}(\alpha) \neq 0$ and $\operatorname{Re}(e)=\varpi_{3} \leq c_{2}+\tau-q-1-I$, and accordingly $\operatorname{Re}(e)+i \leq c_{2}+\tau-q-1$: we have $e \in \mathbb{N}, i=0$, and no other term (e^{\prime}, i^{\prime}) such that $\lambda_{i^{\prime}, e^{\prime}} h_{i^{\prime}, e^{\prime}}(\alpha) \neq 0$ satisfies $\operatorname{Re}\left(e^{\prime}\right)=\varpi_{3}$. In particular, ϖ_{3} is a nonnegative integer, and $\Delta_{E}^{\left(\omega_{3}\right)}(z)$ has a finite nonzero limit as z tends to α.

Let $\mathrm{ev}_{\alpha}: \mathcal{L}_{\alpha} \rightarrow \mathbb{C}$ denote regularized evaluation at α, defined by $\mathrm{ev}_{\alpha}(f)=$ $\lambda_{0,0} h_{0,0}(\alpha)$ if $f(z)$ is the right-hand side of Equation (3.5), and of course $\mathrm{ev}_{\alpha}(f)=0$ if $0 \notin \mathcal{E}$. The important point here is that any $e \in \mathcal{E}$ satisfies either $e=0$ or $\operatorname{Re}(e)>0$, so that ev_{α} is a \mathbb{C}-algebra homomorphism; moreover, $\operatorname{ev}_{\alpha}(f)$ is equal to the limit of $f(z)$ as $z \rightarrow \alpha$ whenever this limit exists. In particular, we have $\mathrm{ev}_{\alpha}\left(\Delta_{E}^{\left(\omega_{3}\right)}\right) \neq 0$. Now, as above $\operatorname{ev}_{\alpha}\left(\Delta_{E}^{\left(\pi_{3}\right)}\right)$ is a \mathbb{Z}-linear combination of $\mathrm{ev}_{\alpha}\left(\operatorname{det} N_{k_{1}, \ldots, k_{q_{\alpha}^{\prime}}}\right)$ with $1 \leq k_{1}<\cdots<$ $k_{q_{\alpha}^{\prime}} \leq q+\varpi_{3}<c_{2}+\tau$, so that $\mathrm{ev}_{\alpha}\left(\operatorname{det} N_{k_{1}, \ldots, k_{q_{\alpha}^{\prime}}}\right) \neq 0$ for some tuple $\left(k_{1}, \ldots, k_{q_{\alpha}^{\prime}}\right)$. For this tuple we consider the equality ${ }^{t} \widetilde{\mathcal{y}} \widetilde{M}=N_{k_{1}, \ldots, k_{q_{\alpha}^{\prime}}}$, where $\widetilde{\mathcal{y}} \in M_{q, q_{\alpha}^{\prime}}\left(\mathcal{L}_{\alpha}\right)$ is the matrix with columns $Y_{q_{\alpha}+1}, \ldots, Y_{q}$, and $\widetilde{M}=\left[P_{k_{j}, i}\right]_{1 \leq i \leq q, 1 \leq j \leq q_{\alpha}^{\prime}}$. The Cauchy-Binet formula yields

$$
\begin{equation*}
\operatorname{det} N_{k_{1}, \ldots, k_{q_{\alpha}^{\prime}}}=\sum_{\substack{B \subset\{1, \ldots, q\} \\ \# B=q_{\alpha}^{\prime}}} \operatorname{det}^{t} \widetilde{\boldsymbol{Y}}_{B} \cdot \operatorname{det} \widetilde{M}_{B} \tag{3.6}
\end{equation*}
$$

where $\widetilde{\mathcal{y}}_{B}$ (respectively \widetilde{M}_{B}) is the square matrix consisting in the rows of \widetilde{y} (respectively of \widetilde{M}) corresponding to indices in B. Extending ev_{α} coefficientwise to matrices, Equation (3.6) yields

$$
\mathrm{ev}_{\alpha}\left(\operatorname{det} N_{k_{1}, \ldots, k_{q_{\alpha}^{\prime}}}\right)=\sum_{\substack{B \subset\{1, \ldots, q\} \\ \# B=q_{\alpha}^{\prime}}} \operatorname{ev}_{\alpha}\left(\operatorname{det}{ }^{t} \widetilde{\boldsymbol{y}}_{B}\right) \cdot \operatorname{ev}_{\alpha}\left(\operatorname{det} \widetilde{M}_{B}\right)
$$

Now the left-hand side is nonzero, so that $\mathrm{ev}_{\alpha}\left(\operatorname{det} \widetilde{M}_{B}\right) \neq 0$ for some B. Since all coefficients $P_{k, i}$ are holomorphic at α, so is $\operatorname{det} \widetilde{M}_{B}$ and therefore, $\operatorname{det}\left(\widetilde{M}_{B}(\alpha)\right)=$ $\mathrm{ev}_{\alpha}\left(\operatorname{det} \widetilde{M}_{B}\right) \neq 0$. We have found an invertible submatrix of $M(\alpha)$ of size q_{α}^{\prime}, so that $\operatorname{rk} M(\alpha) \geq q_{\alpha}^{\prime}$: this concludes the proof of Theorem 1.2.

4. Diophantine part of the proof

In this section we prove Theorem 1.4 stated in the introduction, and give, in detail, new proofs of the Ball-Rivoal theorem and Nishimoto's theorem 1.3. To provide a unified treatment, we state a general result (namely Theorem 4.1) and deduce these results from it in Section 4.1. In order to help the reader, we first give the proof of Theorem 4.1 in Section 4.2, then construct the linear forms (Section 4.3), apply the zero estimate (namely Theorem 1.2) to obtain an invertible matrix (Section 4.4), and study the arithmetic and asymptotic properties (Section 4.5). Finally, we state and prove Siegel's linear independence criterion in Section 4.6.

4.1. Statement of the main theorem and consequences.

Theorem 4.1. Let $N \geq 1$, and $f: \mathbb{N} \rightarrow \mathbb{C}$ be such that $f(n+N)=f(n)$ for any n. Let $p \in\{0,1\}, a \geq 2$, and $z_{0} \in\left\{1, e^{i \pi / N}\right\} ;$ put

$$
\xi_{j}=\sum_{n=1}^{\infty} \frac{f(n) z_{0}^{n}}{n^{j}} \quad \text { for any } j \in\{1, \ldots, a\}
$$

except that $\xi_{1}=0$ if $z_{0}=1$. Then as $a \rightarrow \infty$,

$$
\operatorname{dim}_{\mathbb{Q}} \operatorname{Span}_{\mathbb{Q}}\left(\left\{\xi_{j}, \quad 1 \leq j \leq a, j \equiv p \bmod 2\right\}\right) \geq \frac{1+o(1)}{N+\log 2} \log a
$$

We refer to Section 2 for the special case of the Ball-Rivoal theorem.
Let us deduce Theorems 1.3 and 1.4 stated in the introduction from this result. Let χ be a Dirichlet character $\bmod d$. Its conductor is the smallest divisor e of d for which there exists a character $\chi^{\prime} \bmod e$ such that $\chi(n)=\chi^{\prime}(n)$ for any n coprime to d. Comparing the L-functions of χ and χ^{\prime} (see, for instance, [13, Sections 3.2 and 3.3]) yields

$$
L(\chi, s)=L\left(\chi^{\prime}, s\right) \prod_{\substack{p \mid d \\ p \nmid e}}\left(1-\chi^{\prime}(p) p^{-s}\right)
$$

so that $\delta_{\chi, p, a}=\delta_{\chi^{\prime}, p, a}$ for any p, a (with the notation of Theorem 1.3). Therefore, we may assume that $e=d$, that is, χ is primitive. Then Theorem 1.3 follows from Theorem 4.1 by letting $z_{0}=1$ and $f=\chi$.

To prove Theorem 1.4, we first prove that for any primitive Dirichlet character χ modulo a multiple e of 4,

$$
\begin{equation*}
\chi\left(n+\frac{e}{2}\right)=-\chi(n) \quad \text { for any } n \in \mathbb{Z} \tag{4.1}
\end{equation*}
$$

Indeed we have $n(e / 2+1) \equiv n+e / 2 \bmod e$ if n is odd, so that $\chi(n+e / 2)=$ $\chi(n) \chi(e / 2+1)$ for any $n \in \mathbb{Z}$ (since both sides vanish if n is even). Moreover, $(\chi(e / 2+1))^{2}=1$ since $(e / 2+1)^{2} \equiv 1 \bmod e$, and $\chi(e / 2+1) \neq 1$ because χ is primitive (so that $\chi(n+e / 2) \neq \chi(n)$ for some $n)$. Therefore, $\chi(e / 2+1)=-1$: this concludes the proof of (4.1).

Now let $N=e / 2$ and define $f: \mathbb{N} \rightarrow \mathbb{C}$ by $f(r)=\chi(r) z_{0}^{-r}$ for any $r \in\{1, \ldots, N\}$, where $z_{0}=e^{i \pi / N}$. Then Equation (4.1) yields

$$
\sum_{n=1}^{\infty} \frac{f(n) z_{0}^{n}}{n^{j}}=\sum_{r=1}^{N} f(r) z_{0}^{r} \sum_{\substack{n \geq 1 \\ n \equiv r \bmod 2 N}}\left(\frac{1}{n^{j}}-\frac{1}{(n+N)^{j}}\right)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{j}}=L(\chi, j)
$$

so that Theorem 4.1 implies Theorem 1.4.
4.2. Sketch of the proof. To prove Theorem 4.1, we let $r, n \geq 1$ be such that $r<a / 2 N$ and N divides n. We define $\xi_{1}^{\prime}, \ldots, \xi_{a+N}^{\prime}$ as follows:

$$
\left\{\begin{align*}
\xi_{j}^{\prime} & =2(-1)^{p} \xi_{j} & & \text { for } j \in\{1, \ldots, a\} \text { such that } j \equiv p \bmod 2, \tag{4.2}\\
\xi_{j}^{\prime} & =0 & & \text { for } j \in\{1, \ldots, a\} \text { such that } j \not \equiv p \bmod 2, \\
\xi_{a+1+\lambda}^{\prime} & =z_{0}^{\lambda} f(\lambda) & & \text { for any } \lambda \in\{0, \ldots, N-1\} .
\end{align*}\right.
$$

We also let

$$
\delta_{n}=\left(N d_{n}\right)^{a} N^{a n / N},
$$

and define i_{0} to be equal to 1 if $z_{0}=e^{i \pi / N}$, and equal to 2 otherwise (that is, if $z_{0}=1$).
In Section 4.3 (see (4.15)) we shall construct integers $s_{k, i}, i_{0} \leq i \leq a+N$, such that as $n \rightarrow+\infty$:

$$
\begin{equation*}
\max _{i_{0} \leq i \leq a+N}\left|s_{k, i}\right| \leq \beta^{n(1+o(1))} \quad \text { and } \quad\left|\sum_{i=i_{0}}^{a+N} s_{k, i} \xi_{i}^{\prime}\right| \leq \alpha^{n(1+o(1))} \tag{4.3}
\end{equation*}
$$

where

$$
\alpha=e^{a} 4^{a / N-r}(N+1)^{2 r+2} r^{-a / N+4 r+2} \quad \text { and } \quad \beta=\left(2 e^{N}\right)^{a / N}(r N+1)^{2 r+2}
$$

Then Lemma 4.2 (that will be stated and proved in Section 4.4 using Theorem 1.2) provides a positive constant c_{2} (which depends only on a and N) and integers $1 \leq$ $k_{i_{0}}<k_{i_{0}+1}<\cdots<k_{a+N} \leq c_{2}$ (which depend on a, N, r, and n) such that the matrix $\left[s_{k_{j}, i}\right]_{i_{0} \leq i, j \leq a+N}$ is invertible. Since $k_{j} \leq c_{2}$ for any j, the symbols $o(1)$ in (4.3) with $k=k_{j}$ can be made uniform with respect to k. Therefore, Siegel's linear independence criterion applies (see Section 4.6). Taking a very large, N fixed, and r equal to the integer part of $a /(\log (a))^{2}$ concludes the proof of Theorem 4.1 since $\xi_{i}^{\prime}=0$ if $i \leq a$ and $i \neq p \bmod 2$, and

$$
1-\frac{\log \alpha}{\log \beta}=\frac{1+\varepsilon_{a}}{N+\log 2} \log a \quad \text { where } \lim _{a \rightarrow+\infty} \varepsilon_{a}=0
$$

4.3. Construction of the linear forms. Let a, r, N be positive integers such that $1 \leq r<a / 2 N$. For any integer multiple n of N we let

$$
F(t)=(n / N)!^{a-2 r N} \frac{(t-r n)_{r n}(t+n+1)_{r n}}{\prod_{h=0}^{n / N}(t+N h)^{a}} .
$$

Then F is a rational function, and its degree $-d_{0}$ satisfies

$$
\begin{equation*}
d_{0}:=a\left(\frac{n}{N}+1\right)-2 r n=-\operatorname{deg} F \geq n+a \geq 2 . \tag{4.4}
\end{equation*}
$$

Its partial fraction expansion reads

$$
F(t)=\sum_{h=0}^{n / N} \sum_{j=1}^{a} \frac{p_{j, h}}{(t+N h)^{j}}
$$

with rational coefficients $p_{j, h}$. Let

$$
P_{j}(z)=\sum_{h=0}^{n / N} p_{j, h} z^{N h} \in \mathbb{Q}[z]_{\leq n} \quad \text { for any } j \in\{1, \ldots, a\}
$$

and also

$$
S_{0}(z)=\sum_{t=n+1}^{\infty} F(-t) z^{t}, \quad S_{\infty}(z)=\sum_{t=1}^{\infty} F(t) z^{-t} .
$$

As in [3],

$$
S_{\infty}(z)=V(z)+\sum_{j=1}^{a} P_{j}(z) \operatorname{Li}_{j}(1 / z)
$$

where

$$
V(z)=-\sum_{t=0}^{n-1} z^{t} \sum_{j=1}^{a} \sum_{h=\lceil(t+1) / N\rceil}^{n / N} \frac{p_{j, h}}{(N h-t)^{j}} \in \mathbb{Q}[z]_{\leq n} .
$$

In the same way (see [10]),

$$
S_{0}(z)=U(z)+\sum_{j=1}^{a} P_{j}(z)(-1)^{j} \operatorname{Li}_{j}(z)
$$

with the same polynomials P_{1}, \ldots, P_{a}, and

$$
U(z)=-\sum_{t=1}^{n} z^{t} \sum_{j=1}^{a} \sum_{h=0}^{\lfloor(t-1) / N\rfloor} \frac{p_{j, h}}{(t-N h)^{j}} \in \mathbb{Q}[z]_{\leq n} .
$$

Now let $P_{1, j}=P_{j}$ for any $j \in\{1, \ldots, a\}$, and define inductively $P_{k, j} \in \mathbb{Q}(z)$ by

$$
\begin{equation*}
P_{k, j}(z)=P_{k-1, j}^{\prime}(z)-\frac{1}{z} P_{k-1, j+1}(z) \quad \text { for any } k \geq 2 \text { and any } j \in\{1, \ldots, a\} \tag{4.5}
\end{equation*}
$$

where $P_{k-1, a+1}=0$ for any k; we shall check in Section 4.4 below that this notation $P_{k, j}$ is consistent with the one used in the introduction. We let also $U_{1}=U, V_{1}=V$, and define U_{k}, V_{k} for any $k \geq 2$ by the recurrence relations

$$
\begin{equation*}
U_{k}(z)=U_{k-1}^{\prime}(z)-\frac{1}{1-z} P_{k-1,1}(z), \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
V_{k}(z)=V_{k-1}^{\prime}(z)+\frac{1}{z(1-z)} P_{k-1,1}(z) . \tag{4.7}
\end{equation*}
$$

Then for any $k \geq 1$,

$$
\begin{equation*}
S_{0}^{(k-1)}(z)=U_{k}(z)+\sum_{j=1}^{a} P_{k, j}(z)(-1)^{j} \operatorname{Li}_{j}(z) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\infty}^{(k-1)}(z)=V_{k}(z)+\sum_{j=1}^{a} P_{k, j}(z) \operatorname{Li}_{j}(1 / z) \tag{4.9}
\end{equation*}
$$

Moreover, Equations (4.5), (4.6), and (4.7) show that the rational functions $P_{k, j}$ with $1 \leq j \leq a$ (respectively U_{k} and V_{k}) have only 0 (respectively only 0 and 1) as possible finite poles. Now,

$$
S_{0}^{(k-1)}(z)=\sum_{t=n+1}^{\infty} F(-t)(t-k+2)_{k-1} z^{t-k+1} \quad \text { for }|z|<1
$$

and

$$
S_{\infty}^{(k-1)}(z)=\sum_{t=1}^{\infty} F(t)(-1)^{k-1}(t)_{k-1} z^{-t-k+1} \quad \text { for }|z|>1
$$

Let us assume that $k-1 \leq d_{0}-2$, where $d_{0}=-\operatorname{deg} F$ is defined by Equation (4.4); then these formulas hold also when $|z|=1$ and we may let z tend to 1 in Equations (4.8) and (4.9). Since $P_{k, j}$ is holomorphic at $z=1$ for any $k \geq 1$ and any j, a possible divergence may come only from poles of U_{k} or V_{k} at $z=1$, or from the logarithmic term involving $\operatorname{Li}_{1}(z)$ or $\mathrm{Li}_{1}(1 / z)$. Since a pole and a logarithmic term cannot cancel each other out, and $S_{0}^{(k-1)}(z)$ and $S_{\infty}^{(k-1)}(z)$ have finite limits as $z \rightarrow 1$, then,

For any $k \leq d_{0}-1, \quad P_{k, 1}(1)=0 \quad$ and $\quad U_{k}, V_{k}$ do not have a pole at $z=1$.
Now let $k \leq d_{0}-1$, and $z \in \mathbb{C}$ be such that $|z|=1$. Then Equations (4.8) and (4.9) hold, upon agreeing that the sums start at $j=2$ if $z=1$; the same remark applies in what follows. Since $P_{j}(z) \in \mathbb{Q}\left[z^{N}\right]$ for any $j \in\{1, \ldots, a\}$, Equation (4.5) yields $P_{k, j} \in z^{1-k} \mathbb{Q}\left[z^{N}\right]$ (see the proof of Proposition 4.4 in Section 4.5 for details). On the other hand, since $U_{k}, V_{k} \in \mathbb{Q}\left[z, z^{-1}\right]$ for any $k \leq d_{0}-1$, we can write

$$
\begin{equation*}
z^{k-1} U_{k}(z)=\sum_{\lambda=0}^{N-1} z^{\lambda} U_{k, \lambda}(z) \quad \text { and } \quad z^{k-1} V_{k}(z)=\sum_{\lambda=0}^{N-1} z^{\lambda} V_{k, \lambda}(z) \tag{4.11}
\end{equation*}
$$

with $U_{k, \lambda}, V_{k, \lambda} \in \mathbb{Q}\left[z^{N}, z^{-N}\right]$. Then Equations (4.8) and (4.9) yield

$$
\begin{equation*}
z^{k-1} S_{0}^{(k-1)}(z)=\sum_{\lambda=0}^{N-1} z^{\lambda} U_{k, \lambda}(z)+\sum_{j=1}^{a} z^{k-1} P_{k, j}(z)(-1)^{j} \operatorname{Li}_{j}(z) \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{k-1} S_{\infty}^{(k-1)}(z)=\sum_{\lambda=0}^{N-1} z^{\lambda} V_{k, \lambda}(z)+\sum_{j=1}^{a} z^{k-1} P_{k, j}(z) \operatorname{Li}_{j}(1 / z) . \tag{4.13}
\end{equation*}
$$

The point now is that $U_{k, \lambda}(z), V_{k, \lambda}(z)$, and $z^{k-1} P_{k, j}(z)$ depend only on z^{N}. For any $\ell \in\{1, \ldots, N\}$ we consider

$$
\begin{equation*}
\mu_{\ell}=\frac{1}{N} \sum_{\lambda=1}^{N} f(\lambda) \omega^{-\ell \lambda} \tag{4.14}
\end{equation*}
$$

Let $z_{0} \in\left\{1, e^{i \pi / N}\right\}$ and $p \in\{0,1\}$ be as in Theorem 4.1, and recall that $\omega=e^{2 i \pi / N}$. For any $k \leq d_{0}-1$ we let

$$
\Lambda_{k}=\sum_{\ell=1}^{N} \mu_{\ell}\left[\left(\omega^{\ell} z_{0}\right)^{k-1} S_{0}^{(k-1)}\left(\omega^{\ell} z_{0}\right)+(-1)^{p}\left(\omega^{\ell} z_{0}\right)^{1-k} S_{\infty}^{(k-1)}\left(\frac{1}{\omega^{\ell} z_{0}}\right)\right]
$$

Then Equations (4.12) and (4.13) yield, since $U_{k, \lambda}(z), V_{k, \lambda}(z)$, and $z^{k-1} P_{k, j}(z)$ depend only on z^{N} and $\left(\omega^{\ell} z_{0}\right)^{N}=\left(\omega^{\ell} z_{0}\right)^{-N}=z_{0}^{N}$:

$$
\begin{aligned}
\Lambda_{k}=\sum_{\lambda=0}^{N-1} & {\left[\left(\sum_{\ell=1}^{N} \mu_{\ell}\left(\omega^{\ell} z_{0}\right)^{\lambda}\right) U_{k, \lambda}\left(z_{0}\right)+(-1)^{p}\left(\sum_{\ell=1}^{N} \mu_{\ell}\left(\omega^{\ell} z_{0}\right)^{-\lambda}\right) V_{k, \lambda}\left(z_{0}\right)\right] } \\
& +\sum_{j=1}^{a} z_{0}^{k-1} P_{k, j}\left(z_{0}\right) \sum_{\ell=1}^{N} \mu_{\ell} \operatorname{Li}_{j}\left(\omega^{\ell} z_{0}\right)\left((-1)^{j}+(-1)^{p}\right) .
\end{aligned}
$$

Now Equation (4.14) yields

$$
\begin{aligned}
\sum_{\ell=1}^{N} \mu_{\ell} \omega^{n \ell} & =f(n) \text { for any } n \in \mathbb{Z}, \text { so that } \sum_{\ell=1}^{N} \mu_{\ell} \operatorname{Li}_{j}\left(\omega^{\ell} z_{0}\right) \\
& =\sum_{n=1}^{\infty} \frac{f(n) z_{0}^{n}}{n^{j}}=\xi_{j} \quad \text { for any } j \leq a
\end{aligned}
$$

Letting $V_{k, N}=V_{k, 0}$,

$$
\Lambda_{k}=2(-1)^{p} \sum_{\substack{1 \leq j \leq a \\ j \equiv p \bmod 2}} z_{0}^{k-1} P_{k, j}\left(z_{0}\right) \xi_{j}+\sum_{\lambda=0}^{N-1}\left(U_{k, \lambda}\left(z_{0}\right)+(-1)^{p} V_{k, N-\lambda}\left(z_{0}\right)\right) z_{0}^{\lambda} f(\lambda)
$$

As announced in Section 4.2 we now define the coefficients $s_{k, i}$:

$$
\left\{\begin{array}{l}
s_{k, i}=\delta_{n} z_{0}^{k-1} P_{k, i}\left(z_{0}\right) \quad \text { for } 1 \leq i \leq a, \tag{4.15}\\
s_{k, a+1+\lambda}=\delta_{n}\left(U_{k, \lambda}\left(z_{0}\right)+(-1)^{p} V_{k, N-\lambda}\left(z_{0}\right)\right) \quad \text { for } 0 \leq \lambda \leq N-1,
\end{array}\right.
$$

where $\delta_{n}=\left(N d_{n}\right)^{a} N^{a n / N}$, so that

$$
\delta_{n} \Lambda_{k}=\sum_{i=i_{0}}^{a+N} s_{k, i} \xi_{i}^{\prime}
$$

since $\xi_{1}^{\prime}=0$ if $z_{0}=1$ (recall from Section 4.2 that $i_{0}=2$ in this case, and $i_{0}=1$ otherwise, that is, if $z_{0}=e^{i \pi / N} ; \xi_{i}^{\prime}$ is defined in Equation (4.2)).

Since $z_{0}^{N} \in\{-1,1\}$ and $z^{k-1} P_{k, j}(z), U_{k, \lambda}(z)$ and $V_{k, N-\lambda}(z)$ are polynomials in z^{N} with rational coefficients, the numbers $s_{k, 1}, \ldots, s_{k, a+N}$ are rational. We shall prove in Proposition 4.4 (Section 4.5) that they are integers, thanks to the factor δ_{n}.
4.4. Application of the zero estimate. In this section we deduce from Theorem 1.2 the following lemma, used at the end of Section 4.2. It provides an invertible matrix which enables us to apply Siegel's linear independence criterion (see Section 4.6).

Lemma 4.2. In the setting of Section 4.2, let $i_{0}=1$ if $z_{0}=e^{i \pi / N}$ and $i_{0}=2$ if $z_{0}=1$; let $s_{k, i}$ be defined by Equation (4.15). Then there exist a positive constant c_{2} (which depends only on a and N) and integers $1 \leq k_{i_{0}}<k_{i_{0}+1}<\cdots<k_{a+N} \leq c_{2}$ (which depend on a, N, r, and n) such that the matrix $\left[s_{k_{j}, i}\right]_{i_{0} \leq i, j \leq a+N}$ is invertible.

To begin with, let us recall from Section 4.2 that $\omega=e^{2 i \pi / N}, a, r, N, n$ are positive integers such that $1 \leq r<a / 2 N, n$ is a multiple of N, and

$$
F(t)=(n / N)!^{a-2 r N} \frac{(t-r n)_{r n}(t+n+1)_{r n}}{\prod_{h=0}^{n / N}(t+N h)^{a}} .
$$

Then,

$$
S_{0}(z)=\sum_{t=n+1}^{\infty} F(-t) z^{t}=U(z)+\sum_{j=1}^{a} P_{j}(z)(-1)^{j} \operatorname{Li}_{j}(z)
$$

and

$$
S_{\infty}(z)=\sum_{t=1}^{\infty} F(t) z^{-t}=V(z)+\sum_{j=1}^{a} P_{j}(z) \operatorname{Li}_{j}(1 / z)
$$

Since $P_{j} \in \mathbb{C}\left[z^{N}\right]$ for any $j \in\{1, \ldots, a\}$, we have $P_{j}\left(\omega^{\ell} z\right)=P_{j}(z)$ for any $\ell \in \mathbb{Z}$. Therefore, letting

$$
\begin{equation*}
R_{0, \ell}(z)=S_{0}\left(\omega^{\ell} z\right), \quad R_{\infty, \ell}(z)=S_{\infty}\left(\omega^{\ell} z\right), \quad \bar{P}_{0, \ell}(z)=U\left(\omega^{\ell} z\right), \quad \bar{P}_{\infty, \ell}(z)=V\left(\omega^{\ell} z\right) \tag{4.16}
\end{equation*}
$$

for any $\ell \in\{1, \ldots, N\}$,

$$
\begin{equation*}
R_{0, \ell}(z)=\bar{P}_{0, \ell}(z)+\sum_{j=1}^{a} P_{j}(z)(-1)^{j} \operatorname{Li}_{j}\left(\omega^{\ell} z\right)=O\left(z^{(r+1) n+1}\right), \quad z \rightarrow 0 \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\infty, \ell}(z)=\bar{P}_{\infty, \ell}(z)+\sum_{j=1}^{a} P_{j}(z) \operatorname{Li}_{j}\left(\frac{1}{\omega^{\ell} z}\right)=O\left(z^{-r n-1}\right), \quad z \rightarrow \infty \tag{4.18}
\end{equation*}
$$

Moreover, recall that $d_{0}=-\operatorname{deg} F=a(n / N+1)-2 r n$; Lemma 3 of [10] shows that

$$
\sum_{j=1}^{a} P_{j}(z)(-1)^{j-1} \frac{(\log z)^{j-1}}{(j-1)!}=O\left((z-1)^{d_{0}-1}\right), \quad z \rightarrow 1
$$

Using again the fact that $P_{j}\left(\omega^{-\ell} z\right)=P_{j}(z)$, we obtain for any $\ell \in\{1, \ldots, N\}$:

$$
\begin{equation*}
R_{\omega^{\ell}}(z):=\sum_{j=1}^{a} P_{j}(z)(-1)^{j-1} \frac{\left(\log \left(\omega^{-\ell} z\right)\right)^{j-1}}{(j-1)!}=O\left(\left(z-\omega^{\ell}\right)^{d_{0}-1}\right), \quad z \rightarrow \omega^{\ell} \tag{4.19}
\end{equation*}
$$

Combining Equations (4.17)-(4.19) with $1 \leq \ell \leq N$, we have solved a simultaneous Padé-approximation problem. The $(n+1)(a+2 N)$ unknowns are the coefficients of $P_{1}, \ldots, P_{a}, \bar{P}_{0,1}, \ldots, \bar{P}_{0, N}, \bar{P}_{\infty, 1}, \ldots, \bar{P}_{\infty, N}$, which are polynomials of degree less than or equal to n. There are

$$
2 N((r+1) n+1)+N\left(d_{0}-1\right)=n(a+2 N)+(a+1) N
$$

linear equations, since apriori we have $R_{\infty, \ell}(z)=O\left(z^{n}\right)$ as $z \rightarrow \infty$. The difference between the number of unknowns and the number of equations is equal to $N-a(N-$ 1). If $N=1$ this is equal to 1 : the Padé-approximation problem is exactly (2.2), that is, the one of $[10$, Théorème 1], which has a unique solution up to proportionality. Whenever $N \geq 2$ we have $N-a(N-1)<0$: the problem we have solved has more equations than unknowns. This is due to the fact that we always assume n to be an integer multiple of N. Anyway to complete the proof, it is sufficient to bound from above the difference between the number of unknowns and the number of equations by a constant independent from n; we do not need to study whether the Padé-approximation problem has a unique solution or not.

Let $q=a+2 N$, and $A \in M_{q}(\mathbb{C}(z))$ be the matrix of which the coefficients $A_{i, j}$ are given by:

$$
\left\{\begin{array}{l}
A_{i, i-1}(z)=\frac{-1}{z} \quad \text { for any } i \in\{2, \ldots, a\} \\
A_{1, a+\ell}(z)=\frac{\omega^{\ell}}{\omega^{\ell} z-1} \quad \text { for any } \ell \in\{1, \ldots, N\}, \\
A_{1, a+N+\ell}(z)=\frac{1}{z\left(1-\omega^{\ell} z\right)} \quad \text { for any } \ell \in\{1, \ldots, N\}
\end{array}\right.
$$

and all other coefficients are zero. We consider the following solutions of the differential system $Y^{\prime}=A Y$, with $1 \leq \ell \leq N$:

$$
\begin{gathered}
Y_{0, \ell}(z)={ }^{t}\left(-\operatorname{Li}_{1}\left(\omega^{\ell} z\right), \operatorname{Li}_{2}\left(\omega^{\ell} z\right), \ldots,(-1)^{a} \operatorname{Li}_{a}\left(\omega^{\ell} z\right), 0, \ldots, 0,1,0, \ldots, 0\right), \\
Y_{\infty, \ell}(z)={ }^{t}\left(\operatorname{Li}_{1}\left(\frac{1}{\omega^{\ell} z}\right), \operatorname{Li}_{2}\left(\frac{1}{\omega^{\ell} z}\right), \ldots, \operatorname{Li}_{a}\left(\frac{1}{\omega^{\ell} z}\right), 0, \ldots, 0,1,0, \ldots, 0\right), \\
Y_{\omega^{\ell}}(z)={ }^{t}\left(1,-\log \left(\omega^{-\ell} z\right), \frac{\left(\log \left(\omega^{-\ell} z\right)\right)^{2}}{2!}, \ldots,(-1)^{a-1} \frac{\left(\log \left(\omega^{-\ell} z\right)\right)^{a-1}}{(a-1)!}, 0, \ldots, 0\right)
\end{gathered}
$$

where the coefficient 1 in $Y_{0, \ell}(z)$ (respectively $Y_{\infty, \ell}(z)$) is in position $a+\ell$ (respectively $a+N+\ell$).

We let $J_{0}=\{(0,1),(0,2), \ldots,(0, N)\}, J_{\infty}=\{(\infty, 1),(\infty, 2), \ldots,(\infty, N)\}, J_{\omega^{\ell}}=\left\{\omega^{\ell}\right\}$ for $1 \leq \ell \leq N$, and $\Sigma=\{0, \infty\} \cup\left\{\omega^{\ell}, 1 \leq \ell \leq N\right\}$. We also let $P_{a+\ell}(z)=\bar{P}_{0, \ell}(z)=U\left(\omega^{\ell} z\right)$ and $P_{a+N+\ell}=\bar{P}_{\infty, \ell}(z)=V\left(\omega^{\ell} z\right)$ for any $\ell \in\{1, \ldots, N\}$. Then with the notation of the
introduction we have $R\left(Y_{0, \ell}\right)=R_{0, \ell}(z), R\left(Y_{\infty, \ell}\right)=R_{\infty, \ell}(z)$, and $R\left(Y_{\omega^{\ell}}\right)=R_{\omega^{\ell}}(z)$ for any $\ell \in\{1, \ldots, N\}$.

Since P_{a} is not the zero polynomial, we have $R_{\omega^{\ell}}(z) \neq 0$ for any ℓ; the \mathbb{C}-linear independence of $R_{0,1}(z), \ldots, R_{0, N}(z)$ (respectively of $R_{\infty, 1}(z), \ldots, R_{\infty, N}(z)$) follows directly (respectively up to changing z to $1 / z$) from the following lemma, which is not difficult to prove using monodromy (see [28]).

Lemma 4.3. Functions 1 and $\mathrm{Li}_{j}\left(\omega^{\ell} z\right)$, for $j \geq 1$ and $1 \leq \ell \leq N$, are linearly independent over $\mathbb{C}(z)$.

Equations (4.17)-(4.19) yield $\operatorname{ord}_{0}\left(R_{0, \ell}(z)\right) \geq(r+1) n+1, \operatorname{ord}_{\infty}\left(R_{\infty, \ell}(z)\right) \geq r n+1$, and $\operatorname{ord}_{\omega^{\ell}}\left(R_{\omega^{\ell}}(z)\right) \geq d_{0}-1$ for any $\ell \in\{1, \ldots, N\}$, so that

$$
\begin{gathered}
\sum_{\sigma \in \Sigma} \sum_{j \in J_{\sigma}} \operatorname{ord}_{\sigma} R_{j}(z) \geq(2 r+1) N n+N\left(d_{0}+1\right)=(n+1) q-n N-\tau \\
\text { with } \tau=N-a(N-1)
\end{gathered}
$$

here $q=a+2 N$, and we recall that $d_{0}=-\operatorname{deg} F=a(n / N+1)-2 r n$. This number τ is exactly the difference between the number of unknowns and the number of equations computed after Equation (4.19).

Now for any $k \geq 1$ and any $\ell \in\{1, \ldots, N\}$ we let

$$
\begin{equation*}
\bar{P}_{k, 0, \ell}=\omega^{\ell(k-1)} U_{k}\left(\omega^{\ell} z\right) \quad \text { and } \quad \bar{P}_{k, \infty, \ell}=\omega^{\ell(k-1)} V_{k}\left(\omega^{\ell} z\right) \tag{4.20}
\end{equation*}
$$

and

$$
\mathbf{P}_{k}={ }^{t}\left(P_{k, 1}, P_{k, 2}, \ldots, P_{k, a}, \bar{P}_{k, 0,1}, \ldots, \bar{P}_{k, 0, N}, \bar{P}_{k, \infty, 1}, \ldots, \bar{P}_{k, \infty, N}\right) \in M_{q, 1}(\mathbb{C}(z))
$$

so that $\mathbf{P}_{1}={ }^{t}\left(P_{1}, \ldots, P_{a+2 N}\right)$. Then it is not difficult to check that

$$
\mathbf{P}_{k}=\left(\frac{d}{d z}+{ }^{t} A\right)^{k-1} \mathbf{P}_{1}
$$

To illustrate this equality, we notice that Equation (4.16) yields

$$
R_{0, \ell}^{(k-1)}=\bar{P}_{k, 0, \ell}(z)+\sum_{j=1}^{a} P_{k, j}(z)(-1)^{j} \operatorname{Li}_{j}\left(\omega^{\ell} z\right)
$$

and

$$
R_{\infty, \ell}^{(k-1)}=\bar{P}_{k, \infty, \ell}(z)+\sum_{j=1}^{a} P_{k, j}(z) \operatorname{Li}_{j}\left(\frac{1}{\omega^{\ell} z}\right)
$$

since (as in [25, Ch. 3, Section 4])

$$
S_{0}^{(k-1)}=U_{k}(z)+\sum_{j=1}^{a} P_{k, j}(z)(-1)^{j} \operatorname{Li}_{j}(z)
$$

and

$$
S_{\infty}^{(k-1)}=V_{k}(z)+\sum_{j=1}^{a} P_{k, j}(z) \operatorname{Li}_{j}(1 / z)
$$

Provided n is large enough, we have checked all assumptions of Theorem 1.2 (using, among others, Equation (4.10)). We apply this result with $\alpha=z_{0}$; recall that $z_{0} \in$ $\left\{1, e^{i \pi / N}\right\}$. In the case $z_{0}=1$, we obtain positive integers $k_{2}<\cdots<k_{q}<\tau+c_{2} \leq c_{2}+1$ such that the matrix with columns $\mathbf{P}_{k_{2}}(1), \ldots, \mathbf{P}_{k_{q}}(1)$ has rank $q-1$. Now $P_{k, 1}(1)=0$ for any $k \leq c_{2}$ (using Equation (4.10) since n is large enough) so that the first row of this matrix is identically zero. Removing this row yields the following invertible matrix (with $z_{0}=1$ and $i_{0}=2$):

$$
\begin{equation*}
\left[\frac{\left[z_{0}^{k_{j}-1} P_{k_{j}, i}\left(z_{0}\right)\right]_{i_{0} \leq i \leq a, i_{0} \leq j \leq q}}{\left[\frac{\left[z_{0}^{k_{j}-1} \bar{P}_{k_{j}, 0, i}\left(z_{0}\right)\right]_{1 \leq i \leq N, i_{0} \leq j \leq q}}{\left[z_{0}^{k_{j}-1} \bar{P}_{k_{j}, \infty, i}\left(z_{0}\right)\right]_{1 \leq i \leq N, i_{0} \leq j \leq q}}\right.}\right] . \tag{4.21}
\end{equation*}
$$

If $z_{0}=e^{i \pi / N} \notin \Sigma$ then Theorem 1.2 provides directly $k_{1}<\cdots<k_{q} \leq c_{2}$ such that the matrix (4.21) with $i_{0}=1$ is invertible.

Now Equation (4.11) with $z=\omega^{\ell} z_{0}$ yields, since $U_{k, \lambda} \in \mathbb{Q}\left[z^{N}, z^{-N}\right]$:

$$
\omega^{(k-1) \ell} z_{0}^{k-1} U_{k}\left(\omega^{\ell} z_{0}\right)=\sum_{\lambda=0}^{N-1} \omega^{\ell \lambda} z_{0}^{\lambda} U_{k, \lambda}\left(z_{0}\right) \quad \text { for any } \ell \in\{1, \ldots, N\}
$$

Therefore, we have for any $\lambda \in\{0, \ldots, N-1\}$:

$$
\begin{equation*}
U_{k, \lambda}\left(z_{0}\right)=\frac{z_{0}^{k-1-\lambda}}{N} \sum_{\ell=1}^{N} \omega^{(k-1-\lambda) \ell} U_{k}\left(\omega^{\ell} z_{0}\right)=\frac{z_{0}^{k-1-\lambda}}{N} \sum_{\ell=1}^{N} \omega^{-\lambda \ell} \bar{P}_{k, 0, \ell}\left(z_{0}\right) \tag{4.22}
\end{equation*}
$$

using Equation (4.20). Moreover, the same relation holds with $V_{k, \lambda}$ and $\bar{P}_{k, \infty, \ell}$ for $\lambda \in\{0, \ldots, N-1\}$. We recall that $s_{k, i}$ was defined in Equation (4.15) (Section 4.3) by

$$
s_{k, i}=\delta_{n} z_{0}^{k-1} P_{k, i}\left(z_{0}\right) \quad \text { for } 1 \leq i \leq a
$$

and

$$
s_{k, a+1+\lambda}=\delta_{n}\left(U_{k, \lambda}\left(z_{0}\right)+(-1)^{p} V_{k, N-\lambda}\left(z_{0}\right)\right) \quad \text { for } 0 \leq \lambda \leq N-1 .
$$

For any $\lambda \in\{0, \ldots, N-1\}$ we deduce that

$$
s_{k, a+1+\lambda}=\frac{\delta_{n}}{N} z_{0}^{-\lambda} \sum_{\ell=1}^{N} \omega^{-\lambda \ell} z_{0}^{k-1} \bar{P}_{k, 0, \ell}\left(z_{0}\right) \pm(-1)^{p} \frac{\delta_{n}}{N} z_{0}^{-N+\lambda} \sum_{\ell=1}^{N} \omega^{\lambda \ell} z_{0}^{k-1} \bar{P}_{k, \infty, \ell}\left(z_{0}\right)
$$

where \pm is + if $1 \leq \lambda \leq N-1$, and z_{0}^{N} if $\lambda=0$; indeed $V_{k, N}=V_{k, 0}$ satisfies the equation analogous to Equation (4.22) with $\lambda=0$, but not with $\lambda=N$ if $z_{0}=e^{i \pi / N}$.

Let $M=\left[m_{i, j}\right]_{i_{0} \leq i \leq a+N, i_{0} \leq j \leq a+2 N}$ be the matrix defined by:

$$
\begin{aligned}
m_{i, i}= & \delta_{n} \quad \text { for any } i \in\left\{i_{0}, \ldots, a\right\}, \\
m_{a+1+\lambda, a+\ell}= & \frac{\delta_{n}}{N} z_{0}^{-\lambda} \omega^{-\lambda \ell} \quad \text { for any } \lambda \in\{0, \ldots, N-1\} \text { and any } \ell \in\{1, \ldots, N\}, \\
m_{a+1+\lambda, a+N+\ell}= & \pm(-1)^{p} \frac{\delta_{n}}{N} z_{0}^{-N+\lambda} \omega^{\lambda \ell} \quad \text { for any } \lambda \in\{0, \ldots, N-1\} \\
& \quad \text { and any } \ell \in\{1, \ldots, N\},
\end{aligned}
$$

and all other coefficients are zero. Then M has rank $a+N+1-i_{0}$; denoting by $P \in \mathrm{GL}_{a+2 N+1-i_{0}}(\mathbb{C})$ the matrix (4.21), the matrix $M P$ has rank $a+N+1-i_{0}$. Now $M P$ is exactly the matrix $\left[s_{k_{j},}\right]_{i_{0} \leq i, j \leq a+N}$. This concludes the proof of Lemma 4.2.
4.5. Arithmetic and asymptotic properties. In this section we prove the following result, used in the proof of Theorem 4.1; see Section 4.2 for the notation.
Proposition 4.4. Let

$$
\alpha=e^{a} 4^{a / N-r}(N+1)^{2 r+2} r^{-a / N+4 r+2} \quad \text { and } \quad \beta=\left(2 e^{N}\right)^{a / N}(r N+1)^{2 r+2} .
$$

Then we have $s_{k, i} \in \mathbb{Z}$ for any $i \in\{1, \ldots, a+N\}$ and any $k \leq d_{0}-1$, and as $n \rightarrow \infty$:

$$
\left|\sum_{i=i_{0}}^{a+N} s_{k, i} \xi_{i}^{\prime}\right| \leq \alpha^{n(1+o(1))}, \quad \max _{1 \leq i \leq a+N}\left|s_{k, i}\right| \leq \beta^{n(1+o(1))}
$$

In this proposition and throughout this section, we denote by $o(1)$ any sequence that tends to 0 as $n \rightarrow \infty$; it usually depends also on a, r, N, and k. When Proposition 4.4 is applied in the proof of Theorem 4.1 (see Section 4.2), this dependence is not a problem since a, r, N are fixed parameters and k is bounded from above by c_{2}. At last we recall that d_{n} is the least common multiple of $1,2, \ldots, n$, and that

$$
\delta_{n}=\left(N d_{n}\right)^{a} N^{a n / N} .
$$

Let us start with a lemma, in which (as in Section 4.3)

$$
F(t)=(n / N)!^{a-2 r N} \frac{(t-r n)_{r n}(t+n+1)_{r n}}{\prod_{h=0}^{n / N}(t+N h)^{a}}=\sum_{h=0}^{n / N} \sum_{j=1}^{a} \frac{p_{j, h}}{(t+N h)^{j}} .
$$

Lemma 4.5. For any $j \in\{1, \ldots, a\}$ and any $h \in\{0, \ldots, n / N\}$,

$$
\begin{equation*}
\left(N d_{n / N}\right)^{a-j} N^{a n / N} p_{j, h} \in \mathbb{Z} \tag{4.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{j, h}\right| \leq\left((2 / N)^{a / N}(r N+1)^{2 r+2}\right)^{n(1+o(1))} \tag{4.24}
\end{equation*}
$$

where $o(1)$ is a sequence that tends to 0 as $n \rightarrow \infty$ and may depend also on N, a, and r.

Proof of Lemma 4.5. We follow the approach of [12] and [7] by letting

$$
\begin{aligned}
& F_{0}(t)=\frac{(n / N)!}{\prod_{h=0}^{n / N}(t+N h)}=\sum_{h=0}^{n / N} \frac{(-1)^{h} N^{-n / N}\binom{n / N}{h}}{t+N h}, \\
& G_{i}(t)=\frac{(t-i n / N)_{n / N}}{\prod_{h=0}^{n / N}(t+N h)}=\sum_{h=0}^{n / N} \frac{(-1)^{h+n / N} N^{-n / N}\binom{n / N}{h}\binom{N h+i n / N}{n / N}}{t+N h} \text { for } 1 \leq i \leq r N, \\
& H_{i}(t)=\frac{(t+1+i n / N)_{n / N}}{\prod_{h=0}^{n / N}(t+N h)}=\sum_{h=0}^{n / N} \frac{(-1)^{h} N^{-n / N}\binom{n / N}{h}\binom{-N h+(i+1) / N / N}{n / N}}{t+N h} \quad \text { for } N \leq i \leq(r+1) N-1 .
\end{aligned}
$$

Then the partial fraction expansion of $F=F_{0}^{a-2 r N} G_{1} \ldots G_{r N} H_{N} \ldots H_{(r+1) N-1}$ can be obtained my multiplying those of F_{0}, G_{i}, and H_{i} using repeatedly the formula

$$
\frac{1}{(t+N h)\left(t+N h^{\prime}\right)^{\ell}}=\frac{1}{N^{\ell}\left(h^{\prime}-h\right)^{\ell}(t+N h)}-\sum_{i=1}^{\ell} \frac{1}{N^{\ell+1-i}\left(h^{\prime}-h\right)^{\ell+1-i}\left(t+N h^{\prime}\right)^{i}}
$$

with $h \neq h^{\prime}$. The denominator of $p_{j, h}$ comes both from this formula (and this contribution divides $\left(N d_{n / N}\right)^{a-j}$) and from the denominators of the coefficients in the partial fraction expansions of F_{0}, G_{i}, H_{i} (which belong to $N^{-n / N} \mathbb{Z}$, so that $N^{a n / N}$ accounts for this contribution). This concludes the proof of (4.23).

On the other hand, bounding from above the coefficients of the partial fraction expansions of F_{0}, G_{i}, H_{i} yields

$$
\left|p_{j, h}\right| \leq n^{O(1)} N^{-a n / N} 2^{a n / N} \prod_{i=1}^{r N} \frac{(n+i n / N)!}{(n / N)!(n+(i-1) n / N)!} \prod_{i=N}^{(r+1) N-1} \frac{((i+1) n / N)!}{(n / N)!(i n / N)!}
$$

where $O(1)$ is a constant depending only on a, r, N which can be made explicit (see [7] for details). Simplifying the products and using the bound $m!/ m_{1}!\ldots m_{c}!\leq c^{m}$ valid when $m_{1}+\cdots+m_{c}=m$, one obtains

$$
\left|p_{j, h}\right| \leq n^{O(1)}(2 / N)^{a n / N}\left(\frac{((r+1) n)!}{n!(n / N)!^{r^{N}}}\right)^{2} \leq n^{O(1)}(2 / N)^{a n / N}(r N+1)^{2(r+1) n}
$$

This concludes the proof of Lemma 4.5.
Proof of Proposition 4.4. Let $H(P)$ denote the exponential height of a polynomial $P \in \mathbb{C}[X]$, that is the maximum modulus of a coefficient of P. Recall that $P_{j}(z)=\sum_{h=0}^{n / N} p_{j, h} z^{N h}, \quad U(z)=-\sum_{t=1}^{n} z^{t} \sum_{j=1}^{a} \sum_{h=0}^{\lfloor(t-1) / N\rfloor}\left(p_{j, h} /(t-N h)^{j}\right)$ and $V(z)=$ $-\sum_{t=0}^{n-1} z^{t} \sum_{j=1}^{a} \sum_{h=[(t+1) / N\rceil}^{n / N}\left(p_{j, h} /(N h-t)^{j}\right)$. Using Lemma 4.5 we see that these polynomials have coefficients in $\delta_{n}^{-1} \mathbb{Z}$ and height less than H_{n} for some $H_{n} \leq$ $\left((2 / N)^{a / N}(r N+1)^{2 r+2}\right)^{n(1+o(1))}$. Now let $\widetilde{P}_{k, j}=z^{k-1} P_{k, j}$ for any k, j. Then the recurrence relation (4.5) yields

$$
\widetilde{P}_{k, j}=z \widetilde{P}_{k-1, j}^{\prime}-(k-2) \widetilde{P}_{k-1, j}-\widetilde{P}_{k-1, j+1}
$$

where $\widetilde{P}_{k-1, j+1}=0$ if $j=a$, so that $\widetilde{P}_{k, j}$ is a polynomial of degree at most n, with coefficients in $\delta_{n}^{-1} \mathbb{Z}$ and height $H\left(\widetilde{P}_{k, j}\right) \leq(n+1)_{k-1} H_{n}$, by induction on k.

In the same way, letting $\widetilde{U}_{k}=z^{k-1} U_{k}$, Equation (4.6) yields

$$
\widetilde{U}_{k}=z \widetilde{U}_{k-1}^{\prime}-(k-2) \widetilde{U}_{k-1}-z Q_{k-1}
$$

where $Q_{k-1}=1 / 1-z \widetilde{P}_{k-1,1}$. Provided $k \leq d_{0}-1$, Equation (4.10) asserts that $P_{k-1,1}(1)=0$ so that Q_{k-1} is a polynomial and $H\left(Q_{k-1}\right) \leq n H\left(P_{k-1,1}\right) \leq(n)_{k-1} H_{n}$. By induction on $k \leq d_{0}-1$, we deduce that \widetilde{U}_{k} is a polynomial of degree at most n, with coefficients in $\delta_{n}^{-1} \mathbb{Z}$ and height $H\left(\widetilde{U}_{k}\right) \leq k(n)_{k-1} H_{n}$. Now Equation (4.11) reads $\widetilde{U}_{k}(z)=\sum_{\lambda=1}^{N} z^{\lambda-1} U_{k, \lambda}(z)$ with $U_{k, \lambda} \in \mathbb{Q}\left[z^{N}, z^{-N}\right]$. If $k \leq d_{0}-1$ then $U_{k, \lambda}$ belongs to
$\mathbb{Q}\left[z^{N}\right]$, has degree at most n (as a polynomial in z), coefficients in $\delta_{n}^{-1} \mathbb{Z}$ and height $H\left(U_{k, \lambda}\right) \leq k(n)_{k-1} H_{n}$.

Proceeding in the same way, it is not difficult to prove that the same properties hold for $V_{k, \lambda}$. This implies immediately that $s_{k, i} \in \mathbb{Z}$, and (since $d_{n}=e^{n(1+o(1))}$) the upper bound on $\left|s_{k, i}\right|$ in Proposition 4.4.

To prove that $\left|\sum_{i=i_{0}}^{a+N} s_{k, i} \xi_{i}^{\prime}\right| \leq \alpha^{n(1+o(1))}$, we recall that $d_{0}=-\operatorname{deg} F$ and write, as $|t| \rightarrow \infty$:

$$
F(t)=\sum_{d=d_{0}} \frac{\mathfrak{A}_{d}}{t^{d}} \quad \text { where } \mathfrak{A}_{d}=\sum_{j=1}^{a} \sum_{h=0}^{n / N}(-N h)^{d-j}\binom{d-1}{d-j} p_{j, h}
$$

since $(t+N h)^{-j}=\sum_{\ell=0}^{\infty}\binom{\ell+j-1}{\ell}(-N h)^{\ell} t^{-j-\ell}$ (see [10, page 1378]). Lemma 4.5 provides a positive real number $A_{n} \leq\left((2 / N)^{a / N}(r N+1)^{2 r+2}\right)^{n(1+o(1))}$ such that $\left|\mathfrak{A}_{d}\right| \leq(2 n)^{d} A_{n}$ for any $d \geq d_{0}$. Then we have for any $t \in \mathbb{Z}$ such that $|t| \geq 2 n+1$:

$$
|F(t)| \leq A_{n} \sum_{d=d_{0}}^{\infty}(2 n / t)^{d} \leq(2 n+1) A_{n}(2 n / t)^{d_{0}}
$$

For any $z \in \mathbb{C}$ such that $|z| \leq 1$, and any $k \leq d_{0}-1$,

$$
\begin{aligned}
\left|S_{0}^{(k-1)}(z)\right| & =\left|\sum_{t=(r+1) n+1}^{\infty} F(-t)(t-k+2)_{k-1} z^{t-k+1}\right| \leq(2 n+1) A_{n}(2 n)^{d_{0}} \sum_{t=(r+1) n+1}^{\infty} t^{k-1-d_{0}} \\
& \leq(2 n+1) A_{n}(2 n)^{d_{0}} \int_{(r+1) n}^{\infty} t^{k-1-d_{0}} d t \leq(2 n+1) A_{n} 2^{d_{0}} n^{k} r^{k-d_{0}}
\end{aligned}
$$

Moreover, the same upper bound holds for $S_{\infty}(z)=\sum_{t=r n+1}^{\infty} F(t) z^{-t}$ provided $|z| \geq 1$. Since

$$
S(z)=\sum_{\ell=1}^{N} \omega^{\ell} \mu_{\ell} S_{0}\left(\omega^{\ell} z\right)+\omega^{\ell} v_{N-\ell} S_{\infty}\left(\omega^{\ell} z\right)
$$

and $d_{0}=a(n / N+1)-2 r n$, we obtain $\left|\delta_{n} S^{(k-1)}(1)\right| \leq \alpha^{n(1+o(1))}$ for any $z \in \mathbb{C}$ such that $|z|=1$, and any $k \leq d_{0}-1$; here the constant implied in $o(1)$ may depend on k (but not on n). This concludes the proof of Proposition 4.4.
4.6. Siegel's linear independence criterion. The proofs of all linear independence results in this paper rely on the following criterion, which is based on Siegel's ideas (see for instance [8, pages 81-82 and 215-216], [16, Section 3] or [15, Proposition 4.1]).

Proposition 4.6. Let $\theta_{1}, \ldots, \theta_{p}$ be real numbers, not all zero. Let $\tau>0$, and $\left(Q_{n}\right)$ be a sequence of real numbers with limit $+\infty$. Let \mathcal{N} be an infinite subset of \mathbb{N}, and for any $n \in \mathcal{N}$ let $L^{(n)}=\left[\ell_{i, j}^{(n)}\right]_{1 \leq i, j \leq p}$ be a matrix with integer coefficients and a nonzero determinant, such that as $n \rightarrow \infty$ with $n \in \mathcal{N}$:

$$
\max _{1 \leq i, j \leq p}\left|\ell_{i, j}^{(n)}\right| \leq Q_{n}^{1+o(1)}
$$

and

$$
\max _{1 \leq j \leq p}\left|\ell_{1, j}^{(n)} \theta_{1}+\cdots+\ell_{p, j}^{(n)} \theta_{p}\right| \leq Q_{n}^{-\tau+o(1)}
$$

Then,

$$
\operatorname{dim}_{\mathbb{Q}} \operatorname{Span}_{\mathbb{Q}}\left(\theta_{1}, \ldots, \theta_{p}\right) \geq \tau+1
$$

In the proof of Theorem 4.1 we apply this proposition with $Q_{n}=\beta^{n}$ and $\tau=$ $-\log \alpha / \log \beta$ (so that $Q_{n}^{-\tau}=\alpha^{n}$), where α and β are defined in Section 4.2; \mathcal{N} is the set of integer multiples of N.

Even though it is a classical result, let us recall the proof of Proposition 4.6. Let $d=\operatorname{dim}_{\mathbb{Q}} \operatorname{Span}_{\mathbb{Q}}\left(\theta_{1}, \ldots, \theta_{p}\right)$, and F be a subspace of \mathbb{R}^{p} defined over \mathbb{Q}, of dimension d, which contains the point $\left(\theta_{1}, \ldots, \theta_{p}\right)$. Let $n \in \mathcal{N}$ be sufficiently large, and denote by $L_{j}^{(n)}$ the linear form $\ell_{1, j}^{(n)} X_{1}+\cdots+\ell_{p, j}^{(n)} X_{p}$ on \mathbb{R}^{p}. Up to reordering $L_{1}^{(n)}, \ldots, L_{p}^{(n)}$, we may assume the restrictions of $L_{1}^{(n)}, \ldots, L_{d}^{(n)}$ to F to be linearly independent linear forms on F. Denoting by $\left(u_{1}, \ldots, u_{d}\right)$ an \mathbb{R}-basis of F consisting in vectors of \mathbb{Z}^{p}, the matrix $\left[L_{j}^{(n)}\left(u_{t}\right)\right]_{1 \leq j, t \leq d}$ has a nonzero integer determinant. Now $\left(\theta_{1}, \ldots, \theta_{p}\right)$ is a linear combination of u_{1}, \ldots, u_{d}; the same linear combination of the columns has coefficients less than $Q_{n}^{-\tau+o(1)}$ in absolute value. Therefore, $Q_{n}^{d-1-\tau+o(1)}$ is an upper bound on this nonzero integer determinant: this concludes the proof of Proposition 4.6.

Acknowledgements

This paper has benefited from useful discussions with Daniel Bertrand, Raffaele Marcovecchio, Milton H. Nash, Tanguy Rivoal, and Wadim Zudilin.

References

[1] Y. André, G-Functions and Geometry, Aspects of Mathematics, E13 (Vieweg, 1989).
[2] R. Apéry, 'Irrationalité de $\zeta(2)$ et $\zeta(3)$ ', in: Journées Arithmétiques (Luminy, 1978), Astérisque, 61 (Société Mathématique de France, 1979), 11-13.
[3] K. M. Ball and T. Rivoal, 'Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs', Invent. Math. 146(1) (2001), 193-207.
[4] D. Bertrand, 'Le théorème de Siegel-Shidlovsky revisité', in: Number Theory, Analysis and Geometry: in Memory of Serge Lang (eds. D. Goldfeld et al.) (Springer, 2012), 51-67.
[5] D. Bertrand and F. Beukers, 'Équations différentielles linéaires et majorations de multiplicités', Ann. Sci. Éc. Norm. Supér. (4) 18(1) (1985), 181-192.
[6] F. Beukers, 'Padé-approximations in number theory', in: Padé Approximation and its Applications (Amsterdam, 1980), Lecture Notes in Mathematics, 888 (Springer, 1981), 90-99.
[7] P. Colmez, ‘Arithmétique de la fonction zêta’, in: Journées mathématiques X-UPS 2002 (éditions de l'école Polytechnique, 2003), 37-164.
[8] N. I. Fel'dman and Yu. V. Nesterenko, Number Theory IV, Transcendental Numbers, Encyclopaedia of Mathematical Sciences, 44 (eds. A. N. Parshin and I. R. Shafarevich) (Springer, 1998).
[9] S. Fischler, 'Irrationalité de valeurs de zêta (d'après Apéry, Rivoal, ...)', in: Sém. Bourbaki 2002/03, Astérisque, 294 (Société Mathématique de France, 2004), 27-62. exp. no. 910.
[10] S. Fischler and T. Rivoal, 'Approximants de Padé et séries hypergéométriques équilibrées', J. Math. Pures Appl. (9) 82(10) (2003), 1369-1394.
[11] A. I. Galochkin, 'Estimates for the number of zeros of certain functions with algebraic coefficients of Taylor series', Mat. Zametki [Math. Notes] 61(6) (1997), 817-824 [687-692].
[12] L. Habsieger, 'Introduction to diophantine approximation', manuscript.
[13] H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, 2004).
[14] C. Krattenthaler, T. Rivoal and W. Zudilin, 'Séries hypergéométriques basiques, q-analogues des valeurs de la fonction zêta et séries d'Eisenstein', J. Inst. Math. Jussieu 5(1) (2006), 53-79.
[15] R. Marcovecchio, 'Linear independence of linear forms in polylogarithms', Ann. Sc. Norm. Super. Pisa $\mathbf{V}(1)$ (2006), 1-11.
[16] T. Matala-aho, 'On Diophantine approximations of the solutions of q-functional equations', Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 639-659.
[17] M. H. Nash, 'Special values of Hurwitz zeta functions and Dirichlet L-functions', PhD Thesis, University of Georgia, Athens, USA, 2004.
[18] J. Neukirch, Algebraic Number Theory (Springer, 1999).
[19] E. M. Nikishin, 'On the irrationality of the values of the functions $F(x, s)$ ', Mat. Sbornik [Math. USSR-Sb.] 109 [37](3) (1979), 410-417 [381-388].
[20] M. Nishimoto, 'On the linear independence of the special values of a Dirichlet series with periodic coefficients', Preprint, 2011, arXiv:1102.3247 [math.NT].
[21] J. P. Ramis, Séries Divergentes et Théories Asymptotiques, Panoramas et Synthèses, 21 (Soc. Math., France, Paris, 1993).
[22] T. Rivoal, 'La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs', C. R. Acad. Sci. Paris Ser. I 331(4) (2000), 267-270.
[23] T. Rivoal, 'Indépendance linéaire des valeurs des polylogarithmes', J. Théor. Nombres Bordeaux 15(2) (2003), 551-559.
[24] T. Rivoal and W. Zudilin, 'Diophantine properties of numbers related to Catalan's constant', Math. Ann. 326(4) (2003), 705-721.
[25] A. B. Shidlovsky, Transcendental Numbers, de Gruyter Studies in Mathematics, 12 (de Gruyter, Berlin, 1989).
[26] V. N. Sorokin, 'Hermite-Padé approximations for Nikishin systems and the irrationality of $\zeta(3)$ ', Uspekhi Mat. Nauk [Russian Math. Surveys] 49(2) (1994), 167-168 [176-177].
[27] V. N. Sorokin, 'Apéry's theorem', Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] 53(3) (1998), 48-53 [48-52].
[28] G. Wechsung, 'Functional equations of hyperlogarithms', in: Structural Properties of Polylogarithms, Mathematics Surveys and Monographs, 37 (ed. L. Lewin) (American Mathematical Society, 1991), 171-184.
[29] W. Zudilin, 'Lower bounds for polynomials in the values of certain entire functions', Mat. Sbornik [Sb. Math.] 187(12) (1996), 57-86 [1791-1818].

> STÉPHANE FISCHLER, Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay,
> 91405 Orsay, France
> e-mail: stephane.fischler@math.u-psud.fr

[^0]: (C) 2018 Australian Mathematical Publishing Association Inc.

