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Cogeneration of algebras

in regular categories

Jin Adamek

A quotient algebra of a given algebra is said to be cogenerated

by a quotient object if it is contained in the quotient object

and is the biggest with this property. Triples T over a

regular category are characterized which have the property that

every quotient object of a T-algebra cogenerates some quotient

algebra: these are precisely the right exact triples,

preserving colimits of quotient chains. This improves a result

of Michael Barr (J. Pure Appl. Algebra 4 (1971*), 1-8) that every

right exact, finitary triple has the investigated property. This

result is related to categorical automata, since a triple has the

above property iff triple machines admit a minimal realization of

every behavior.

I. Cogeneration and realization

I.I. Cogeneration of quotient algebras is the dual notion to the

generation of subalgebras. Given a triple T , a subobject of a T-algebra

generates the least subalgebra, containing it. Dually, a regular quotient

object cogenerates the biggest regular quotient algebra, contained in it.

Here we use the current ordering of quotients of an object A (that is,

epis e : A •* X ), namely e 2 e' iff e' = k.e for some k : X -*• X' .

We work with a fixed triple T = (2", y, n) over a category K ; we

say that T has a certain property provided that T has it.

1.2 DEFINITION. A triple T is said to admit regular cogeneration
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if for every T-algebra (A, d) and every regular quotient e of A

there exists the biggest regular quotient algebra e : (A, d) -*• {A1, d')

with e 5 e .

This notion is the algebraic form of minimal realizations of behaviors

by T-machines; see [2, 41 or [5]. Roughly speaking, a T-machine is a

T-algebra (A, d) together with an "output" morphism e : A -*• X . The

quotient algebras, contained in e , present realizations (or reductions of

the machine). The biggest quotient algebra yields the minimal realization

(or reduction).

Let us remark here that Barr uses in [7] the dual order of quotients

(e 5 e' iff e = k.e' ) which is more natural from the point of view of

realizations. Yet, it seems to be a firm custom in algebra to use the

order defined in I.I and we are going to follow this custom in the present

paper.

1.3. Triples, which admit regular cogeneration, are characterized in

[2, 4]. Mild assumptions on the category K are needed (for example, they

are fulfilled by every cocomplete, co-well powered category in which every

extreme epi is regular):

(i) K has regular factorizations (that is, all regular epis

and monies form a factorization system);

(ii) K has big regular cointersections (that is, regular

quotients of any object form a class-complete "lattice";

the infima are called cointersections).

THEOREM. Let K be a category with properties (i) and (ii). Let T

be a regular triple over K (that is, Te is a regular epi as soon as e

is). Then T admits regular cogeneration iff it preserves cointersections.

1.4. The above theorem is quite general, but in concrete situations

it turns out to be difficult to decide whether a given functor preserves

cointersections or not (see [3, M ] where this is solved for sets and

vector spaces). The aim of the present paper is to show that for right

exact triples (triples preserving coequalizers of equivalence relations)

more handy conditions, concerning colimits of chains, are necessary and

sufficient.

This paper uses a proof technique, developed by Barr [6, 7] and
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GriI let [S] for relations in a regular category.

II. Strictly regular categories

II.1. We recall from GriI let [«]:

DEFINITION. A category K is regular if it has finite limits and

regular factorizations and if pullbacks carry regular epis, that is, given

a pullback e.e' = f.f where e is a regular epi, so is /' .

We need a stronger condition on K , concerning colimits of chains.

Recall that, given a cardinal a (considered as the well-ordered category

of all ordinals i < a ), a functor X : a •*• K is called an a-ahain in

K , or simply a chain, (if a = M , We speak about sequences rather than

chains.) We denote by X. the objects, and by X. . : X. •* X. the

morphisms (£ 2 j < a) .

If all X. . are regular epis, we say that AT is a quotient chain.

In this case, the colimit of X is just the cointersection of X. .

(i < a) ; more precisely, if V. : X. •*• A (i < a) is the colimit of X

then vn is the cointersection of X . . Conversely, every well-ordered

cointersection is a colimit of a quotient chain.

II.2 DEFINITION. A regular category is strictly regular if it has

finite colimits and colimits of chains, the latter commuting with

pullbacks.

We shall show presently that a number of current categories are

strictly regular. Yet, we also need a weaker condition. We use the

phrase: colimits of sequences of split monies commute with pullbacks.

This means that, given sequences X, Y, Z of split monies and trans-

formations f : X •*• Z , g : X •*• Z , the following holds. Let us form

pullbacks

P • y
n n

n = 0, 1, 2, (a new sequence P arises, not necessarily of split
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monies, together with transformations P -*• X and P •*• Y ). Then P has a

colimit and the colimit-square

colim P -*• colim Y

+ +
colim X •* colim Z

is a pullback, again.

DEFINITION. A regular category is S-regular if it has colimits of

sequences of split monies and they commute with pullbacks.

EXAMPLE. Given a covariant set-functor F , denote by S(F) the

category of pairs (X, R) , where X is a set and B c FX ; morphisms

from (X, R) to (Y, S) are mappings / : X •* Y such that Ff sends R

into S ; see [9]. It is rather easy to verify that the forgetful functor

from S(F) into sets creates limits and colimits and therefore S(F) are

strictly regular categories.

The categories of algebras of a given type, the category of graphs

and, more generally, the categories of relational systems have the form

S(F) ; a big number of current categories are epi-reflective in some

S(F) .

PROPOSITION. Let K be a strictly regular category. Let L be its

full reflective subcategory, such that reflections are regular epis. If L

is closed to colimits of chains then it is strictly regular, too.

Proof. Standard reasoning shows that a given morphism in L is a

regular epi iff it is a regular epi in K . Since L is closed to

(finite) limits, it is regular. The strictness follows from the hypothesis

that L is closed to colimits of chains.

COROLLARY. Every variety of finitary algebras is a strictly regular

category. Posets, tolerance spaces, partial algebras, and so on, form

strictly regular categories.

PROPOSITION. Let K be a strictly regular category and let I be a

small category. Then the functor-category K is also strictly regular.

Proof. Regularity is (easily) proved in [S]. The strictness follows

from the fact that both pullbacks and colimits of chains are computed

"point-wise".
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III. Relations

III.l. Relations in a category are introduced and investigated by

Gri I let [S]. By a relation i? on an object X is meant a subobject of

X x X or, equivalently, a collectively monomorphic pair of morphisms

r', r" : R •*• X . The basic notion is the composition of relations. Given

two relations **', r" : R •* X and s', s" : S -»• X , consider the pullback

of r" and s' :

T

X X X ;

then the image of (r1.*1) x (s".t") : TxJ1 ->- xx* is called the composition

R o S . Here is where regularity comes in: the composition is associative

in a regular category.

III.2. There are some obvious definitions. For example, a relation

R on X is reflexive if it contains the diagonal A : X •* X*X ; it is

symmetric if ^ c R (where the inversion of a relation r', r" is

simply r", r' ); and R is transitive if R o RcR . A relation which

has all these three properties is called an equivalence. Following Barr

[7] we define:

DEFINITION. A functor from a regular category is right exact if it

preserves coequalizers of equivalence relations R •*• X .

Right exactness is a comparatively mild condition - it says little

more than the preservation of regular epis. For example, every functor

from sets or from vector spaces is right exact.

Regular categories have kernel pairs; that is, for every morphism

f : X ->• Y there exists a pair e', e" : E -*• X such that

(i) f.e' = f.e" ;

(ii) whenever f.k' = f.k" then there is a unique r with

https://doi.org/10.1017/S0004972700022796 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022796


360 J i rf Adamek

k' = e'.r and k" = e".r .

It is easy to see that every kernel pair is an equivalence. Barr [7]

assumes that, conversely, every equivalence is a kernel pair. Fortunately,

we can do without this hypothesis; it excludes a number of important

regular categories (for example, with-graphs, an equivalence E c XXX need

not be a full subgraph of X * X - a regular monic - which is always the

case for a kernel pair, of course).

III.3. Following GriI let, we "construct" the least equivalence,

containing a given relation.

CONSTRUCTION. Let R + X be a relation. Put R' = R u A and define

5 ( 1 ) = R' ° (i?1)"1 ,

Since 4 c s ' (and, moreover, this inclusion is a split monic), we have

M = S{n) o A c S{n+1) and we get a sequence

of split monies. We denote by R* -*• X the union of this sequence:

R* = U SM .
71=1

THEOREM. Let K be an S-regular category. Then for every relation

R ^ X ,

("•£,> R* is the least equivalence, containing R ;

(ii) the ooequalizers of R •* X and R* -*• X are the same.

Proof. We denote the relation-maps by

r ' , r" : R •* X and B^, S ^ : SM ->• X .

(A) R* is an equivalence.

Since al l S are reflexive and symmetric, so is R* = U S .

Let us verify the transitivity. We have S ' ° S ' = S , defined via

the pullback
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s

X .

More in detail; S( ' is the image of [s'.p') x [s".p") and, via

(2n)
. p

/ \

(n)
and

s".p" = r".fe . Since 5 is a sequence of split monies (while X is a

constant sequence), we can use the S-regularity: the colimit-square

P

is a pullback, again. By the definition of composition of relations,

R* o R* is the image of (r'.p1) x (r".p") . We have k : P •* R* as a

colimit of the above k ; since (s' .p') x [e" .p") = (r1 x r").fe , we

get (r'.p1) x (r".p") = (r' x r").fe . Thus if* o R* is contained in if*

(which equals the image of r1 x r" ).

(B) if* is the least equivalence.

Indeed, if E is an equivalence, then R c E implies if' c E , hence

S c E o E~ c E and, analogously, S c E . Therefore R* c E .

(C) Given X •* Y , then R* + X ->• Y commutes iff R $ x •* Y does.

The necessity follows from the fact that R c R* . The sufficiency
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follows from the above: i f i? •* X •*• Y commutes, then R i s contained in

the kernel pair of X -»• Y , which i s an equivalence; thus R* i s

contained in i t , too.

Now (ii) follows.

III.4. The following theorem is essentially Theorem 1.3 of Barr [7].

Yet, we exhibit a full proof, because the theorem plays a central role in

the present paper and our hypotheses are considerably weaker than Barr's.

The corollary below is from the same paper, 1.5-

A coequalizer Y •* X -*• Z is reflexive if the image of Y -*• X in

X x X contains A (that is, it is a reflexive relation).

THEOREM. Let K be an S-regular category and let T be a right

exact triple, preserving colimits of sequences of split monies. Then the

forgetful functor from 1-algebras, U : K -»• K, preserves reflexive

coequalizers.

Proof. (A) K is an S-regular category.

It is evident that U creates all existing limits and all those

colimits which T preserves. Thus, U creates finite limits,

coequalizers of equivalences (and equivalences, too) as well as colimits of

sequences of split monies. Since every regular epi is the coequalizer of

its kernel pair (which is an equivalence), U creates regular epis.

Therefore, K is S-regular.

(B) U preserves the calculus of relations.

Since U preserves monies and regular epis, it preserves

factorizations, hence relations. It also preserves pullbacks, hence

composition. Since U also preserves colimits of sequences of split

monies, it preserves the "star" from the preceding theorem for reflexive

relations: £/(/?*) = (UR)* if i c j (that is, if i?' = R ).

(C) U preserves reflexive coequalizers.

It is evident that a pair Y -*• X has the same coequalizer as its

image (in X x X ); since U preserves images, it suffices to- verify that

U preserves coequalizers of reflexive relations. Since U preserves the

"star" of these relations, it follows from (ii) in the preceding theorem,

that the preservation of coequalizers of equivalences is sufficient. As
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noted above, U preserves these coequalizers and the theorem follows.

COROLLARY. Under the same hypotheses, U preserves pushouts of

regular epis (that is, finite cointersections).

IV. Properties of functors

IV.I. In this section we show some interrelations between the

preservation of colimits of mono-chains and epi-chains. This is an

interesting example of the strength of the strict regularity; and the

results obtained will be fundamental for the last section.

We recall that a limit is absolute if every functor preserves it.

IV.2 LEMMA. Let X be a sequence of split monies with a colimit

v : X •* A . Then also v are split monies. Moreover, the pushoutsn n n * > e

A -^Xn

»1 Ku

are absolute pullbacks.

Proof. Since X , are split monies, we have k : X -*• X with
n,n+l n n+1 n

k .X = 1 . For a given n we can form the following compatible

family h : X •* X : h = 1 ; h = X if n < n n andn n nQ nQ n n,nQ 0

h = k • ... • k if n > n . Then there exists h : A ->• X with

h.v = h . Thus v splits, for h.v = 1 .

"o "o
The proposition about pushouts holds, more generally, for an arbitrary

split monic: since l.V = [v .h).V (because h.v = 1 J, there exists

h' : Y •*• X such that 1 = h' .p and V .h = h' .q . Thus the above

square is what could be called the split square. Standard reasoning shows

that this is an absolute pullback.

THEOREM. Let K be a strictly regular category. If a functor

F : K •*• K preserves colimits of quotient sequences, then F also
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preserves oolimits of sequences of split monies.

Proof. Let AT be a sequence of split monies with a colimit

v : X •*• A . Let

y

n
vn

denote pushouts. Then for every n clearly q . u = p .V and we get

a (unique) Y ^ : ̂  + Y^ with

Moreover, it is easy to verify that Y -, is the coequalizer of p .V

and q .U . In this way we obtain a quotient sequence Y .

Since l.v = l.V , we get a unique w : Y •*• A with
w n n n

w .p = w .q = 1 . Let us verify that these morphisms w form the

colimit of Y . They are evidently compatible. Given another compatible

family u : Y •* B , we are to find h : A •*• B with h.W = u {h is

then unique, of course). We have a compatible family for X ;

u .V .V : X -*• B and so we get k : A •* B with k.V = u .p .V
n r n n n s n n rn n

For a fixed n we have

[u .p ).v = u .1 .v .v = u .p .v = k.vno o n nQ n.,n cn n n cn n n

for all n > n ; therefore, u .p = k (for every nQ ). Analogously

u .q = k . Therefore, for every n we have
n0 n0

[k.Wn).pn = un.pn and (fc.WB).?n = un.qn ;

that is, fc.u = M . This is the morphism we want

By hypothesis, F preserves this colimit; thus Fu present the
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colimit of FY . Furthermore, by the above lemma,

Fv
FX "-+ FA

n

FA Fv ' FIn

are pullbacks. Since K i s 5-regular , the colimit square

colim FX • FA

FA —£>• FA

is a pullback. Thus FA = colim FX (together with the natural morphisms),

which proves the theorem.

IV.3. If we want to generalize the above theorem to all chains of

monies, we must "compensate" for the missing lemma. We shall assume about

K that

(i) it is strictly regular,

(ii) colimit injections of a chain of monies are monies,

(iii) given a monic m , the pushout (amalgam) of m and m is

also a pullback.

The following theorem has an analogous proof to the one above.

THEOREM. Let K. fulfil (i)-(iii) above; let F : K ->• K be a

functor which preserves finite intersections and aolimits of a-chains of

regular epis. Then F preserves also colimits of a-chains of monies.

IV.4. LEMMA. If K is strictly regular, then the colimit of an

increasing chain of equivalences is an equivalence. More in detail, given

a chain of monies E with a colimit E* and given compatible equivalences

E. -*• X , then the colimit pair E* -*• X is also an equivalence.

Proof. This is analogous to part (A) of the proof of Theorem III.3:

here we consider the chain E instead of the sequence S of split

monies; this is possible, since by hypothesis K is strictly regular (not

only S-regular).
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THEOREM. Let K be a strictly regular category and let F -. K •*• K
be a right exact functor which preserves colimits of a-chains of monies.
Then F preserves also colimits of a-chains of regular epis.

Proof. Let X be an a-chain of regular epis with a colimit
V. : X. ->• A {i < a) . Let a . , b . : E. -*• Xn denote t he ke rne l p a i r of

X- . ; then we ge t a n a t u r a l chain E of monies, defined by a. = a..E. .

and b • = b ..E. . fo r i 5 3 < a . Let E* denote t h e co l im i t of E •.
i 3 i>,3

then the colimit pair a*, b* : E* -*• X. is an equivalence by the above

lemma. Let us verify that V. : X- •*• A is the coequalizer of a*, b* .

Since for a l l i we have

V0-ai = Vi-XO,i-ai = Vi'XO,i-bi = VQ'bi '

clearly VQ.a* - V .b* . Given another morphism / : XQ •*• A' with

f.a* = f.b* , we have f.a. = f.b. for every i . Since X . is a
1- i* 0 ir-

regular epi, i t is the coequalizer of i t s kernel pair a ., b. ; therefore
we get u! : X. •*• A' with v'..X . = f . Then {v1.} is a compatible

7* "V "I* K) )7r 7r

family for X and there is g : A •*• A' with f = g.V- . Hence v. is

u u

the coequalizer of a*, b* .

Since F is a right exact functor, FvQ is the coequalizer of

Fa*, Fb* . How we are prepared to prove that the morphisms {i^-}

constitute the colimit of FX . Let {w.} be an arbitrary compatible

family for FX , w. : FX. -*• B . For every i we have

wn.Fa. = w..FXn ..Fa. = w..FXn ..Fb. = W .Fb.

and, since F preserves the colimit of E , there follows

wn.Fa* = w^.Fb* . Tl

then, for every i ,

w .Fa* = wQ.Fb* . Therefore there exists h : FA •*• B with w = h.Fv ;

thus W. = h.Fv. for FX . is an epi [X . is a regular epi and F is

right exact; hence it preserves regular epis). The uniqueness of h is
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clear. The proof is concluded.

IV.5. The following lemma has been proved (implicitly but with all

details) by Reiterman [10]. Colimits of chains are said to preserve a

morphism class M if, for every M-transformation between two chains, the

natural map between their colimits is in M , too. For example, if these

colimits commute with pullbacks, they preserve monomorphisms.

LEMMA. Let K be a category with a factorization system (E, M) .

Let K have oolimits of a-chains and let them preserve M-monics. Then

every endofunctor, preserving colimits of a-chains of both M-monics and

E-epis, preserves colimits of all a-ahains.

Outline of the proof. Given an a-chain X , consider the

E-M-factorizations X. •* X. •* X. of the morphisms X. . . Via the
*• 3 3 i->3

diagonal f i l l - in , we obtain for each fixed i a new a-chain X

E-epis:

(i) of
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(putting X. ' = 1 for j < i ) .
0

(i)
Denote by T. the colimit of the chain X • ; recall that F

preserves this colimit. For f i t ' we have a natural transformation

X -*• X of M-monics. This yields a natural morphism T. •* T.,

which, by hypothesis, also belongs to M . In this way we obtain an

a-chain T of M-monics. Its colimit, again preserved by F , coincides

with the colimit of X .

COROLLARY. Let F be a right exact endofunctor of a strictly exact

category. If F preserves colimits of a-chains of monies, then it

preserves all colimits of a-chains.

V. Main results

V.I THEOREM. Let 1 be a regular triple over a strictly regular,

co-well powered category. Then T admits regular cogeneration if and only

if it is right exact and preserves colimits of quotient chains.

Proof. (A) K fulfils the hypotheses of Theorem 1.3.

Since K is strictly regular, it has regular factorizations as well

as finite cointersections and colimits of quotient chains. There follows

that K has regular cointersections: since K is co-well powered,

regular quotients of an object form a (small) lattice, via the finite

cointersections, in which every well-ordered subset has a supremum, via the

colimits of chains. Consequently, this lattice is complete.

(B) Sufficiency.

We only have to verify that the forgetful functor U : K -*• K

preserves regular cointersections. Then the situation with cogeneration is

analogous to the situation with generation of subalgebras: given a

T-algebra {A, d) and a regular quotient e : A •* Y , the cointersection

e of all quotient algebras, contained in e , is a quotient algebra.

Evidently, E is cogenerated by e .

By Theorem IV.2, T preserves colimits of sequences of split monies.

It follows from Corollary III.U that U preserves finite cointersections.

It also preserves (indeed, creates) well-ordered cointersections, since T
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preserves colimits of quotient chains (which are well-ordered

cointersections, as mentioned in II.1). Since K is co-well powered,

there follows that U preserves al l cointersections.

(C) Necessity.

By Theorem 1.3, T preserves cointersections, hence it preserves

colimits of quotient chains. Let us verify that it is right exact. Given

an equivalence e', e" : E •*• X , via reflexivity (which is the only

property we shall need) there exists i : X -*• E with e' .i = e" .i = 1

(this is the same as A = (e' x e").i ) . Therefore, e', e" are regular

epis and so T preserves their pushout. But in this case, pushout and

coequalizer are one and the same thing. More in detail; if k is the

coequalizer of e', e" then

is a pushout. Indeed, given /', f with f.e' = f .e" , then

/' = f'.e'.i = f'.e".i = f ; hence f'.e' = f .e" ; therefore /' (as

well as f" ) factorizes through k .

This concludes the proof.

COROLLARY. Let K be a strictly regular, co-well powered category.

Then a sufficient condition for a triple T to admit regular cogeneration

is: T is right exact and preserves colimits of chains of monies. If,

moreover, T preserves finite intersections and K. fulfils (ii) and (Hi)

from IV. 3j then this condition is also necessary.

NOTE. Let K be the category of sets or of vector spaces over a

given field. Then every triple is right exact and preserves finite

intersections. Therefore, cogeneration is equivalent to the preservation

of colimits of quotient chains or to the preservation of well-ordered

unions. This was already proved in [3].
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