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Abstract
Ginzburg algebras associated to triangulated surfaces provide a means to categorify the cluster algebras of these
surfaces. As shown by Ivan Smith, the finite derived category of such a Ginzburg algebra can be embedded into
the Fukaya category of the total space of a Lefschetz fibration over the surface. Inspired by this perspective, we
provide a description of the unbounded derived category in terms of a perverse schober. The main novelty is a
gluing formalism describing the Ginzburg algebra as a colimit of certain local Ginzburg algebras associated to
discs. As a first application, we give a new construction of derived equivalences between these Ginzburg algebras
associated to flips of an edge of the triangulation. Finally, we note that the perverse schober as well as the resulting
gluing construction can also be defined over the sphere spectrum.
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1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [FZ02] as a class of commutative algebras
equipped with a combinatorial structure relating different subsets of the algebra called clusters. Since
then, there has been a great interest in cluster algebras and their relation to other subjects, including
Teichmüller theory, polyhedral surfaces, representation theory of quivers and aspects of noncommutative
algebraic geometry such as Calabi–Yau algebras, Calabi–Yau categories and stability conditions. A
survey with many references can be found in [Kel08]; we also refer to the cluster-algebra portal [Fom]
for further surveys and information on cluster algebras.

Relevant for this work is a particular class of cluster algebras associated to oriented marked surfaces
equipped with an ideal triangulation, introduced in [GSV05, FG06b, FG09] and further studied in
[FST08, FT18]. These cluster algebras can be described in two different ways. The first perspective
is geometric and provides a description in terms of the decorated Teichmüller spaces of the surfaces.
The cluster variables arise as lambda lengths, which form the coordinates of the Teichmüller space.
These lambda lengths satisfy an analogue of the classical Ptolemy relations, which gives rise to the
cluster exchange relations. The second perspective makes direct use of the combinatorics of the ideal
triangulation. The mutation matrix used to define the cluster algebra arises as the signed adjacency
matrix of the ideal triangulation, which counts the number of incidences of the ideal triangles. The
resulting algebra does not depend on the choice of ideal triangulation but only on the underlying marked
surface.

This second perspective in particular shows that cluster algebras of marked surfaces can be considered
as cluster algebras associated to quivers, which can be categorified via 2-Calabi–Yau (CY) triangulated
categories, called cluster categories, and 3-CY triangulated categories. To describe the 3-CY categori-
fication of the cluster algebra associated to a quiver Q, one chooses a nondegenerate potential W. The
3-CY categorification is then given by the derived category of the Ginzburg algebra 𝒢(𝑄,𝑊) associ-
ated to the quiver with potential (𝑄,𝑊). The 2-CY cluster category can be obtained from the derived
category of the Ginzburg algebra via the Verdier quotient D(𝒢(𝑄,𝑊))perf/D(𝒢(𝑄,𝑊))fin [Ami09].
There is also a direct link between the Ginzburg algebras and the combinatorics of the cluster algebras;
we refer to [Kel12] for a survey.

To describe the results of this work, we first recall the construction of the quiver 𝑄◦T, and a
choice of nondegenerate potential 𝑊T, associated to an ideal triangulation T of a marked surface S
[LF09, GLFS16]. We assume for simplicity that T has no self-folded triangles. The quiver 𝑄◦T has as
vertices the internal edges of T and an arrow 𝑎 : 𝑖 → 𝑗 for each ideal triangle containing the edges 𝑖, 𝑗 ,
where the edge j follows the edge i in the clockwise order of the edges of the ideal triangle induced by
the orientation of the surface. The nondegenerate potential𝑊T = 𝑊 ′T +𝑊

′′
T ∈ 𝑘𝑄

◦
T consists of a part𝑊 ′T

which is the sum of the clockwise 3-cycles inscribed in the interior ideal triangles of T and a part 𝑊 ′′T
which is a sum of anticlockwise cycles, one for each interior marked point of S.

The 2-CY and 3-CY categorifications can be described in terms of the combinatorial geometry of T
– see [QZ17] and the references therein for the 2-CY cluster category and [Qiu18, QZ19] for the finite
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part of the derived category of the Ginzburg algebra 𝒢
(
𝑄◦T,𝑊

′
T
)
. Most relevant for us is Ivan Smith’s

realisation of the finite part of the derived category of 𝒢
(
𝑄◦T,𝑊

′
T
)

as a full subcategory of the Fukaya
category of a Calabi–Yau 3-fold 𝑌◦ equipped with a Lefschetz fibration 𝜋 : 𝑌◦ → Σ [Smi15]. The
surface Σ is obtained from S by removing all interior marked points – that is, Σ = S\(𝑀 ∩ S◦), where
S◦ = S\𝜕S denotes the interior of S and M denotes the set of marked points. Inspired by the geometry of
𝜋, we give in this paper a description of the entire unbounded derived category of the Ginzburg algebra
𝒢
(
𝑄◦T,𝑊

′
T
)

in terms of the global sections of a perverse schober.
Before we describe our model forD

(
𝒢
(
𝑄◦T,𝑊

′
T
) )

, we highlight the relation to a model for the partially
wrapped Fukaya categories of graded surfaces or, equivalently, the derived categories of gentle algebras
[HKK17, LP20]. Consider an ideal triangulation of a graded marked surface S and the dual ribbon
graph Γ. The Fukaya category of the surface S is equivalent to the dg-category of global sections of a
constructible cosheaf of dg-categories on the ribbon graph Γ [DK15, HKK17]. The cosheaf description
of the Fukaya category categorifies the statement that the middle cohomology HΓ (Σ,Z[1]) of the surface
Σ with support on Γ is equivalent to the abelian group of global sections of a constructible cosheaf
HΓ (Z[1]) on Γ whose stalk at a point x is the homology HΓ∩𝑈 (𝑈,Z[1]) of a small neighbourhood
𝑥 ∈ 𝑈 ⊂ Σ with support on Γ ∩𝑈. Our model describes the derived category of the Ginzburg algebra
in terms of the global sections of a different constructible cosheaf of dg-categories on Γ. Denote by
Γ◦ the ribbon graph obtained by removing all exterior edges of Γ. Decategorified, the idea behind our
model is to express the middle cohomology of the 3-fold 𝑌◦ with support on 𝜋−1 (Γ◦) in terms of the
abelian group of global sections with support on Γ◦ of the perverse push-forward 𝜋∗(Z[3]) to Σ, which
in turn is equivalent to the global sections with support on Γ◦ of a constructible cosheaf HΓ (𝜋∗Z[3])
on Γ. We will not provide a systematic categorification of the perverse push-forward functor 𝜋∗, but
rather provide an explicit description of the categorification of the constructible cosheaf HΓ (𝜋∗Z[3]).
This will be achieved by constructing a perverse schober on the surface that is classified locally, at every
critical value of Smith’s Lefschetz fibration, by the Ind-complete version of the spherical adjunction

W
(
𝑇∗𝑆2
)
←→ D(𝑘)perf .

The explicit computability of our model then arises from a concrete algebraic description of this
adjunction, as well as the resulting categorification of HΓ (𝜋∗Z[3])) in terms of variants of Waldhausen’s
S•-construction. A full definition of the notion of a perverse schober on a surface is not yet documented
in the literature; we thus introduce a framework for the treatment of perverse schobers on surfaces which
are parametrised by ribbon graphs. Our definition of a parametrised perverse schober can be seen as a
generalisation of the approach to topological Fukaya categories of surfaces of [DK18, DK15], allowing
for the treatment of nonconstant coefficients. The main result of this paper is the following:

Theorem 1. Let T be an ideal triangulation of an oriented marked surface S and consider the dual
ribbon graph Γ. There exists a Γ-parametrised perverse schober FT whose stable∞-category of global
sections with support on Γ◦ satisfies

HΓ◦ (Γ,FT) � D
(
𝒢
(
𝑄◦T,𝑊

′
T
) )
.

That is, it is equivalent to the unbounded derived∞-category of the Ginzburg algebra 𝒢
(
𝑄◦T,𝑊

′
T
)
.

Note that if T contains no interior marked points, the potential 𝑊 ′T = 𝑊T is nondegenerate. Given an
ideal triangulation T with interior marked points, the potential𝑊 ′T is in general degenerate. In this case,
the Ginzburg algebra 𝒢

(
𝑄◦T,𝑊

′
T
)

is not expected to fully capture the cluster combinatorics.
Informally, Theorem 1 can be summarised as the statement that the derived ∞-category

D
(
𝒢
(
𝑄◦T,𝑊

′
T
) )

arises via the gluing of simpler ∞-categories. The pieces used in the gluing construc-
tion are the derived ∞-categories of certain relative Ginzburg algebras of n-gons. This terminology
was suggested by Bernhard Keller in his ICRA 2020 lecture series on relative Calabi–Yau struc-
tures. The derived ∞-category of a relative Ginzburg algebra also appears as the ∞-category of global
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sections H(Γ,FT) of the parametrised perverse schober FT (without any restrictions on the support).
The ∞-category H(Γ,FT) contains HΓ◦ (Γ,FT) � D

(
𝒢
(
𝑄◦T,𝑊

′
T
) )

as a full subcategory. The passage
from all global sections to global sections with support on the interior thus constitutes a loss of infor-
mation, which explains why the nonrelative Ginzburg algebras cannot directly be glued. In terms of
the underlying cluster algebras, our gluing construction seems to be a special case of the procedure of
amalgamation and defrosting of cluster algebras of [FG06a].

To make the gluing construction of D
(
𝒢
(
𝑄◦T,𝑊

′
T
) )

work, we need to determine the correct way
to glue the pieces. Making different choices would lead to different signs of the differentials of the
Ginzburg algebra. The total choice of signs is equivalent to a choice of spin structure on the surface
Σ = S\(𝑀 ∩ S◦); see Section 7.1.

The formalism used for the description of the perverse schober FT works not only in the k-linear
setting but also over the sphere spectrum. Many of our results naturally extend to this more general
setting; see Section 7.2.

In Section 1.1 we recall the full definition of the 3-CY Ginzburg algebra and continue by introducing
relative Ginzburg algebras. Section 1.2 contains a discussion of parametrised perverse schobers and
Smith’s results. In Section 1.3 we describe the gluing construction of the Ginzburg algebra.

1.1. Relative Ginzburg algebras of triangulated surfaces

A quiver Q consists of a finite set of vertices, denoted𝑄0, and a finite set of arrows, denoted𝑄1, together
with source and target maps 𝑠, 𝑡 : 𝑄1 → 𝑄0. A quiver is called graded if each arrow carries an integer
labelling. Given a graded quiver Q, we denote by 𝑘𝑄 the graded path algebra over a commutative ring
k. A potential W for a quiver Q is an element of the cyclic path algebra 𝑘𝑄cyc, meaning the algebra of
k-linear sums of cyclic paths.

For the definition of the Ginzburg algebra, due to [Gin06], we follow [Kel11]. Consider a quiver
with potential (𝑄,𝑊). We denote by𝑄 ′ the graded quiver with the same set of vertices as Q and graded
arrows of the following three kinds:

◦ an arrow 𝑎 : 𝑖 → 𝑗 in degree 0 for each 𝑎 : 𝑖 → 𝑗 ∈ 𝑄1,
◦ an arrow 𝑎∗ : 𝑗 → 𝑖 in degree 1 for each 𝑎 : 𝑖 → 𝑗 ∈ 𝑄1 and
◦ an arrow 𝑙𝑖 : 𝑖 → 𝑖 in degree 2 for each 𝑖 ∈ 𝑄0.

The cyclic derivative 𝜕𝑎 : 𝑘𝑄cyc → 𝑘𝑄 with respect to 𝑎 ∈ 𝑄1 is the k-linear map taking a cycle c to
𝜕𝑎𝑐 =
∑
𝑐=𝑢𝑎𝑣 𝑢𝑣, where 𝑢, 𝑣 ∈ 𝑘𝑄 are allowed to be lazy paths. We denote the lazy path at a vertex

𝑖 ∈ 𝑄0 by 𝑝𝑖 . We define the Ginzburg algebra 𝒢(𝑄,𝑊) to be the dg-algebra whose underlying graded
algebra is given by the graded path algebra 𝑘𝑄 ′ and whose differential d is determined by the following
action on the generators:

𝑎 ↦→ 0,
𝑎∗ ↦→ 𝜕𝑎𝑊,

𝑙𝑖 ↦→
∑
𝑎∈𝑄1

𝑝𝑖 [𝑎, 𝑎
∗]𝑝𝑖 .

Note that𝒢(𝑄,𝑊) is not the completed Ginzburg algebra, as considered, for example, in [KY11, Smi15].
We will not consider completed Ginzburg algebras in this paper. In terms of the associated derived ∞-
categories of these dg-algebras, this does not mean much of a loss, because the derived ∞-category
of the completed Ginzburg algebra can be realised as a full subcategory of the derived ∞-category
of the noncompleted Ginzburg algebra. This perspective, however, neglects the additional topological
structure of the completed Ginzburg algebra; see, for example, [KY11, Appendix] .

We now introduce a relative version of the Ginzburg algebra 𝒢
(
𝑄T,𝑊

′
T
)

associated to an ideal
triangulation T of an oriented marked surface S. We define a quiver 𝑄T by adapting the definition of
the quiver 𝑄◦T to include the boundary of S. We let 𝑄T be the quiver with a vertex for each edge of
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T (including boundary edges) and an arrow 𝑎 : 𝑖 → 𝑗 for each ideal triangle containing the edges
𝑖, 𝑗 , where the edge j follows the edge i in the clockwise order. If T contains self-folded triangles, we
additionally include an arrow 𝑎 : 𝑖 → 𝑖 for each self-folded edge i of T. The quiver 𝑄T contains a
clockwise 3-cycle 𝑇 ( 𝑓 ) for each ideal triangle f of T. We define the potential

𝑊
′

T =
∑
𝑓

𝑇 ( 𝑓 ) ∈ 𝑘𝑄
cyc
T .

We denote by �̃�T the graded quiver with the same set of vertices as 𝑄T and graded arrows of the
following three kinds:

◦ an arrow 𝑎 : 𝑖 → 𝑗 in degree 0 for each 𝑎 : 𝑖 → 𝑗 ∈ (𝑄T)1,
◦ an arrow 𝑎∗ : 𝑗 → 𝑖 in degree 1 for each 𝑎 : 𝑖 → 𝑗 ∈ (𝑄T)1 and
◦ an arrow 𝑙𝑖 : 𝑖 → 𝑖 in degree 2 for each vertex 𝑖 ∈ (𝑄T)0 given by an internal edge of T.

We define the relative Ginzburg algebra 𝒢T to be the dg-algebra whose underlying graded algebra is
given by the graded path algebra 𝑘�̃�T and whose differential is determined by the following action on
the generators:

𝑎 ↦→ 0,

𝑎∗ ↦→ 𝜕𝑎𝑊
′

T,

𝑙𝑖 ↦→
∑

𝑎∈(𝑄T)1

𝑝𝑖 [𝑎, 𝑎
∗]𝑝𝑖 .

The relative Ginzburg algebra 𝒢T is an example of the more general relative Ginzburg algebras
associated to ice quivers with potential [Wu21]. An ice quiver is a quiver equipped with the further
datum of a subquiver, whose vertices and arrows are called frozen. The ice quiver underlying𝒢T is given
by𝑄T, with frozen vertices given by the boundary edges of T and no frozen arrows. The potential is𝑊 ′T.

The quiver 𝑄◦T is the full subquiver of 𝑄T spanned by the vertices corresponding to internal edges.
The potential 𝑊 ′T =

∑
𝑓 𝑇 ( 𝑓 ) ∈
(
𝑘𝑄◦T
)cyc consists of all 3-cycles inscribed into internal ideal triangles

of T. Note that if the boundary of S is empty, then
(
𝑄T,𝑊

′

T

)
=
(
𝑄◦T,𝑊

′
T
)

and the relative Ginzburg
algebra𝒢T is equivalent to𝒢

(
𝑄◦T,𝑊

′
T
)
. As an example, let S be the 3-gon and T a triangle. The relative

Ginzburg algebra 𝒢T is then given by the graded path algebra of the graded quiver

·

· ·
1

00

1 1

0

(1)

with differential d mapping each arrow of degree 1 to the composite of the two opposite arrows of
degree 0. The Ginzburg algebra 𝒢

(
𝑄◦T,𝑊

′
T
)

of the triangle T is, however, zero.
Theorem 1 extends to relative Ginzburg algebras in the following way:

Theorem 2. Let T be an ideal triangulation of an oriented marked surface S with dual ribbon graph Γ.
The∞-category of global sections of the parametrised perverse schober FT satisfies

H(Γ,FT) � D(𝒢T).

In [Kel11, Section 7.6] it shown that mutation of quivers with potential induces derived equivalences
between the respective Ginzburg algebras. In [LF09] it is shown that if two ideal triangulations T, T ′

are related by a flip of an edge, the associated quivers with potentials
(
𝑄◦T,𝑊T
)

and
(
𝑄◦T ′ ,𝑊T ′
)

are
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related by quiver mutation. In combination, these two results show that flips of ideal triangulations
induce derived equivalences of the associated Ginzburg algebras. We extend the derived equivalences
to the relative Ginzburg algebras.

Theorem 3. Let S be an oriented marked surface with two ideal triangulations T, T ′ related by a flip of
an edge e of T. Then there exists an equivalence of∞-categories

𝜇𝑒 : D(𝒢T) � D (𝒢T ′ ) .

We will prove Theorem 3 in Section 6.4 using an intrinsic feature of the theory of parametrised
perverse schobers, namely equivalences of global sections induced from contractions of the underlying
ribbon graphs.

We thank Bernhard Keller for informing us about an alternative approach to Theorem 3. A result
of Yilin Wu [Wu21] extends the argument from [Kel12, Section 7.6] to relative Ginzburg algebras,
showing that the mutations of ice quivers with potential of [Pre20] induce derived equivalences between
the associated relative Ginzburg algebras. Theorem 3 may then be recovered by additionally extending
the results of [LF09] relating flips of the ideal triangulation and mutations of quivers with potentials to
ice quivers.

1.2. Perverse schobers and Fukaya categories

Perverse schobers are a conjectured categorification of the notion of perverse sheaves [KS14]. An
approach to the categorification of a perverse sheaf on a disc was suggested in [KS14]. The datum of
a perverse sheaf on a disc with a single singularity in the centre is equivalent to the datum of a certain
quiver diagram; the proposed ad hoc categorification of the quiver description is a spherical adjunction.
In this paper, we extend this ad hoc categorification to perverse schobers on oriented marked surfaces. We
combinatorially describe perverse schobers using ribbon graphs. Such a ribbon graph arises as the dual
to an ideal triangulation of the marked surface. Given a ribbon graph Γ, we define a poset Exit(Γ) with

◦ objects the vertices and edges of Γ and
◦ morphisms of the form 𝑣 → 𝑒, with v a vertex and e an incident edge.

For each n-valent vertex v of Γ, there exists a subposet Exit(Γ)𝑣/ ⊂ Exit(Γ) consisting of the ver-
tex v and the n incident edges. We define a perverse schober F parametrised by Γ to be a functor
F : Exit(Γ) → St into the∞-category of stable∞-categories such that the restriction to Exit(Γ)𝑣/ is for
every vertex v equivalent to a particular diagram obtained from a spherical adjunction. The exact defini-
tion is based on the categorified Dold–Kan correspondence of [Dyc21] and categorifies the ‘fractional
spin’ description of perverse sheaves on a disc of [KS16a]. The definition of a parametrised perverse
schober captures the idea that a perverse schober on a surface is a collection of suitably glued-together
spherical adjunctions, categorifying the description of perverse sheaves on surfaces given in [KS16a].
The ∞-category of global sections H(Γ,F) of a parametrised perverse schober F is defined as the
limit of F in St. Under mild technical assumptions, the global sections of F are equivalent to a suitable
colimit of the dual to F (left adjoint diagram), which describes a constructible cosheaf, see Section 4.3.

Given an ideal triangulation T without self-folded triangles of an oriented marked surface S, Smith
[Smi15] defines a Calabi–Yau 3-fold Y with an affine conic fibration 𝜋 : 𝑌 → S. The relation to Ginzburg
algebras is as follows:

◦ The derived category of finite modules over 𝒢
(
𝑄◦T,𝑊

′
T
)

arises as a full subcategory of the derived
Fukaya category Fuk(𝑌 ) of Y, where 𝑊 ′T is the potential of 𝑄◦T consisting of clockwise 3-cycles.

◦ The derived category of finite modules over 𝒢
(
𝑄◦T,𝑊T
)

arises as a full subcategory of the derived
Fukaya category Fuk(𝑌, 𝑏) of Y with a twisting background class 𝑏 ∈ 𝐻2 (𝑌,Z2). Here,
𝑊T = 𝑊 ′T +𝑊

′′
T is the potential consisting of clockwise 3-cycles and anticlockwise

cycles.
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The geometry of 𝜋 becomes clear when considering its fibres, which are given as follows:

◦ The generic fibre of 𝜋 is diffeomorphic to 𝑇∗𝑆2.
◦ In the interior of each ideal triangle of T, there exists exactly one singular value with singular fibre

given by the 2-dimensional 𝐴1-singularity.
◦ The fibres of the interior marked points in S are given by C2  C2.

We denote by Σ := S\(𝑀 ∩ S◦), with S◦ the interior of S, the surface without the interior marked points
and 𝑌◦ := 𝜋−1(Σ). Note that the restriction 𝜋 |𝑌 ◦ : 𝑌◦ → Σ of 𝜋 is a Lefschetz fibration.

The twist by the background class 𝑏 ∈ 𝐻2(𝑌,Z2) changes signs in the signed count of pseudoholo-
morphic curves passing through the fibres of the interior marked points. Without the background class,
the signed count of such pseudoholomorphic curves always vanishes, so that the derived Fukaya cat-
egory of 𝑌◦ is equivalent to the derived Fukaya category of Y. The change in the 𝐴∞-structure of the
derived Fukaya category of Y induced by the background class b accounts exactly for the difference
between the potentials 𝑊 ′T and 𝑊T.

We expect the∞-category of global sections of the parametrised perverse schober FT of Theorem 1
to describe (the Ind-completion of) a partially wrapped Fukaya category of 𝑌◦. We further expect
the global sections with support on Γ◦ (the graph obtained from Γ by removing boundary edges) to
then correspond to (the Ind-completion of) the wrapped Fukaya category of 𝑌◦. In the case of the
unpunctured n-gon, where 𝑌◦ = 𝑌 is the 3-dimensional 𝐴𝑛−3-singularity and 𝑄◦T the 𝐴𝑛−3-quiver, it
is shown in [LU21] that W(𝑌◦) � D

(
𝒢
(
𝑄◦T,𝑊

′
T
) )perf , meaning that HΓ◦ (Γ,FT) is equivalent to the

Ind-completion of the wrapped Fukaya category of 𝑌◦.
We describe in Section 1.3 how the geometry of the Lefschetz fibration manifests itself in the definition

of FT. We expect that the twisting by the background class b can be described as a deformation of the
wrapped Fukaya category. It would be interesting to study the relation between such a deformation and
the description in terms of parametrised perverse schobers.

1.3. The gluing construction of Ginzburg algebras

We now describe the construction of the perverse schober FT appearing in Theorem 1 and Theorem 2.
We assume for simplicity that all ideal triangles of T are not self-folded. The ribbon graph Γ dual to T
parametrising FT consists of a vertex for each ideal triangle and an edge for each edge of T. Boundary
edges of T correspond to external edges of the ribbon graph. Parametrised perverse schobers can, as
can sheaves, be glued. To define FT, it thus suffices to define FT locally at each vertex of Γ. The local
datum at each vertex is a spherical adjunction, which we choose to be

𝑓 ∗ : D(𝑘) ←→ Fun
(
𝑆2,D(𝑘)
)

: 𝑓∗, (2)

where Fun
(
𝑆2,D(𝑘)
)

is the∞-category of local systems on the 2-sphere with values in D(𝑘) and 𝑓 ∗ is
the pullback functor along 𝑆2 → ∗. This adjunction is shown in [Chr20] to be spherical.

The ∞-category Fun
(
𝑆2,D(𝑘)
)

is equivalent to the derived ∞-category of the polynomial algebra
𝑘 [𝑡1] with generator 𝑡1 in degree 1 (see Proposition 5.5). This derived ∞-category is, by a result of
[Abo11], equivalent to the Ind-completion of the wrapped Fukaya of the cotangent bundle𝑇∗𝑆2, which is
the generic fibre of the Lefschetz fibration 𝜋 |𝑌 ◦ . Under these equivalences, the image 𝑓 ∗(𝑘) corresponds
to the Lagrangian zero section of 𝑇∗𝑆2. The fibration 𝜋 |𝑌 ◦ has exactly one singular value in each ideal
triangle of T, so that up to homotopy of Γ, the vertices of Γ lie at the singular values of 𝜋 |𝑌 ◦ . The singular
fibres are given by the 𝐴1-singularity. The relation between the geometry of 𝜋 |𝑌 ◦ and the definition of
FT can thus be summarised as follows:

◦ The wrapped Fukaya category of the generic fibre 𝑇∗𝑆2 of 𝜋 |𝑌 ◦ gives rise to the∞-category on the
right of formula (2). This∞-category describes the generic stalk of FT.
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◦ Each vertex of Γ corresponds to a singular value of 𝜋 |𝑌 ◦ . The∞-category on the left of formula (2)
describes the categorification of the vector space of vanishing cycles at that singularity of 𝜋 |𝑌 ◦ .
Since the 𝐴1-singularity has a unique vanishing cycle, this∞-category is given by D(𝑘).

◦ The spherical adjunction 𝑓 ∗ � 𝑓∗ arises from a spherical object, the Lagrangian zero section, in the
wrapped Fukaya category of 𝑇∗𝑆2 describing the vanishing cycle.

We further note that the perverse schober only models the Lefschetz fibration 𝜋 |𝑌 ◦ , not the full fibration
𝜋. The fibres C2  C2 of 𝜋 over the interior marked points of S are not encoded in FT.

The parametrised perverse schober FT in total corresponds to the datum of a diagram

FT : Exit(Γ) → St

in the ∞-category St of stable ∞-categories indexed by the poset Exit(Γ) (see Section 1.2). The
computations in Section 5 show that the parametrised perverse schober FT assigns the following:

◦ To each vertex of ΓT, a stable∞-category equivalent to the derived∞-category of the relative
Ginzburg algebra of the 3-gon, depicted in diagram (1); this uses the fact that each vertex of ΓT is
trivalent.

◦ To each edge of ΓT, a stable∞-category equivalent to the derived∞-category of the polynomial
algebra 𝑘 [𝑡1] with generator 𝑡1 in degree 1. Note that 𝑘 [𝑡1] is equivalent to the 2-Calabi–Yau
completion of k in the sense of [Kel11] – that is, a 2-dimensional Ginzburg algebra.

The equivalence H(Γ,FT) � D(𝒢T) of Theorem 2 thus expresses that the derived ∞-category
of the relative Ginzburg algebra 𝒢T is glued from relative Ginzburg algebras of 3-gons along 2-
dimensional Ginzburg algebras. We further illustrate the gluing construction of 𝒢T in two examples in
Section 6.2.

Notation and conventions

We follows the notation and conventions of [Lur09] and [Lur17]. In particular, we always use the
homological grading.

2. Preliminaries

This paper is formulated using the language of stable ∞-categories. It would in principle be possible
to formulate most results in the framework of dg-categories. Our reason for using stable ∞-categories
is to gain access to the powerful framework developed in [Lur09, Lur17]. As a side effect, we also
profit in Section 7.2 from the added generality of stable∞-categories over dg-categories. The essential
computations in the gluing construction of the Ginzburg algebras are, however, performed using the
category of dg-categories, with its quasiequivalence model structure.

The goal of this section is to review background material on the relation between, on the one hand, ring
spectra, stable ∞-categories and their colimits, and on the other hand, dg-algebras, dg-categories and
their homotopy colimits. All material appearing in this section for which we could not find references in
the literature is well known to experts. In Sections 2.1 and 2.2 we discuss some generalities on limits and
colimits in∞-categories of∞-categories and on∞-categories of modules associated to ring spectra. In
Sections 2.3 to 2.5 we relate dg-categories with∞-categories. In Section 2.6 we discuss semiorthogonal
decompositions.

For an extensive treatment of the theory of∞-categories and stable∞-categories, we refer to [Lur09]
and [Lur17], respectively.

2.1. Limits and colimits in∞-categories of∞-categories

We begin by introducing the following∞-categories of∞-categories:

Definition 2.1. We denote
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1. by Cat∞ the∞-category of∞-categories,
2. by St ⊂ Cat∞ the subcategory spanned by stable∞-categories and exact functors and
3. by Stidem ⊂ St the full subcategory spanned by idempotent complete stable∞-categories.
An∞-category is called presentable if it is equivalent to the Ind-completion of a small∞-category and
admits all colimits1 [Lur09, Section 5.5]. We further denote
4. by P𝑟𝐿 ⊂ Cat∞ the subcategory spanned by presentable ∞-categories and colimit-preserving

functors,
5. by P𝑟𝑅 ⊂ Cat∞ the subcategory spanned by presentable ∞-categories and accessible and limit-

preserving functors and
6. by P𝑟𝐿St ⊂ P𝑟𝐿 and P𝑟𝑅St ⊂ P𝑟𝑅 the full subcategories spanned by stable∞-categories.

We are further interested in R-linear ∞-categories, where R is an E∞-ring spectrum – that is, a
commutative algebra object in the symmetric monoidal ∞-category Sp of spectra. The ∞-category
P𝑟𝐿 also admits the structure of a symmetric monoidal ∞-category [Lur17, Section 4.8.1]. Given an
E∞-ring spectrum R, the ∞-category LMod𝑅 ∈ P𝑟𝐿 of left module-spectra over R is an algebra object
of P𝑟𝐿 .
Definition 2.2.
7. Let R be an E∞-ring spectrum. The∞-category of LinCat𝑅 = LModLMod𝑅

(
P𝑟𝐿
)

of left modules in
P𝑟𝐿 over LMod𝑅 is called the∞-category of R-linear∞-categories.

Remark 2.3. Though not directly contained in the definition, it can be shown that any R-linear ∞-
category is automatically stable; see [Lur18, D.1.5] for a discussion.
Remark 2.4. A left-tensoring of an ∞-category M over a monoidal ∞-category C⊗ is a co-Cartesian
fibration of ∞-operads O⊗ → LM⊗ over the left-module ∞-operad LM⊗, such that there are equiv-
alences of fibres O⊗

〈𝑚〉
� M and O⊗

〈𝑎〉
� C⊗. We refer to [Lur17, Section 4.2.1] for more details.

Objects of LinCat𝑅 can be identified with stable and presentable ∞-categories C equipped with the
datum of a left-tensoring over the symmetric monoidal ∞-category LMod𝑅, such that the tensor prod-
uct - ⊗𝑅 - : LMod𝑅 ×C → C preserves colimits separately in each variable [Lur18, Appendix D].
Let M1,M2 be R-linear ∞-categories as witnessed by the co-Cartesian fibrations O⊗1 ,O

⊗
2 → LM⊗.

An R-linear functor M1 → M2 thus corresponds to a morphism of ∞-operads O⊗1 → O⊗2 over
LM⊗.

We now recall (in order of appearance) results on
i) how to compute limits in Cat∞,

ii) how to compute limits and colimits in P𝑟𝐿 , P𝑟𝐿St and P𝑟𝑅, P𝑟𝑅St,
iii) how to compute limits and colimits in LinCat𝑅 and
iv) how to compute limits and colimits in Stidem.

i) There is a general formula for limits in Cat∞. Let 𝐷 : 𝑍 → SetΔ be a diagram taking values in
∞-categories. Consider the co-Cartesian fibration 𝑝 : 𝑋 → 𝑍 classified by D. The limit ∞-category
lim𝐷 is equivalent to the∞-category of co-Cartesian sections2 of p [Lur09, 3.3.3.2]. If Z is the nerve of
a 1-category, the model for computing limits in Cat∞ can be described more explicitly. We can use the
relative nerve construction [Lur09, 3.2.5.2] for the co-Cartesian fibration classified by D, which is very
explicitly defined. We denote this model for the co-Cartesian fibration by 𝑝 : Γ(𝐷) → 𝐾 and call it the
(covariant) Grothendieck construction. A more detailed introduction to the relative nerve construction
can be found in [Chr20, Section 1.2] .

ii) One of the nice features of presentable ∞-categories is that there is an ∞-categorical adjoint
functor theorem, which states that a functor between presentable ∞-categories admits a right adjoint if

1We always assume all limits and colimits to be small in the sense of [Lur09].
2We call a section 𝑠 : 𝑍 → 𝑋 of a co-Cartesian fibration 𝑝 : 𝑋 → 𝑍 co-Cartesian if for all edges 𝑒 ∈ 𝑍1, the edge 𝑠 (𝑒) ∈ 𝑋1

is p-co-Cartesian.
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and only if it preserves all colimits, and admits a left adjoint if and only if it is accessible3 and preserves
all limits. There thus exists an adjoint equivalence of∞-categories

radj : P𝑟𝐿 �
(
P𝑟𝑅
)𝑜𝑝

: ladj𝑜𝑝 ,

with the functors radj, ladj acting as the identity on objects. The functor radj maps a colimit-preserving
functor to its right adjoint and the functor ladj maps an accessible and limit-preserving functor to its
left adjoint. The adjoint equivalence radj � ladj also restricts to an adjoint equivalence between P𝑟𝐿St
and
(
P𝑟𝑅St
)𝑜𝑝 . The equivalences radj, ladj preserve all limits and colimits, so that we can exchange

the computations of limits and colimits of diagrams of (stable) presentable ∞-categories. For the
computation of limits, we can use i) and the fact that that the inclusions P𝐿St ⊂ P𝑟𝐿 ⊂ Cat∞ and
P𝑟𝑅St ⊂ P𝑟𝑅 ⊂ Cat∞ preserve all limits.

iii) The computation of limits and colimits of R-linear ∞-categories reduces to the computation of
limits and colimits in P𝑟𝐿 , because the forgetful functor LModLMod𝑅

(
P𝑟𝐿
)
→ P𝑟𝐿 preserves all limits

and colimits [Lur17, 4.2.3.1, 4.2.3.5].
iv) The inclusion functor Stidem ⊂ Cat∞ preserves all limits. The computation of colimits of idempo-

tent stable∞-categories can be related to the computation of colimits of presentable stable∞-categories
via the colimit-preserving Ind-completion functor Ind : Stidem → P𝑟𝐿St. Given an∞-category C ∈ P𝑟𝐿St,
we denote by C𝑐 ∈ Stidem its full subcategory of compact objects. Note that for C ∈ Stidem, there exists
an equivalence Ind(C)𝑐 � C.

2.2. Modules over ring spectra

Consider the symmetric monoidal∞-category Sp of spectra. Sp is a stable and presentable∞-category.
An E1-ring spectrum is an object of Alg(Sp), the∞-category of (coherently associative) algebra objects
in Sp. For every such E1-ring spectrum R, there is a stable and presentable∞-category RMod𝑅 of right
R-modules in Sp. If R can be enhanced to a commutative algebra object of Sp – that is, an E∞-ring
spectrum – then RMod𝑅 inherits the structure of a symmetric monoidal ∞-category. In this case, we
can form the ∞-category Alg(RMod𝑅) of algebra objects in RMod𝑅. Given 𝐴 ∈ Alg(RMod𝑅), we
can again form the ∞-category RMod𝐴(RMod𝑅) of right A-modules in RMod𝑅. Alternatively, we can
also consider the E1-ring spectrum 𝜉 (𝐴) ∈ Alg(Sp) underlying A, obtained as follows. We consider the
forgetful functor RMod𝑅 → Sp, mapping a right R-module to the underlying spectrum. This functor
extends to a functor 𝜉 : Alg(RMod𝑅) → Alg(Sp), which we apply to A. We can form the ∞-category
of right modules RMod𝜉 (𝐴) over 𝜉 (𝐴). We will show in Corollary 2.7 that this does not yield a further
∞-category; there exists an equivalence of∞-categories

RMod𝐴(RMod𝑅) � RMod𝜉 (𝐴) .

Let D be a stable ∞-category and consider any object 𝑋 ∈ D. We can find an E1-ring spectrum
End(𝑋) ∈ Alg(Sp), called the endomorphism algebra, with the following properties [Lur17, 7.1.2.2]:
◦ 𝜋𝑛 End(𝑋) � 𝜋0 MapD (𝑋 [𝑛], 𝑋) for all 𝑛 ∈ Z.
◦ The induced ring structure of 𝜋∗ End(𝑋) is determined by the composition of endomorphisms in the

homotopy category Ho(D).
The algebra object End(𝑋) is an endomorphism object of X in the sense of [Lur17, Section 4.7.1], and
its existence expresses the enrichment of the stable∞-category D in spectra.

Assume that the stable ∞-category D is also presentable. An object 𝑋 ∈ D is called a compact
generator if
◦ X is compact – that is, MapD(𝑋, -) commutes with filtered colimits – and
◦ an object 𝑌 ∈ D is zero if and only if MapD (𝑋,𝑌 [𝑖]) � ∗ for all 𝑖 ∈ Z.

3A functor between presentable∞-categories being accessible reduces to the condition of preserving filtered colimits.
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The importance of this notion is that if X is a compact generator, there exists an equivalence of ∞-
categories D � RModEnd(𝑋 ) [Lur17, 7.1.2.1].

We now restrict to R-linear ∞-categories where R is an E∞-ring spectrum. The most important
case will be where 𝑅 = 𝑘 is a commutative ring. Suppose that D is an R-linear ∞-category and
𝑋 ∈ D a compact generator. Lemma 2.5 shows that we can lift End(𝑋) along the forgetful functor
𝜉 : Alg(RMod𝑅) → Alg(Sp) to an algebra object in RMod𝑅:

Lemma 2.5. Let R be an E∞-ring spectrum. Let C be a stable and presentable R-linear∞-category with
a compact generator X. Then there exist an algebra object End𝑅 (𝑋) ∈ Alg(RMod𝑅) and an equivalence
of R-linear∞-categories

C � RModEnd𝑅 (𝑋 ) (RMod𝑅). (3)

The algebra object End𝑅 (𝑋) is mapped under the functor 𝜉 : Alg(RMod𝑅) → Alg(Sp) to the endo-
morphism algebra End(𝑋) ∈ Alg(Sp).

Proof. The left-tensoring of C over R determines an R-linear functor - ⊗𝑅 𝑋 : RMod𝑅 → C. By the
adjoint functor theorem, the functor admits a right adjoint G. We denote End𝑅 (𝑋) := 𝐺 (𝑋) ∈ RMod𝑅.
The existence of a lift of End𝑅 (𝑋) to Alg(RMod𝑅) and of the equivalence (3) follow from [Lur17,
4.8.5.8] (compare also the proof of [Lur17, 7.1.2.1]). The right adjoint of the composite functor

Sp -⊗𝑅
−−−→ RMod𝑅

-⊗𝑅𝑋
−−−−−→ C

maps X to the endomorphism object End(𝑋). By the universal property of End(𝑋) and 𝑋 ∈ C �
RMod𝜉 (End𝑅 (𝑋 )) (Sp), there exists a morphism 𝜉 (End𝑅 (𝑋)) → End(𝑋) in Alg(Sp), which is an equiv-
alence on underlying spectra and thus an equivalence of E1-ring spectra. �

Remark 2.6. In the setting of Lemma 2.5, the algebra object End𝑅 (𝑋) is an endomorphism object
of X in the ∞-category C considered as left-tensored over RMod𝑅. We call End𝑅 (𝑋) the R-linear
endomorphism algebra of X.

Corollary 2.7. Let R be an E∞-ring spectrum and set 𝐴 ∈ Alg(RMod𝑅). Then there exists an equiva-
lence of∞-categories

RMod𝐴(RMod𝑅) � RMod𝜉 (𝐴) , (4)

where 𝜉 : Alg(RMod𝑅) → Alg(𝑆𝑝) denotes the forgetful functor.

Proof. The∞-category RMod𝐴(RMod𝑅) is presentable by [Lur17, 4.2.3.7], stable by [Lur17, 7.1.1.4]
and left-tensored over RMod𝑅 by [Lur17, Section 4.3.2]. Consider the monadic adjunction - ⊗ 𝐴 :
RMod𝑅 ↔ RMod𝐴(RMod𝑅) : 𝐺. The adjunction and the fact that G is conservative and accessible
imply that A is a compact generator. The R-linear endomorphism algebra of 𝐴 ∈ RMod𝐴(RMod𝑅) is
given by 𝐴 ∈ Alg(RMod𝑅). The statement thus follows from the second part of Lemma 2.5 and [Lur17,
7.1.2.1]. �

Let R be an E∞-ring spectrum. We end this section with a brief discussion of the relation between
colimits of algebra objects in RMod𝑅 and the colimits of the corresponding ∞-categories of right
modules in LinCat𝑅. There is a functor 𝜃 : Alg(RMod𝑅) → LinCat𝑅 that assigns to an algebra object
𝐴 ∈ Alg(RMod𝑅) the∞-category RMod𝐴(RMod𝑅) [Lur17, section 4.8.3]. The functor 𝜃 assigns to an
edge 𝜙 : 𝐴→ 𝐵 in Alg(RMod𝑅) the relative tensor product

𝜃 (𝜙) = - ⊗𝐴 𝐵 : RMod𝐴(RMod𝑅) −→ RMod𝐵 (RMod𝑅)

using the right A-module structure on B provided by 𝜙. For all 𝜙 : 𝐴 → 𝐵, the functor 𝜃 (𝜙) admits
a right adjoint, given by the pullback functor 𝜙∗ : RMod𝐵 (RMod𝑅) → RMod𝐴(RMod𝑅) along 𝜙
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[Lur17, 4.6.2.17]. The functor 𝜃 preserves colimits indexed by contractible simplicial sets (that is,
simplicial sets whose geometric realisation is a contractible space), most notably pushouts.

2.3. Differential graded categories and their modules

Let k be a commutative ring. A k-linear dg-category is a 1-category enriched in the 1-category Ch(𝑘) of
chain complexes of k-modules. Given a dg-category C and two objects 𝑥, 𝑦 ∈ 𝐶, we write Hom𝐶 (𝑥, 𝑦)
or Hom(𝑥, 𝑦) for the mapping complex. We consider dg-algebras as dg-categories with a single object.

Definition 2.8. Let A and B be k-linear dg-algebras.

◦ A left A-module M is a graded left module over the graded algebra underlying A equipped with a
differential 𝑑𝑀 such that

𝑑𝑀 (𝑎.𝑚) = 𝑑𝐴(𝑎).𝑚 + (−1)deg(𝑎)𝑎.𝑑𝑀 (𝑚)

for all 𝑎 ∈ 𝐴 and 𝑚 ∈ 𝑀 .
◦ A right A-module M is a graded right module over the graded algebra underlying A equipped with a

differential 𝑑𝑀 such that

𝑑𝑀 (𝑚.𝑎) = 𝑑𝑀 (𝑚).𝑎 + (−1)deg(𝑚)𝑚.𝑑𝐴(𝑎)

for all 𝑎 ∈ 𝐴 and 𝑚 ∈ 𝑀 . We also refer to right A-modules simply as A-modules.
◦ An A-B-bimodule M is a graded bimodule over the graded algebras underlying A and B equipped

with a differential 𝑑𝑀 , which exhibits M as a left A-module and a right B-module. If 𝐴 = 𝐵, we call
M an A-bimodule.

Remark 2.9. Let M be an A-B-bimodule with differential 𝑑𝑀 . The shifted A-B-bimodule 𝑀 [1] can be
described as follows:

◦ The differential is −𝑑𝑀 .
◦ The left action . [1] of 𝑎 ∈ 𝐴 on 𝑚 ∈ 𝑀 [1] is given by 𝑎. [1]𝑚 = (−1)deg(𝑎)𝑎.𝑚, where 𝑎.𝑚 denotes

the left action of 𝑎 ∈ 𝐴 on 𝑚 ∈ 𝑀 .
◦ The right action . [1] of 𝑏 ∈ 𝐵 on 𝑚 ∈ 𝑀 [1] is given by 𝑚. [1]𝑏 = 𝑚.𝑏, where 𝑚.𝑏 denotes the right

action of 𝑏 ∈ 𝐵 on 𝑚 ∈ 𝑀 .

We can identify left A-modules with dg-functors 𝐴 → Ch(𝑘), right A-modules with dg-functors
𝐴𝑜𝑝 → Ch(𝑘) and A-B-bimodules with dg-functors 𝐴 ⊗ 𝐵op → Ch(𝑘). The following definition is thus
consistent with Definition 2.8:

Definition 2.10. Let C be a dg-category. We call a dg-functor 𝐶𝑜𝑝 → Ch(𝑘) a right C-module. We
denote by dgMod(𝐶) the dg-category of right C-modules.

Remark 2.11. Given any dg-category C, the dg-category dgMod(𝐶) is pretriangulated, with distin-
guished triangles of the form 𝑥

𝑎
−→ 𝑦 → cone(𝑎).

Given a dg-category C and an object 𝑥 ∈ 𝐶, we denote by Enddg(𝑥) the endomorphism dg-
algebra with underlying chain complex given by Hom𝐶 (𝑥, 𝑥) and algebra structure determined by the
composition of morphisms in C.

Lemma 2.12. Let C be a dg-category with finitely many objects 𝑥1, . . . , 𝑥𝑛. Then there exists an
equivalence of dg-categories dgMod(𝐶) � dgMod

(
Enddg (⊕𝑛

𝑖=1 𝑥𝑖
) )

, where Enddg (⊕𝑛
𝑖=1 𝑥𝑖
)

is the
endomorphism dg-algebra of

⊕𝑛
𝑖=1 𝑥𝑖 in dgMod(𝐶).

Proof. This follows directly from spelling out the datum of a right module over C and over
Enddg (⊕𝑛

𝑖=1 𝑥𝑖
)
. �
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2.4. A model for the derived∞-category of a dg-algebra

Let A be a k-linear dg-algebra. The 1-category dgMod(𝐴)0 underlying the dg-category dgMod(𝐴) is the
1-category with the same objects and with mapping sets given by the 0-cycles. This 1-category admits
the projective model structure, where the weak equivalences are given by quasi-isomorphisms and the
fibrations are given by degree-wise surjections. All objects of dgMod(𝐴)0 are fibrant. A description
of the cofibrant objects in dgMod(𝐴)0 can be found, for example, in [BMR14], where they are called
q-semi-projective objects. A right A-module M is cofibrant if and only if

◦ the ungraded module
⊕

𝑖∈Z 𝑀𝑖 is a projective right module over the ungraded algebra
⊕

𝑖∈Z 𝐴𝑖 and
◦ for all acyclic right A-modules N, the mapping complex Hom𝐴(𝑀, 𝑁) is acyclic.

If 𝐴 = 𝑘 is a commutative ring, the cofibrant objects are the complexes of projective k-modules. We
denote by dgMod(𝐴)◦ ⊂ dgMod(𝐴) the full dg-subcategory spanned by fibrant-cofibrant objects. We
call the dg-nerve D(𝐴) := 𝑁dg (dgMod(𝐴)◦) the (unbounded) derived∞-category of A.

Before we can further discuss the properties of D(𝐴), we need to briefly discuss localisations of
∞-categories.

Definition 2.13. A functor 𝑓 : C→ C′ between ∞-categories is a reflective localisation if f has a fully
faithful right adjoint.

In [Lur09], localisations in the sense of Definition 2.13 are simply called localisations. We are,
however, interested in a more general class of localisations, which can be characterised by the following
universal property:

Definition 2.14. Let C be an ∞-category and let W be a collection of morphisms in C. We call an ∞-
category C′ the ∞-categorical localisation of C at W if there exists a functor 𝑓 : C → C′ such that for
every∞-category D, composition with f induces a fully faithful functor

𝜒 : Fun(C′,D) → Fun(C,D),

whose essential image consists of those functors 𝐹 : C→ D for which 𝐹 (𝛼) is an equivalence in D for
all 𝛼 ∈ 𝑊 . In that case, we also write C′ = C

[
𝑊−1] .

It is shown in [Lur09, 5.2.7.12] that reflective localisations are localisations in the sense of Definition
2.14. If the collection of morphisms W is closed under homotopy and composition and contains all
equivalences in C, we can regard C

[
𝑊−1] as a fibrant replacement of (C,𝑊) in the model category of

marked simplicial sets (see also the discussion in the beginning of [Lur17, Section 4.1.7]).
Our first goal in this section is to prove the following analogue of [Lur17, 1.3.5.15], relating the

derived ∞-category of A with the ∞-categorical localisation of dgMod(𝐴)0 at the collection of quasi-
isomorphisms:

Proposition 2.15. Let A be a dg-algebra and let W denote the collection of quasi-isomorphisms. There
exists an equivalence of∞-categories

D(𝐴) � 𝑁 (dgMod(𝐴)0)
[
𝑊−1] .

Given a model category C, the∞-categorical localisation of 𝑁 (𝐶) at the collection of weak equiva-
lences is called the ∞-category underlying C. We refer to [Hin16] for general background. Proposition
2.15 thus shows that the derived ∞-category of A is the ∞-category underlying the model category
dgMod(𝐴)0.

For the proof of Proposition 2.15, we need the following two lemmas.

Lemma 2.16. Let A be a dg-algebra. The inclusion functor 𝑁 (dgMod(𝐴)0) → 𝑁dg (dgMod(𝐴)) induces
an equivalence of∞-categories

𝑁 (dgMod(𝐴)0)
[
𝐻−1] → 𝑁dg (dgMod(𝐴)),

where H is the collection of chain homotopy equivalences.
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Proof. The proof of [Lur17, 1.3.4.5] applies verbatim. �

Lemma 2.17. Let A be a dg-algebra. There exists an equivalence of∞-categories

𝑁dg (dgMod(𝐴)◦) � 𝑁dg (dgMod(𝐴))
[
𝑊−1] .

Proof. We adapt the proofs of [Lur17, 1.3.4.6, 1.3.5.12]. We show that the inclusion functor 𝑖 :
Ndg(dgMod(𝐴)◦)op → Ndg (dgMod(𝐴))op admits a left adjoint which exhibits Ndg (dgMod(𝐴)◦)op as a
reflective localisation at the collection of quasi-isomorphisms. Note that any functor is a localisation if
and only if the opposite functor is a localisation. We thus conclude that Ndg (dgMod(𝐴)◦) is equivalent
as an∞-category to the localisation of Ndg (dgMod(𝐴)) at the collection of quasi-isomorphisms.

To verify that 𝑖op is a reflective localisation, we need to show that it admits a left adjoint 𝐺 :
Ndg(dgMod(𝐴))op → Ndg(dgMod(𝐴)◦)op. To show that W is the collection of quasi-isomorphisms,
we need to show by [Lur09, 5.2.7.12] that any edge 𝑒 : 𝑀 → 𝑁 in Ndg (dgMod(𝐴))𝑜𝑝 is a quasi-
isomorphism if and only if𝐺 (𝑒) is an equivalence. Consider a trivial fibration 𝑓 : 𝑄 ′ → 𝑄 in dgMod(𝐴)
given a cofibrant replacement and any 𝑃 ∈ dgMod(𝐴)◦. [Lur09, 5.2.7.8] shows the existence of G,
provided that the composition with f induces an isomorphism of spaces

MapNdg (dgMod(𝐴)◦) (𝑃,𝑄
′) → MapNdg (dgMod(𝐴)) (𝑃,𝑄).

We deduce this from the assertion that composition with f induces a quasi-isomorphism

𝛼 : HomdgMod(𝐴) (𝑃,𝑄
′) → HomdgMod(𝐴) (𝑃,𝑄). (5)

The surjectivity of 𝛼 follows from the lifting property of the cofibration 0 → 𝑃 with respect to trivial
fibrations. The kernel of 𝛼 is given by HomdgMod(𝐴) (𝑃, ker( 𝑓 )). Using the fact that f is a quasi-
isomorphism, we deduce that ker( 𝑓 ) is acyclic. The contractibility of the kernel of 𝛼 thus follows from
the property of P being cofibrant. We can thus deduce the existence of G. We note that G is point-wise
given by choosing a cofibrant replacement. Consider an edge 𝑒 : 𝑀 → 𝑁 in Ndg (dgMod(𝐴))𝑜𝑝. If
e is a quasi-isomorphism, it follows from Whitehead’s theorem for model categories that 𝐺 (𝑒) is an
equivalence. If𝐺 (𝑒) is an equivalence, we have the following commutative diagram in Ndg (dgMod(𝐴)):

𝐺 (𝑀) 𝐺 (𝑁)

𝑀 𝑁.

𝐺 (𝑒)

𝑒

The vertical edges and the upper horizontal edge are quasi-isomorphisms. It follows that e is also a
quasi-isomorphism. �

Proof of Proposition 2.15. By Lemmas 2.16 and 2.17, there exists an equivalence of∞-categories(
𝑁 (dgMod(𝐴))

[
𝐻−1] ) [𝑊−1] � D(𝐴).

Using the fact that 𝐻 ⊂ 𝑊 , the statement follows. �

Let k be a commutative ring. The symmetric monoidal structure of the 1-category Ch(𝑘) can be used
to also endow the∞-category D(𝑘) with a symmetric monoidal structure. As shown in [Lur17, 7.1.4.6],
there exists an equivalence of∞-categories

N
(
Alg
(
Ch⊗ (𝑘)
) ) [

𝑊−1] � Alg(D(𝑘)). (6)

The left side of formula (6) is the∞-categorical localisation of the nerve of the 1-category of dg-algebras
at the collection of quasi-isomorphisms. The right side is the ∞-category of algebra objects in D(𝑘).
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The equivalence (6) expresses that every dg-algebra can be considered as an algebra object in D(𝑘) and
that every algebra object in D(𝑘) can be obtained this way (meaning it can be rectified). Unless stated
otherwise, we will omit this identification and consider dg-algebras as algebra objects in the symmetric
monoidal∞-category D(𝑘).

We can consider k also as an E∞-ring spectrum. The ∞-category RMod𝑘 of right modules over k
thus inherits a symmetric monoidal structure. The ∞-categories D(𝑘) and RMod𝑘 are equivalent as
symmetric monoidal∞-categories [Lur17, 7.1.2.13].

Let A be a k-linear dg-algebra and X a cofibrant A-module. Consider the Quillen adjunction

- ⊗dg
𝑘 𝑋 : dgMod(𝑘) ↔ dgMod(𝐴) : Hom𝐴(𝑋, -) (7)

between the tensor functor on the level of chain complexes and the internal Hom functor composed with
the forgetful functor dgMod(𝐴) → dgMod(𝑘). Given a Quillen adjunction between model categories,
there is an associated adjunction between the underlying∞-categories [MG16]. We denote the adjunction
of∞-categories underlying the Quillen adjunction (7) by

- ⊗dg
𝑘 𝑋 : D(𝑘) ↔ D(𝐴) : RHom𝐴(𝑋, -). (8)

Lemma 2.18. Let A be a k-linear dg-algebra. The ∞-category D(𝐴) admits the structure of a k-linear
∞-category such that for any 𝑋 ∈ D(𝐴), the functor - ⊗𝑑𝑔𝑘 𝑋 is k-linear.

Proof. The ∞-category D(𝐴) is stable and presentable by [Lur17, 1.3.5.9, 1.3.5.21]. We now show
that D(𝐴) is left-tensored over D(𝑘). Note that dgMod(𝑘)0 � Ch(𝑘) is a symmetric monoidal model
category with respect to the tensor product, which we denote in the following by ⊗[Lur17, 7.1.2.11]. We
further denote the Quillen bifunctor dgMod(𝑘) × dgMod(𝐴) → dgMod(𝐴) given by the relative tensor
product by - ⊗dg

𝑘 -. Recall that LM⊗ denotes the left-module ∞-operad [Lur17, 4.2.1.7]. We define a
1-category 𝑂⊗𝐴 as follows:

◦ An object of 𝑂⊗𝐴 consists of an object (𝑎, . . . , 𝑎︸���︷︷���︸
𝑖 -many

, 𝑚, . . . , 𝑚︸�����︷︷�����︸
𝑗 -many

) ∈ LM⊗ and objects

(𝑥1, . . . , 𝑥𝑖) ∈ (dgMod(𝑘)◦)×𝑖 ,
(
𝑚1, . . . , 𝑚 𝑗
)
∈ (dgMod(𝐴)◦)× 𝑗 .

◦ For 𝑛 = 1, 2, consider the object 𝑋𝑛 of 𝑂⊗𝐴 given by 𝑙𝑛 = (𝑎, . . . , 𝑎︸���︷︷���︸
𝑖𝑛 -many

, 𝑚, . . . , 𝑚︸�����︷︷�����︸
𝑗𝑛 -many

) ∈ LM⊗ and

(
𝑥𝑛1 , . . . , 𝑥

𝑛
𝑖𝑛

)
∈ (dgMod(𝑘)◦)×𝑖𝑛 ,

(
𝑚𝑛1 , . . . , 𝑚

𝑛
𝑗𝑛

)
∈ (dgMod(𝐴)◦)× 𝑗𝑛 .

A morphism 𝑋1 → 𝑋2 consists of a morphism 𝛼 : 𝑙1 → 𝑙2 in LM⊗, which we also consider as a
morphism of sets �̃� : {1, . . . , 𝑖1 + 𝑗1} → {1, . . . , 𝑖2 + 𝑗2}, morphisms⊗

𝑒∈ �̃�−1 (𝑖)

𝑎1
𝑒 → 𝑎2

𝑖

in dgMod(𝑘)◦ for 1 ≤ 𝑖 ≤ 𝑖2 and morphisms

����
⊗

𝑒∈ �̃�−1 ( 𝑗)\max( �̃�−1 ( 𝑗))

𝑎1
𝑒

���� ⊗𝑘 𝑚1
max( �̃�−1 ( 𝑗))−𝑖1

→ 𝑚2
𝑗−𝑖2

in dgMod(𝐴)◦ for 𝑖1 + 1 ≤ 𝑗 ≤ 𝑖2 + 𝑗2.
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The forgetful functor 𝑁
(
𝑂⊗𝐴
)
→ LM⊗ is a co-Cartesian fibration of ∞-operads, exhibiting

𝑁 ((dgMod(𝐴)◦)0) as left-tensored over the symmetric monoidal ∞-category 𝑁 ((dgMod(𝑘)◦)0). By
the discussion following [Lur17, 4.1.7.3] and the fact that - ⊗dg

𝑘 - preserves weak equivalences in both
entries, it follows that the left-tensoring passes to the ∞-categorical localisations at the chain homo-
topy equivalences, meaning that we obtain that D(𝐴) is left-tensored over D(𝑘). The action of D(𝑘) on
D(𝐴) preserves colimits in both variables, as follows from the monoidal product - ⊗𝑘 - being a Quillen
bifunctor. To see that - ⊗dg

𝑘 𝑋 is a k-linear functor, we need to describe an extension of it to a map
𝛼 : 𝑁
(
𝑂⊗𝑘

)
→ 𝑁
(
𝑂⊗𝐴
)

of ∞-operads over LM⊗. We leave to the reader the details of the description
of a functor of 1-categories 𝛼′ : 𝑂⊗𝑘 → 𝑂⊗𝐴 whose nerve 𝑁 (𝛼′) defines the desired functor 𝛼. �

Proposition 2.19. Let A be a k-linear dg-algebra. Using the symmetric monoidal equivalence D(𝑘) �
RMod𝑘 , we can consider RMod𝐴

formula (4)
� RMod𝐴(RMod𝑘 ) as left-tensored over D(𝑘). There exists

an equivalence

D(𝐴) � RMod𝐴 (9)

of∞-categories left-tensored over D(𝑘).

Proof. Consider the adjunction of ∞-categories - ⊗dg
𝑘 𝐴 : D(𝑘) ↔ D(𝐴) : RHom𝐴(𝐴, -) underlying

the Quillen adjunction - ⊗dg
𝑘 𝐴 : dgMod(𝑘) → dgMod(𝐴) : Hom𝐴(𝐴, -). Using the adjunction, it can

be directly checked that A is a compact generator of D(𝐴). It follows from [Lur17, 4.8.5.8] that there
exists an equivalence

D(𝐴) � RModEnd𝑘 (𝐴) (D(𝑘)) (10)

of ∞-categories left-tensored over D(𝑘), where End𝑘 (𝐴) ∈ Alg(D(𝑘)) is the k-linear endomorphism
algebra of A (see Remark 2.6). We note that the underlying chain complex satisfies End𝑘 (𝐴) �
RHom𝐴(𝐴, 𝐴) � 𝐴. By the universal property of End𝑘 (𝐴), there exists a morphism of dg-algebras
𝜒 : 𝐴 → End𝑘 (𝐴), whose underlying morphism of chain complexes is induced by the actions
𝐴 ⊗𝑘 𝐴 → 𝐴 and 𝐴 ⊗𝑘 End𝑘 (𝐴) → 𝐴. The latter is induced by the counit of the adjunction
- ⊗dg

𝑘 𝐴 � RHom𝐴(𝐴, -) and is thus equivalent to the former. It follows that 𝜒 induces a quasi-
isomorphism End𝑘 (𝐴) = RHom𝐴(𝐴, 𝐴) � 𝐴 on underlying chain complexes and is hence a quasi-
isomorphism of dg-algebras. In total, we obtain that there also exists an equivalence of k-linear ∞-
categories RModEnd𝑘 (𝐴) (D(𝑘)) � RMod𝐴(D(𝑘)) � RMod𝐴(RMod𝑘 ), which combined with formula
(10) shows the statement. �

Let 𝐴, 𝐵 ∈ Alg(D(𝑘)) be dg-algebras and 𝐹 : RMod𝐴 → RMod𝐵 a k-linear functor. Clearly
𝐹 (𝐴) ∈ RMod𝐵 carries the structure of a right B-module. Let 𝑚 : 𝐴 ⊗𝑘 𝐴 → 𝐴 be the multiplication
map of A. Using the k-linearity of F, we find an action map

𝐴 ⊗𝑘 𝐹 (𝐴) � 𝐹 (𝐴 ⊗𝑘 𝐴)
𝐹 (𝑚)
−−−−→ 𝐹 (𝐴),

which is part of the datum of a left A-module structure on 𝐹 (𝐴). It turns out that both module structures
are compatible, so we can endow 𝐹 (𝐴) with the structure of an A-B-bimodule. In total, we obtain a
functor

𝜙 : Lin𝑘 (RMod𝐴,RMod𝐵) → 𝐴BMod𝐵 (D(𝑘)).

As shown in [Lur17, Section 4.8.4], the functor 𝜙 is an equivalence of∞-categories. Given a bimodule
𝑀 ∈ 𝐴BMod𝐵 (D(𝑘)), we denote by - ⊗𝐴 𝑀 a choice of k-linear functor such that 𝜙(- ⊗𝐴 𝑀) � 𝑀 .
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Proposition 2.20. Let 𝐴, 𝐵 be dg-algebras and set 𝑀 ∈ 𝐴BMod𝐵 (D(𝑘)) � D(𝐴𝑜𝑝 ⊗𝑘 𝐵) and consider
the functor of ∞-categories - ⊗dg

𝐴 𝑀 underlying the right Quillen functor - ⊗dg
𝐴 𝑀 : dgMod(𝐴) →

dgMod(𝐵). There exists a commutative diagram in LinCat𝑘 as follows:

RMod𝐴 RMod𝐵

D(𝐴) D(𝐵).
formula (9) �

-⊗𝐴𝑀

formula (9) �
-⊗dg

𝐴
𝑀

(11)

Remark 2.21. As justified by Proposition 2.20, we will not distinguish in notation between the functors
- ⊗𝐴 𝑀 and - ⊗dg

𝐴 𝑀 in the remainder of the text.

Proof of Proposition 2.20. The k-linear functor

𝜒 : RMod𝐴 � D(𝐴)
-⊗dg

𝐴
𝑀

−−−−−→ D(𝐵) � RMod𝐵

is of the form - ⊗𝐴 𝑁 for 𝑁 ∈ 𝐴BMod𝐵 (D(𝑘)) [Lur17, Section 4.8.4]. We note that N can be rec-
tified to a strict dg-bimodule and is thus determined by its right B-module structure and its left A-
module structure. The right B-module structures of N and M are clearly equivalent. In particular,
there exists an equivalence 𝑁 � 𝑀 of underlying chain complexes. The left action of A on N is de-
termined by 𝐴 ⊗𝑘 𝑁 � 𝜒(𝐴 ⊗𝑘 𝐴)

𝜒 (𝑚)
−−−−→ 𝜒(𝐴) � 𝑁, where m denotes the multiplication of A and

is thus equivalent to the given left action of A on the A-B-bimodule M. This shows that 𝑁 � 𝑀 as
bimodules. �

Proposition 2.22. Let A be a k-linear dg-algebra and 𝑋 ∈ dgMod(𝐴) a cofibrant A-module. The k-
linear endomorphism algebra End𝑘 (𝑋) ∈ Alg(D(𝑘)) of X is quasi-isomorphic to the endomorphism
dg-algebra Enddg (𝑋) of X.

Proof. Proposition 2.20 shows that the functor

𝐹 : D(𝑘) � RMod𝑘
-⊗𝑘𝑋
−−−−→ RMod𝐴(RMod𝑘 ) � D(𝐴)

is equivalent to -⊗dg
𝑘 𝑋 . The right adjoint G of F is given by RHom𝐴(𝑋, -). It follows that RHom𝐴(𝑋, 𝑋) �

𝐺 (𝑋) = End𝑘 (𝑋) in D(𝑘) (see also the definition of End𝑘 (𝑋) in the proof of Lemma 2.5). Using the
fact that RHom𝐴(𝑋, 𝑋) = Hom𝐴(𝑋, 𝑋) = Enddg (𝑋) and the explicit Hom𝐴(𝑋, 𝑋)-module structure
on X, it follows from the universal property of the endomorphism object that there exists a morphism
of dg-algebras 𝛼 : RHom𝐴(𝑋, 𝑋) → End𝑘 (𝑋), which restricts to the quasi-isomorphism on underlying
chain complexes and is hence a quasi-isomorphism of dg-algebras. �

2.5. Morita theory of dg-categories

Let k be a commutative ring. We denote by dgCat𝑘 the category of k-linear dg-categories. Given a
dg-category 𝐶 ∈ dgCat𝑘 , the dg-category dgMod(𝐶) admits a model structure called the projective
model structure. We have already encountered this model structure in Section 2.4, in the case where C
is a dg-algebra. We define 𝐶perf as the full dg-subcategory of dgMod(𝐶) spanned by fibrant-cofibrant
objects x which are compact in the homotopy category 𝐻0(dgMod(𝐶)) – that is, Hom(𝑥, -) preserves
coproducts. This assignment forms a functor

(-)perf : dgCat𝑘 → dgCat𝑘 .
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As shown by Tabuada [Tab05], the category dgCat𝑘 admits a model structure where the following
hold:

◦ The weak equivalences are the quasi-eqivalence – that is, dg-functors 𝐹 : 𝐴→ 𝐵 such that for all
𝑎, 𝑎′ ∈ 𝐴, the morphism between morphism complexes
𝐹 (𝑎, 𝑎′) : Hom𝐴(𝑎, 𝑎

′) → Hom𝐵 (𝐹 (𝑎), 𝐹 (𝑎
′)) is a quasi-isomorphism and such that the induced

functor on homotopy categories is an equivalence.
◦ The fibrations are the dg-functors F such that for all 𝑎, 𝑎′ ∈ 𝐴, the morphism between mapping

complexes 𝐹 (𝑎, 𝑎′) : Hom𝐴(𝑎, 𝑎
′) → Hom𝐵 (𝐹 (𝑎), 𝐹 (𝑎

′)) is degree-wise surjective and for any
isomorphism 𝑏 → 𝐹 (𝑎′) in the homotopy category of B, there exists a lift along F to an
isomorphism 𝑎 → 𝑎′ in the homotopy category of A.

The ∞-category underlying this model category is given by the ∞-categorical localisation
dgCat𝑘
[
𝑊−1] of the nerve of dgCat𝑘 at the collection W of weak equivalences. This model struc-

ture can be further localised at the collection M of Morita equivalences – that is, dg-functors F such
that (𝐹)perf is a quasiequivalence. The resulting model structure is called the Morita model structure.
The corresponding localisation functor

𝐿 : dgCat𝑘
[
𝑊−1] −→ dgCat𝑘

[
𝑀−1]

exhibits dgCat𝑘
[
𝑀−1] as a reflective localisation of dgCat𝑘

[
𝑊−1] and thus preserves colimits. Given

𝐶 ∈ dgCat𝑘
[
𝑊−1] , its image 𝐿(𝐶) is quasiequivalent to 𝐶perf . The Morita model structure models

the ∞-category of k-linear, stable and idempotent complete ∞-categories, meaning that there exists an
equivalence of∞-categories [Coh13]

dgCat𝑘
[
𝑀−1] � Mod𝑁dg(𝑘perf)

(
Stidem
)
. (12)

The right side describes the∞-category of modules in the symmetric monoidal category Stidem over the
algebra object 𝑁dg

(
𝑘perf ) . The equivalence (12) maps a dg-category C to the dg-nerve of the dg-category

𝐶perf . Ind-completion provides a further colimit-preserving functor Ind : ModD(𝑘)perf

(
Stidem
)
→

LinCat𝑘 . In total, we obtain the colimit-preserving functor

D(-) : dgCat𝑘
[
𝑊−1] 𝐿−−→ dgCat𝑘

[
𝑀−1] � ModD(𝑘)perf

(
Stidem
) Ind
−−→ LinCat𝑘

forget
−−−−→ P𝑟𝐿 . (13)

Note that given a dg-algebra A, the derived ∞-category D(𝐴) is equivalent to the image of A under
formula (13), so the notation D(-) for the functor is justified. Furthermore, we can compute colimits in
dgCat𝑘
[
𝑊−1] as homotopy colimits in dgCat𝑘 with respect to the quasiequivalence model structure.

2.6. Semiorthogonal decompositions

In this section we discuss semiorthogonal decompositions of stable ∞-categories of length 𝑛 ≥ 2.
Some of the treatment is based on the discussion of semiorthogonal decompositions of length 𝑛 = 2 in
[DKSS21].

Definition 2.23. LetV andA be stable∞-categories. We callA ⊂ V a stable subcategory if the inclusion
functor is fully faithful and exact and its image is closed under equivalences.

Notation 2.24. Let V be a stable ∞-category and A1, . . . ,A𝑛 ⊂ V stable subcategories. We denote by
〈A1, . . . ,A𝑛〉 the smallest stable subcategory of V containing A1, . . . ,A𝑛.

Definition 2.25. Let V be a stable∞-category and let A1, . . . ,A𝑛 be stable subcategories of V. Consider
the full subcategory D of Fun

(
Δ𝑛−1,V
)

spanned by diagrams 𝐷 : Δ𝑛−1 → V satisfying the following
two conditions:

◦ 𝐷 (𝑖) lies in 〈A𝑛−𝑖 , . . . ,A𝑛〉 for 0 ≤ 𝑖 ≤ 𝑛 − 1.
◦ The cofibre of 𝐷 (𝑖) → 𝐷 (𝑖 + 1) in V lies in A𝑛−𝑖−1 for all 0 ≤ 𝑖 ≤ 𝑛 − 2.
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We call the ordered n-tuple (A1, . . . ,A𝑛) a semiorthogonal decomposition of V of length n if the
restriction functor D→ V to the vertex 𝑛 − 1 is a trivial fibration.

Definition 2.26. Let V be a stable∞-category and A ⊂ V a stable subcategory. We define

◦ the right orthogonal A⊥ to be the full subcategory of V spanned by those vertices 𝑥 ∈ V such that for
all 𝑎 ∈ A, the mapping space MapV (𝑎, 𝑥) is contractible and

◦ the left orthogonal ⊥A to be the full subcategory of V spanned by those vertices 𝑥 ∈ V such that for
all 𝑎 ∈ A, the mapping space MapV (𝑥, 𝑎) is contractible.

The next lemma shows that semiorthogonal decompositions of length n are simply repeated
semiorthogonal decompositions of length 2.

Lemma 2.27. Let V be a stable ∞-category and A𝑖 ⊂ V, for 1 ≤ 𝑖 ≤ 𝑛, a stable subcategory.
(A1, . . . ,A𝑛) is a semiorthogonal decomposition of V if and only if

i) 〈A1, . . . ,A𝑛〉 = V and
ii)
(
A𝑖 ,

⊥A𝑖
)

forms a semiorthogonal decomposition of 〈A𝑖 , . . . ,A𝑛〉 for all 1 ≤ 𝑖 ≤ 𝑛 − 1.

Proof. For 1 ≤ 𝑖 ≤ 𝑛 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 𝑖 − 1, denote by D𝑖
𝑗 ⊂ Fun
(
Δ { 𝑗 ,...,𝑛−𝑖 }, 〈A𝑖 , . . . ,A𝑛〉

)
the

full subcategory spanned by diagrams 𝐷𝑖
𝑗 such that

◦ 𝐷𝑖
𝑗 (𝑙) lies in 〈A𝑛−𝑙 , . . . ,A𝑛〉 for 𝑗 ≤ 𝑙 ≤ 𝑛 − 𝑖 and

◦ the cofibre of 𝐷𝑖
𝑗 (𝑙) → 𝐷𝑖

𝑗 (𝑙 + 1) in V lies in A𝑛−𝑙+1 for all 𝑗 ≤ 𝑙 ≤ 𝑛 − 𝑖 − 1.

We denote by 𝑟𝑖, 𝑗 : D𝑖
𝑗 → 〈A𝑖 , . . . ,A𝑛〉 the functor given by the restriction to the vertex 𝑛 − 𝑖. Note

that for 𝑖 < 𝑘 ≤ 𝑛 − 𝑗 − 1, there is a trivial fibration D𝑖
𝑗 → D𝑖

𝑛−𝑘 ×〈A𝑘 ,...,A𝑛 〉 D𝑘
𝑗 .

Now suppose that (A1, . . . ,A𝑛) is a semiorthogonal decomposition and let D → V be the corre-
sponding trivial fibration. Condition i) is immediate. For condition ii), we need to show that 𝑟𝑖,𝑛−𝑖−1 is
a trivial fibration for all 1 ≤ 𝑖 ≤ 𝑛− 1. Using the fact that pullbacks preserve trivial fibrations, it follows
that

D′ = D ×V 〈A𝑖 , . . . ,A𝑛〉 → 〈A𝑖 , . . . ,A𝑛〉 (14)

is a trivial fibration. We can describe the elements of D′ as the left Kan extensions along the inclusion
Δ {0,...,𝑛−𝑖 } → Δ𝑛 of elements of D𝑖

0. It thus follows from [Lur09, 4.3.2.15] that the restriction functor
D′ → D𝑖

0 to Δ {0,...,𝑖 } is a trivial fibration. Using the fact that the functor (14) factors through 𝑟𝑖,0 :
D𝑖

0 → 〈A𝑖 , . . . ,A𝑛〉, it follows from the 2/3 property of equivalences that 𝑟𝑖,0 is also a trivial fibration.
The following commutative diagram thus shows that 𝑟𝑖,𝑛−𝑖−1 is a trivial fibration, showing statement ii):

𝐷𝑖
0 𝐷𝑖

𝑛−𝑖−1 ×〈A𝑖+1 ,...,A𝑛 〉 𝐷
𝑖+1
0 𝐷𝑖

𝑛−𝑖−1 〈A𝑖 , . . . ,A𝑛〉

𝐷𝑖+1
0 〈A𝑖+1, . . . ,A𝑛〉.

triv fib

𝑟𝑖,0

�
triv fib 𝑟𝑖,𝑛−𝑖−1

𝑟𝑖+1,0

(15)

We now show that conditions i) and ii) imply that (A1, . . . ,A𝑛) is a semiorthogonal decomposition
of V. If 𝑛 = 2, the assertion is obvious. We proceed by induction over n. Assume that (A2, . . . ,A𝑛) is
a semiorthogonal decomposition of 〈A2, . . . ,A𝑛〉, meaning that 𝑟2,0 is a trivial fibration. To show that
(A1, . . . ,A𝑛) is a semiorthogonal decomposition of V = 〈A1, . . . ,A𝑛〉, we need to show that 𝑟1,0 is
also a trivial fibration. Condition ii) implies that 𝑟1,𝑛−2 is a trivial fibration. Diagram (15) for 𝑖 = 1 thus
shows that 𝑟1

0 is also a trivial fibration. �
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As it turns out, the functoriality data involved in the definition of semiorthogonal decompositions of
length 2 are redundant.

Lemma 2.28. Let V be a stable∞-category and let A,B be stable subcategories of V. The pair (A,B)
forms a semiorthogonal decomposition of length 2 of V if and only if

1. for all 𝑎 ∈ A and 𝑏 ∈ B, the mapping space MapV (𝑏, 𝑎) is contractible and
2. for every 𝑥 ∈ V, there exist a fibre and cofibre sequence 𝑏 → 𝑥 → 𝑎 in V with 𝑎 ∈ A and 𝑏 ∈ B.

Proof. This follows from [Lur18, 7.2.0.2]. �

A simple source of semiorthogonal decompositions are sequences of functors between stable
∞-categories.

Lemma 2.29. Let 𝐷 : Δ𝑛−1 → Cat∞ be a diagram taking values in stable∞-categories, corresponding
to n composable functors

A1
𝐹1
−−→ A2

𝐹2
−−→ · · ·

𝐹𝑛−1
−−−−→ A𝑛.

1. The stable∞-category

{A1, . . . ,A𝑛} := FunΔ𝑛−1

(
Δ𝑛−1, Γ(𝐷)
)

of sections of the Grothendieck construction 𝑝 : Γ(𝐷) → Δ𝑛−1 (see Section 2.1) admits a semiorthog-
onal decomposition (A1, . . . ,A𝑛) of length n.

2. Let R be an E∞-ring spectrum. If each 𝐹𝑖 is an R-linear functor between R-linear∞-categories, then
the∞-category {A1, . . . ,A𝑛} further inherits the structure of an R-linear∞-category such that each
inclusion functor 𝜄𝑖 : A𝑖 → {A1, . . . ,A𝑛} is R-linear.

Proof. We begin by showing statement 1. Consider the simplicial set

𝑍 =
(
Δ0 × Δ𝑛−1
)
Δ {1}×Δ {1,...,𝑛−1}

(
Δ1 × Δ𝑛−2
)
 · · · Δ {1,...,𝑛−1}×Δ {1}

(
Δ𝑛−1 × Δ0
)
.

Let D′ be the full subcategory of Fun(𝑍, Γ(𝐷)) spanned by diagrams given by right Kan extensions
along the inclusion Δ𝑛−1 ×Δ0 → 𝑍 of a diagram in {A1, . . . ,A𝑛}. By [Lur09, 4.3.2.15], the restriction
functor D′ → {A1, . . . ,A𝑛} to Δ0 × Δ𝑛−1 is a trivial fibration. We can describe the elements of D′ up
to equivalence as diagrams in Γ(𝐷) of the form

𝑎1

𝑎2 𝑎2

· · · · · · · · ·

𝑎𝑛 · · · 𝑎𝑛 𝑎𝑛

id

id id id

such that 𝑎𝑖 ∈ A𝑖 . The restriction functor D′ → {A1, . . . ,A𝑛} corresponds in the foregoing description
point-wise to the restriction to the rightmost column. The ∞-category D of Definition 2.25 can be
identified with the full subcategory of Fun

(
Δ𝑛−1 × Δ𝑛−1, Γ(𝛼)

)
spanned by left Kan extensions along

𝑍 → Δ𝑛−1 × Δ𝑛−1 of diagrams lying in D′. It follows that the restriction functor D → D′ is a trivial
fibration and thus that the restriction functor D → {A1, . . . ,A𝑛} is a trivial fibration. This shows
statement 1.
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We now show statement 2. Consider the diagram of ∞-operads over LM⊗

𝐷⊗ : O⊗1
𝐹⊗1
−−→ O⊗2

𝐹⊗2
−−→ · · ·

𝐹⊗
𝑛−1
−−−→ O⊗𝑛 ,

exhibiting the functors 𝐹𝑖 as R-linear. The morphism of∞-operads

FunΔ𝑛−1

(
Δ𝑛−1, Γ
(
𝐷⊗
) )
×Fun(Δ𝑛−1 ,LM⊗) LM

⊗ → LM⊗

exhibits {A1, . . . ,A𝑛} as left-tensored over

M := FunΔ𝑛−1

(
Δ𝑛−1, Γ
(
𝐷⊗
) )
×Fun(Δ𝑛−1 ,LM⊗) LM

⊗ ×LM⊗ Assoc⊗ .

Let �̃�⊗ : Δ𝑛−1 → Cat∞ be the constant diagram with value LMod⊗𝑅. We find M to be equivalent as a
monoidal∞-category to

FunΔ𝑛−1

(
Δ𝑛−1, Γ
(
�̃�⊗
) )
×Fun(Δ𝑛−1 ,Assoc⊗) Assoc⊗ . (16)

Pulling back along the monoidal functor LMod⊗𝑅 → M and assigning to 𝑥 ∈ LMod⊗𝑅 the constant
section in expression (16), we obtain a left-tensoring of {A1, . . . ,A𝑛} over LMod𝑅. To show that the left-
tensoring provides the structure of an R-linear∞-category, it suffices to show that the monoidal product
preserves colimits in the second entry. This follows from the observation that colimits in {A1, . . . ,A𝑛}

are computed point-wise – that is, the n restriction functors {A1, . . . ,A𝑛} → A𝑖 preserve colimits. �

We also introduce the following notation used later on:

Notation 2.30. Let 𝑝 : Γ → Δ𝑛 be an inner fibration. Given an edge 𝑒 : 𝑎 → 𝑎′ in Γ, we write
𝑒 : 𝑎 !

−→ 𝑎′ if e is a p-co-Cartesian edge and 𝑒 : 𝑎 ∗−→ 𝑎′ if e is a p-Cartesian edge.

Our next goal is to describe an analogue of the construction of the semiorthogonal decomposition
in Lemma 2.29 in the setting of dg-categories, and to show that the resulting ∞-categories with
semiorthogonal decompositions are equivalent. For that, we recall the notion of gluing functors of
semiorthogonal decompositions of length 2 (see also [DKSS21]).

Definition 2.31. Let V be a stable∞-category with a semiorthogonal decomposition (A,B). We define
a simplicial set 𝜒(A,B) by defining an n-simplex of 𝜒(A,B) to correspond to the following data:

◦ an n-simplex 𝑗 : Δ𝑛 → Δ1 of Δ1 and
◦ an n-simplex 𝜎 : Δ𝑛 → V such that 𝜎

(
Δ 𝑗−1 (0)
)
⊂ A and 𝜎
(
Δ 𝑗−1 (1)
)
⊂ B.

We define the face and degeneracy maps to act on an n-simplex ( 𝑗 , 𝜎) ∈ 𝜒(A,B)𝑛 component-wise.
We denote by 𝑝 : 𝜒(A,B) → Δ1 the apparent forgetful functor.

Definition 2.32. Let V be a stable∞-category with a semiorthogonal decomposition (A,B).

◦ We call (A,B) Cartesian if the functor 𝑝 : 𝜒(A,B) → Δ1 is a Cartesian fibration. In that case, we
call the functor associated to the Cartesian fibration p the right gluing functor associated to (A,B).

◦ We call (A,B) co-Cartesian if the functor 𝑝 : 𝜒(A,B) → Δ1 is a co-Cartesian fibration. In that
case, we call the functor associated to the co-Cartesian fibration p the left gluing functor associated
to (A,B).

Lemma 2.33 ([DKSS21]). Let V be a stable∞-category with a semiorthogonal decomposition (A,B).

◦ If (A,B) is Cartesian, the inclusion functor A→ V admits a right adjoint, the restriction of which
to B is the right gluing functor of (A,B).
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◦ If (A,B) is co-Cartesian, the inclusion functor B→ V admits a left adjoint, the restriction of which
to A is the left gluing functor of (A,B).
The next proposition can be summarised as showing that Cartesian semiorthogonal decompositions

of length 2 are fully determined by their left gluing functor, and dually that co-Cartesian semiorthogonal
decompositions of length 2 are fully determined by their right gluing functor.

Proposition 2.34 ([DKSS21]). Let V be a stable ∞-category with a semiorthogonal decomposition
(A,B).
1. If (A,B) is Cartesian with right gluing functor G, there exists an equivalence of ∞-categories

V � FunΔ1
(
Δ1, 𝜒(𝐺)
)
, where 𝜒(𝐺) → Δ1 is the Cartesian fibration classifying G considered as a

functor Δ1 → Cat∞.
2. If (A,B) is co-Cartesian with left gluing functor F, there exists an equivalence of ∞-categories

V � FunΔ1
(
Δ1, Γ(𝐹)
)
.

Definition 2.35. Let V be a stable∞-category with a semiorthogonal decomposition (A1, . . . ,A𝑛).

◦ We call (A1, . . . ,A𝑛) a Cartesian semiorthogonal decomposition if each semiorthogonal
decomposition

(
A𝑖 ,

⊥A𝑖
)

is Cartesian. In that case, we call the right gluing functor of
(
A𝑖 ,

⊥A𝑖
)

the
ith right gluing functor of (A1, . . . ,A𝑛).

◦ We call (A1, . . . ,A𝑛) a co-Cartesian semiorthogonal decomposition if each semiorthogonal
decomposition

(
A𝑖 ,

⊥A𝑖
)

is co-Cartesian. If (A1, . . . ,A𝑛) is co-Cartesian, we call the left gluing
functor of
(
A𝑖 ,

⊥A𝑖
)

the ith left gluing functor of (A1, . . . ,A𝑛).

We now introduce a dg-analogue of Lemma 2.29: semiorthogonal decompositions arising from upper
triangular dg-algebras concentrated on the diagonal and upper minor diagonal.

Definition 2.36. For 1 ≤ 𝑖 ≤ 𝑛, let 𝐴𝑖 be a dg-algebra, and for 1 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑀𝑖 be an
𝐴𝑖- 𝐴𝑖+1-bimodule. We denote by

A =

����������

𝐴1 𝑀1 0 · · · 0 0
0 𝐴2 𝑀2 · · · 0 0
0 0 𝐴3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 𝐴𝑛−1 𝑀𝑛−1
0 0 0 · · · 0 𝐴𝑛

����������
the upper triangular dg-algebra – that is, the dg-algebra with underlying chain complex⊕

1≤𝑖≤𝑛
𝐴𝑖 ⊕
⊕

1≤𝑖≤𝑛−1
𝑀𝑖

and multiplication · given by

𝑎𝑖 · 𝑎
′
𝑗 = 𝛿𝑖, 𝑗𝑎𝑖𝑎

′
𝑗 , 𝑚𝑖 · 𝑚

′
𝑗 = 0,

𝑎𝑖 · 𝑚 𝑗 = 𝛿𝑖, 𝑗𝑎𝑖 .𝑚 𝑗 , 𝑚 𝑗 · 𝑎𝑖 = 𝛿 𝑗+1,𝑖𝑚 𝑗 .𝑎𝑖 ,

where 𝑎𝑖 ∈ 𝐴𝑖 , 𝑎′𝑗 ∈ 𝐴 𝑗 and 𝑚𝑖 ∈ 𝑀𝑖 , 𝑚
′
𝑗 ∈ 𝑀 𝑗 , and 𝛿𝑖, 𝑗 denotes the Kronecker delta.

Proposition 2.37. Let A be an upper triangular dg-algebra as in Definition 2.36. Then the stable ∞-
category D(𝐴) carries a semiorthogonal decomposition (D(𝐴1), . . . ,D(𝐴𝑛)) of length n with ith left
gluing functor - ⊗𝐴𝑖 𝑀𝑖 .

Proof. The upper triangular dg-algebra A is quasi-isomorphic to the upper triangular dg-algebra ob-
tained from cofibrantly replacing each 𝑀𝑖 . We thus assume without loss of generality that the 𝑀𝑖 are
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cofibrant bimodules. Consider the morphisms of dg-algebras 𝑣𝑖 : 𝐴𝑖 → A and 𝑤𝑖 : A→ 𝐴𝑖 , given on
the underlying chain complexes by the inclusion of the direct summand 𝐴𝑖 and the projection to the sum-
mand 𝐴𝑖 , respectively. The dg-functor 𝑣𝑖! = - ⊗dg

𝐴𝑖
𝐴𝑖 ⊕𝑀𝑖 : dgMod(𝐴𝑖) → dgMod(𝐴) and the pullback(

𝑤𝑖
)∗ determine right A-modules 𝑣𝑖! (𝐴𝑖) and

(
𝑤𝑖
)∗
(𝐴𝑖) with underlying chain complexes 𝐴𝑖⊕𝑀𝑖 , where

we set 𝑀𝑛 = 0, and 𝐴𝑖 , respectively. The functors D
(
𝑣𝑖!
)

and D
( (
𝑤𝑖
)∗) both exhibit D(𝐴𝑖) ⊂ D(A)

as a stable subcategory. For concreteness, we denote the stable subcategories obtained from D
(
𝑣𝑖!
)

by D(𝐴𝑖)𝑣 and the stable subcategories obtained from D
( (
𝑤𝑖
)∗) by D(𝐴𝑖)𝑤 . We wish to show that

(D(𝐴1)𝑣 , . . . ,D(𝐴𝑛)𝑣 ) is a semiorthogonal decomposition of D(A). For that, it suffices to show state-
ments i) and ii) of Lemma 2.27. To show statement ii), it suffices to show conditions 1 and 2 of Lemma
2.28 for the pairs of stable subcategories D(𝐴𝑖)𝑣 , 〈D(𝐴𝑖+1)𝑣 , . . . ,D(𝐴𝑛)𝑣〉 ⊂ 〈D(𝐴𝑖)𝑣 , . . . ,D(𝐴𝑛)𝑣〉
for all 1 ≤ 𝑖 ≤ 𝑛.

We compute for an 𝐴𝑖-module 𝑁𝑖 and an 𝐴 𝑗 -module 𝑁 𝑗 the mapping complex

HomdgMod(A)

(
𝑣𝑖! (𝑁𝑖), 𝑣

𝑗
!
(
𝑁 𝑗
) )
�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HomdgMod(𝐴𝑖)

(
𝑁𝑖 , 𝑁 𝑗
)

if 𝑖 = 𝑗 ,

HomdgMod(𝐴 𝑗)
(
𝑁𝑖 ⊗𝐴𝑖 𝑀𝑖 , 𝑁 𝑗

)
if 𝑖 + 1 = 𝑗 ,

0 else.
(17)

This shows condition 1 of Lemma 2.28.
We observe that the datum of a right dg-module N over A is equivalent to the datum of a sequence

𝑁1
𝑓1
−−→ 𝑁2

𝑓2
−−→ · · ·

𝑓𝑛−1
−−−→ 𝑁𝑛,

where 𝑁𝑖 is a right 𝐴𝑖 � Enddg ( (𝑤𝑖 )∗ (𝐴𝑖))-module and 𝑓𝑖 ∈ 𝑀𝑖 (𝑁𝑖 , 𝑁𝑖+1). Denote by 𝑁≥𝑖 the

submodule 𝑁𝑖
𝑓𝑖
−→ · · ·

𝑓𝑛−1
−−−→ 𝑁𝑛 of N. We thus find distinguished triangles 𝑁≥𝑖+1 → 𝑁≥𝑖 → 𝑁𝑖

in dgMod(A). As shown in [Fao17, Theorem 4.3.1], the image under the dg-nerve of a distinguished
triangle in a dg-category can be extended to a fibre and cofibre sequence. We can thus express 𝑁 ∈ D(A)
as repeated cofibres of modules 𝑁𝑖 ∈ D(𝐴𝑖)𝑤 ⊂ D(A) with 1 ≤ 𝑖 ≤ 𝑛. A simple induction, using the
fact that there exist distinguished triangles in dgMod(A) of the form 𝑁𝑖 → 𝑁𝑖 ⊗𝐴𝑖 𝑣

𝑖
! (𝐴𝑖) → 𝑁𝑖 ⊗𝐴𝑖 𝑀𝑖

for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑁𝑛 ∈ D(𝐴𝑛)𝑤 = D(𝐴𝑛)𝑣 , thus shows that 𝑁 ∈ 〈D(𝐴1)𝑣 , . . . ,D(𝐴𝑛)𝑣〉. It follows
that statement i) of Lemma 2.27 is fulfilled.

Consider the subalgebra A≥𝑖 of A with underlying chain complex⊕
𝑖≤𝑘≤𝑛

𝐴𝑘 ⊕
⊕

𝑖≤𝑘≤𝑛−1
𝑀𝑘 .

The fully faithful dg-functor dgMod(A≥𝑖) → dgMod(A) induces a fully faithful functor of∞-categories
𝜄 : D(A≥i) → D(A). The foregoing arguments show that the essential image of 𝜄 is 〈A𝑖 , . . . ,A𝑛〉 and
can easily be adapted to also show condition 2 of Lemma 2.28. We have thus proven the existence of
the desired semiorthogonal decomposition of D(A).

We now determine the ith left gluing functor of (D(𝐴1)𝑣 , . . . ,D(𝐴𝑛)𝑣 ). Consider the fully faithful
left Quillen functor

- ⊗dg
𝐴𝑖
𝐴𝑖 : dgMod(𝐴𝑖)0 → dgMod (A≥𝑖)0 .

The right adjoint is given by the Quillen functor HomdgMod (A≥𝑖 ) (𝐴𝑖 , -), the restriction of which to
dgMod (A≥𝑖+1) is given by HomdgMod(A≥𝑖+1) (𝑀𝑖 , -), which in turn is left adjoint to - ⊗dg

𝐴𝑖
𝑀𝑖 . Passing

to the underlying adjunctions of ∞-categories of the Quillen adjunctions shows that the ith left gluing
functor of (D(𝐴1), . . . ,D(𝐴𝑛)) is given by - ⊗𝐴𝑖 𝑀𝑖 . �

Remark 2.38. An illuminating discussion of the role of the morphism of dg-algebras 𝑣𝑖 and𝑤𝑖 appearing
in the proof of Proposition 2.37 and the resulting stable subcategories of D(A) can be found in [Bar20,
Section 2.3.2].
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Proposition 2.39. For 1 ≤ 𝑖 ≤ 𝑛, let 𝐴𝑖 be a dg-algebra, and for 1 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑀𝑖 be an 𝐴𝑖-
𝐴𝑖+1-bimodule. Denote by A the upper triangular dg-algebra of Definition 2.36. Consider the diagram
𝛼 : Δ𝑛−1 → LinCat𝑘 corresponding to

D(𝐴1)
-⊗𝐴1𝑀1
−−−−−−→ D(𝐴2)

-⊗𝐴2𝑀2
−−−−−−→ · · ·

-⊗𝐴𝑛−1𝑀𝑛−1
−−−−−−−−−−→ D(𝐴𝑛).

Then there exists an equivalence of∞-categories

D(A) � {D(𝐴1), . . . ,D(𝐴𝑛)}

such that for all 1 ≤ 𝑖 ≤ 𝑛, the following diagram commutes:

D(𝐴𝑖)

D(A) {D(𝐴1), . . . ,D(𝐴𝑛)}.

D(𝑣𝑖! ) [𝑛−𝑖 ] 𝜄𝑖

�

(18)

Proof. Using the fact that the left gluing functors of the semiorthogonal decompositions
(D(𝐴1), . . . ,D(𝐴𝑛)) of {D(𝐴1), . . . ,D(𝐴𝑛)} and D(A) are equivalent, it follows from a re-
peated application of Proposition 2.34 that there exists an equivalence of ∞-categories D(A) �
{D(𝐴1), . . . ,D(𝐴𝑛)}. The observation that diagram (18) commutes follows from the observation that
the equivalences of Proposition 2.34 commute with the inclusion functors of the components of the
semiorthogonal decomposition, up to delooping. �

Notation 2.40. Let A be an upper triangular dg-algebra as in Definition 2.36, and set 1 ≤ 𝑖 ≤ 𝑛. Using
the notation from the proof of Proposition 2.37, we denote 𝑝𝑖A = D

(
𝑣𝑖!
)
(𝐴𝑖) ∈ D(A).

3. Parametrised perverse schobers locally

Perverse sheaves have their origin in a homology theory of stratified topological spaces called intersection
homology. A perverse sheaf is an object in the derived category of constructible sheaves – that is, a
complex of sheaves which are locally constant on any stratum. The homology of the stratified space
is obtained via the sheaf cohomology of the perverse sheaf. Perversity of a complex of constructible
sheaves is a condition on its homology with and without compact support. For example, on a complex
surface, perversity implies that the complex is concentrated in degree 0 away from the singularities and
in degrees 0, 1 at the singularities.

On some nice stratified spaces, there are known descriptions of the abelian category of perverse
sheaves in terms of quiver representations (see, for example, [KS16b] for an overview). A way to obtain
such a description is to identify a suitable ‘skeleton’ of the stratified space and describe the perverse
sheaf in terms of certain sheaf cohomology groups with support restrictions related to the skeleton.
These homology groups have to fulfill the crucial restriction that they are concentrated in a single
degree. The most iconic such description is of the abelian category of perverse sheaves on a disc with a
singularity in the centre, in terms of the category of diagrams of vector spaces 𝑟1 : 𝑉1 ↔ 𝑁1 : 𝑠1 such
that 𝑟1𝑠1 − id𝑁1 and 𝑠1𝑟1 − id𝑉1 are equivalences. The vector spaces 𝑁1 and 𝑉1 are called nearby and
vanishing cycles, respectively.

While it is currently not clear how to categorify constructible sheaves and thus perverse sheaves
directly, the remarkable idea of [KS14] is to categorify perverse sheaves using their quiver descriptions,
when available. The ‘ad hoc’ categorification proposed in [KS14] of the quiver description of perverse
sheaves on a disc is a spherical adjunction.

Further descriptions of the category of perverse sheaves on a disc with a singularity in the centre in
terms of quiver representations are given in [KS16a]. For each 𝑛 ≥ 2, the category of perverse sheaves is
equivalent to the abelian category of diagrams of vector spaces 𝑟𝑖 : 𝑉𝑛 ↔ 𝑁𝑖 : 𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑛, such that
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𝑛

𝑛 − 1

2 1

. . .

Figure 1. The complex disc with n outgoing rays with a chosen order.

◦ 𝑟𝑖 ◦ 𝑠𝑖 = id𝑁𝑖 ,
◦ 𝑟𝑖+1 ◦ 𝑠𝑖 (with 𝑖 + 1 modulo n) is an isomorphism for 1 ≤ 𝑖 ≤ 𝑛 and
◦ 𝑟𝑖 ◦ 𝑠 𝑗 = 0 for 𝑖 ≠ 𝑗 , 𝑗 + 1 mod n.

The vector spaces 𝑁𝑖 are all equivalent; they are the nearby cycles. The vector space 𝑉𝑛 describes
the sheaf cohomology of the perverse sheaf with support on n outgoing rays starting at the origin
(see Figure 1).

The map 𝑟𝑖 is defined as the restriction map to a point on the ith outgoing ray. Note that the restriction
maps 𝑟𝑖 have a paracyclic symmetry, meaning a cyclic symmetry up to the monodromy of the perverse
sheaf, arising from the cyclic symmetry of the n rays given by rotating the disc by 2𝜋/𝑛. In Section 3.1
we describe an ad hoc categorification of this quiver description, which will provide a local description
of a parametrised perverse schober. The categorification is based on Dyckerhoff’s categorified Dold–
Kan correspondence [Dyc21]. As noted there, one of the motivations for the categorified Dold–Kan
correspondence was the categorification of the local description of perverse sheaves.

3.1. An ad hoc categorification

We begin with briefly recalling the concept of a spherical adjunction. Consider an adjunction of stable
∞-categories 𝐹 : A↔ B : 𝐺. We associate the following endofunctors:

◦ The twist functor 𝑇A is defined as the cofibre in the stable∞-category Fun(A,A) of the unit map
idA → 𝐺𝐹 of the adjunction 𝐹 � 𝐺.

◦ The cotwist functor 𝑇D is defined as the fibre in the stable∞-category Fun(B,B) of the counit map
𝐹𝐺 → idB of the adjunction 𝐹 � 𝐺.

The adjunction 𝐹 � 𝐺 is called spherical if the functors 𝑇A and 𝑇B are equivalences. In this case, the
functor F is also called spherical. A spherical functor F admits repeated left and right adjoints, each
given by the composite of F or G with a power of the twist or cotwist functor. For a treatment of spherical
adjunctions in the setting of stable∞-categories, we refer to [DKSS21] and [Chr20].

A 2-simplicial stable ∞-category is an (∞, 2)-functor Δ (op,-) → S𝑡 from the 2-categorical version
of the simplex category to the (∞, 2)-version S𝑡 of the ∞-category St of stable ∞-categories. The
categorified Dold–Kan correspondence of [Dyc21] is an adjoint equivalence between the ∞-category
of bounded-below complexes of stable ∞-categories and the ∞-category of 2-simplicial stable ∞-
categories. The right adjoint is called the categorified Dold–Kan nerve N. It generalises the well-
known construction from K-theory called the Waldhausen 𝑆•-construction. More precisely, given a
complex of stable∞-categories concentrated in degrees 0, 1, the categorified Dold–Kan nerve recovers
Waldhausen’s relative 𝑆•-construction. We refer to [Dyc21] for further details.

Let 𝐹 : A ↔ B be a spherical adjunction. We consider the spherical functor 𝐺 : B → A as a
complex of stable∞-categories concentrated in degrees 0, 1, denoted 𝐺 [0]. We further denote by B[1]
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the complex concentrated in degree 1 with value B. Consider the morphism between bounded-below
complexes of stable∞-categories 𝐺 [0] → B[1] depicted as follows:

A B 0 · · ·

0 B 0 · · · .

𝐺

idB

Applying the categorified Dold–Kan nerve N, we obtain a morphism 𝜙∗ : N(𝐺 [0])∗ → N(B[1])∗
between the simplicial objects in St underlying the 2-simplicial objects in S𝑡. Spelling out the definition
of the categorified Dold–Kan nerve and the properties of Kan extensions (compare [Lur09, 4.3.2.15]),
we obtain the following:

Lemma 3.1. Let 𝐹 : A ↔ B : 𝐺 be a spherical adjunction and N(𝐺 [0])∗ and N(B[1])∗ as before.
There exist the following equivalences between∞-categories:

1. N(𝐺 [0])0 � A.
2. N(𝐺 [0])𝑛 � {A,B, . . . ,B} for 𝑛 ≥ 1, in the notation of Lemma 2.29, corresponding to the following

sequence of n functors:

A 𝐹
−−→ B id

−−→ B id
−−→ · · ·

id
−−→ B.

3. N(B[1])1 � B.

We propose that for 𝑛 ≥ 0, the ∞-category N(𝐺 [0])𝑛 of n-simplices categorifies the vector space
𝑉𝑛+1 of sections supported on 𝑛 + 1 outgoing rays and the ∞-category B � N(B[1])1 of 1-simplices
categorifies the vector spaces 𝑁𝑖 of nearby cycles. Accordingly, we call B the ∞-category of nearby
cycles and A the∞-category of vanishing cycles of 𝐹 � 𝐺, or simply of F.

Notation 3.2. Let 𝐹 : A↔ B : 𝐺 be a spherical adjunction. We denote

◦ V1
𝐹 = A,

◦ V𝑛𝐹 = {A,B, . . . ,B︸����︷︷����︸
𝑛−1-many

} for 𝑛 ≥ 2 and

◦ N𝐹 = B.

Assume that 𝑛 ≥ 3. We propose that the first restriction map 𝑟1 : 𝑉𝑛 → 𝑁1 is categorified by the
functor

𝜚1 : V𝑛𝐹 � N(𝐺 [0])𝑛−1
𝑑0
−−→ N(𝐺 [0])𝑛−2

𝑑0
−−→ · · ·

𝑑0
−−→ N(𝐺 [0])1

𝜙1
−−→ N(B[1])1 � N𝐹

obtained from composing 𝜙1 with repeated 0th face maps of the simplicial structure of N(𝐺 [0])∗.
The functor 𝜚1 can equivalently be described as the projection functor 𝜋𝑛 to the nth component of the
semiorthogonal decomposition

(
V1
𝐹 ,N𝐹 , . . . ,N𝐹

)
of length n of V𝑛𝐹 . If 𝑛 = 1, we propose that the

restriction map 𝑟1 is categorified by 𝐹 : V1
𝐹 → N𝐹 , and if 𝑛 = 2, we propose that the restriction map 𝑟1

is categorified by 𝜙1 = 𝜋2. To categorify the further restriction maps, we need to take into account the
paracyclic symmetry. The description of the categorification of 𝑉𝑛 in terms of V𝑛𝐹 , however, obscures
this paracyclic symmetry. One way to solve this is to lift the simplicial object N(𝐺 [0])∗ to a paracyclic
object. This approach is realised in [DKSS21]. One can then replace V𝑛𝐹 by an equivalent ∞-category
where the paracyclic symmetry is apparent. For now we adopt a more pedestrian approach and simply
require that there be a sequence of adjunctions

𝜚𝑛 � 𝜍𝑛 � 𝜚𝑛−1 � · · · � 𝜍2 � 𝜚1 � 𝜍1, (19)
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where 𝜚1 is as before, and propose that 𝜍𝑖 categorifies 𝑠𝑖 and 𝜚𝑖 categorifies 𝑟𝑖 . We describe the
paracyclic symmetry of V𝑛𝐹 to justify our proposed categorification in Section 3.2. We call the 𝜚𝑖 the
categorified restriction maps. A direct computation shows that the functors 𝜚𝑖 and 𝜍𝑖 are described as
follows:

Lemma 3.3. Set 𝐹 � 𝐺 as before and 𝑛 ≥ 1. Consider the functors 𝜚𝑖 : V𝑛𝐹 → N𝐹 and 𝜍𝑖 : N𝐹 → V𝑛𝐹
for 1 ≤ 𝑖 ≤ 𝑛.

1. If 𝑛 = 1, we set 𝜚1 = 𝐹 and 𝜍1 = 𝐺.
2. If 𝑛 ≥ 2, we set

𝜚𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜋𝑛 for 𝑖 = 1,
fib𝑛−𝑖,𝑛−𝑖+1 [𝑖 − 1] for 2 ≤ 𝑖 ≤ 𝑛 − 1,
rfib1,2 [𝑛 − 1] for 𝑖 = 𝑛.

The functor rfib1,2 denotes the composition of the projection functor to the first two components of
the semiorthogonal decomposition with the relative fibre functor that assigns to a vertex 𝑎 → 𝑏 ∈{
V1
𝐹 ,N𝐹

}
the vertex fib(𝐹 (𝑎) → 𝑏) ∈ N𝐹 . The functor fib𝑖−1,𝑖 [𝑛 − 𝑖] denotes the composition of

the projection functor to the (𝑖 − 1)th and ith components with the fibre functor.
3. If 𝑛 ≥ 2, we set 𝜍1 to be the functor that assigns to 𝑏 ∈ N𝐹 the object 𝐺 (𝑏) ∗−→ 𝑏

id
−→ · · ·

id
−→ 𝑏 in V𝑛𝐹

(see also Notation 2.30), and set for 2 ≤ 𝑖 ≤ 𝑛

𝜍𝑖 =
(
𝜄N𝐹

)
𝑛−𝑖+2 [−𝑖 + 2],

where
(
𝜄N𝐹

)
𝑗 is the inclusion of the jth component of the semiorthogonal decomposition.

These functors form the sequence of adjunctions (19).

We are now ready to describe the local model for a parametrised perverse schober at a vertex of
valency n.

Definition 3.4. Let 𝐹 : V1
𝐹 ↔ N𝐹 : 𝐺 be an adjunction of stable∞-categories and 𝑛 ≥ 1. Consider the

poset4 𝐶𝑛 = ({1, . . . , 𝑛})⊳. If 𝑛 = 1, we denote by G1 (𝐹) : 𝐶1 � Δ1 → St the functor F. If 𝑛 ≥ 2, we
denote by G𝑛 (𝐹) the functor 𝐶𝑛 → St assigning

◦ to the initial vertex ∗ ∈ 𝐶𝑛 the stable∞-category V𝑛𝐹 ,
◦ to each vertex 𝑖 ∈ 𝐶𝑛 the stable∞-category N𝐹 and
◦ to each edge ∗ → 𝑖 the functor 𝜚𝑖 from Lemma 3.3.

The adjoint functors 𝜍𝑖 will feature in the local description of duals of parametrised perverse schobers
(see Section 4.3).

3.2. The paracyclic structure

We begin by recalling the definition of the paracyclic 1-category Λ∞.

Definition 3.5. For 𝑛 ≥ 0, let [𝑛] denote the set {0, . . . , 𝑛}. The objects of Λ∞ are the sets [𝑛]. The
morphism in Λ∞ are generated by morphisms

◦ 𝛿0, . . . , 𝛿𝑛 : [𝑛 − 1] → [𝑛],
◦ 𝜎0, . . . , 𝜎𝑛−1 : [𝑛] → [𝑛 − 1] and
◦ 𝜏𝑛,𝑖 : [𝑛] → [𝑛] with 𝑖 ∈ Z

4The left cone ( {1, . . . , 𝑛})⊳ is defined as the simplicial join Δ0 ∗ {1, . . . , 𝑛}.
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subject to the simplicial relations and the further relations

𝜏𝑛,𝑖 ◦ 𝜏𝑛, 𝑗 = 𝜏𝑛,𝑖+ 𝑗 , 𝜏𝑛,0 = id[𝑛] ,
𝜏𝑛,1𝛿𝑖 = 𝛿𝑖−1𝜏𝑛−1,1 for 𝑖 > 0, 𝜏𝑛,1𝛿0 = 𝛿𝑛,

𝜏𝑛,1𝜎𝑖 = 𝜏𝑛+1,1𝜎𝑖−1 for 𝑖 > 0, 𝜏𝑛,1𝜎0 = 𝜎𝑛𝜏𝑛+1,2.

The simplex category Δ is a subcategory of Λ∞. A paracyclic object in an∞-category C is a functor
Λ𝑜𝑝∞ → C, where we identify the 1-category Λ𝑜𝑝∞ with its nerve. A paracyclic object in C is thus a
simplicial object 𝑋∗ ∈ Fun(Δ𝑜𝑝 , C) with face maps 𝑑𝑖 and degeneracy maps 𝑠𝑖 together with a sequence
of paracyclic isomorphisms 𝑡𝑛 : 𝑋𝑛 → 𝑋𝑛 satisfying

𝑑𝑖𝑡𝑛 = 𝑡𝑛−1𝑑𝑖−1 for 𝑖 > 0, 𝑑0𝑡𝑛 = 𝑑𝑛, (20)

𝑠𝑖𝑡𝑛 = 𝑡𝑛+1𝑠𝑖−1 for 𝑖 > 0, 𝑠0𝑡𝑛 = 𝑡
2
𝑛+1𝑠𝑛. (21)

Let 𝐹 � 𝐺 be a spherical adjunction. As shown in [DKSS21], the simplicial object N(𝐺 [0])∗ can
be lifted to a paracyclic object. We emphasise that the sphericalness of the adjunction 𝐹 � 𝐺 is crucial
for showing that the paracyclic isomorphism 𝑡𝑛 of this paracyclic structure is really an isomorphism. In
this section we give an alternative description of the paracyclic isomorphisms 𝑡𝑛 in terms of the twist
functor 𝑇V𝑛

𝐹
of a spherical adjunction 𝐹 ′ � 𝐺 ′, described in Lemma 3.8. We call 𝑇V𝑛

𝐹
the paracyclic

twist functor. We then proceed to show that this isomorphism realises the paracyclic symmetry of the
functors 𝜚𝑖 and 𝜍𝑖 .

Construction 3.6. Let 𝐹 : V1
𝐹 ↔ N𝐹 : 𝐺 be a spherical adjunction. Denote the left adjoint of F by E.

Consider the full subcategory M of the∞-category of diagrams Fun
(
Δ1 × Δ1, Γ(𝐹)

)
of the form

𝑎 𝑎′

𝑏′ 𝑏,

! ∗

with 𝑎, 𝑎′ ∈ V1
𝐹 and 𝑏, 𝑏′ ∈ N𝐹 . The restriction functor res : M→

{
V1
𝐹 ,N𝐹

}
, given by the projection

to the edge 𝑎 → 𝑏, is a trivial fibration. As shown in [DKSS21], it follows from the sphericalness
of the adjunction 𝐹 � 𝐺 that the fibre functor in the horizontal direction M →

{
V1
𝐹 ,N𝐹

}
is also an

equivalence. By choosing a section of the trivial fibration res and composing with the fibre functor, we
obtain an autoequivalence 𝜏 :

{
V1
𝐹 ,N𝐹

}
→
{
V1
𝐹 ,N𝐹

}
, called the relative suspension functor there.

Lemma 3.7. Let 𝐹 : V1
𝐹 ↔ N𝐹 : 𝐺 be a spherical adjunction with cotwist functor 𝑇N𝐹 . Denote the left

adjoint of F by E. The left adjoint of the functor

V2
𝐹 =
{
V1
𝐹 ,N𝐹

} rfib
−−→ N𝐹 (22)

is given by the functor that assigns 𝐸 (𝑏) ∗−→ 𝑇−1
N𝐹
(𝑏) to 𝑏 ∈ N𝐹 .

Proof. As shown in [Chr20, Lemma 1.30], the stable subcategories
(
V1
𝐹

)⊥
,V1

𝐹 ,N𝐹 ,
⊥N𝐹 ⊂ V2

𝐹 form

semiorthogonaldecompositions
((
V1
𝐹

)⊥
,V1

𝐹

)
,
(
V1
𝐹 ,N𝐹

)
,
(
N𝐹 ,

⊥N𝐹
)

ofV2. We denote by 𝑖N𝐹 , 𝑖(V1
𝐹 )
⊥

https://doi.org/10.1017/fms.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.1


Forum of Mathematics, Sigma 29

the inclusion functors of N𝐹 and N𝐹 �
(
V1
𝐹

)⊥
into V2

𝐹 , respectively. The functor 𝑖(V1
𝐹 )
⊥ assigns to

𝑏 ∈ N𝐹 �
(
V1
𝐹

)⊥
the object𝐺 (𝑏) !

−→ 𝑏 ∈ V2
𝐹 . It is easily checked that there is a sequence of adjunctions

rfib[1] � 𝑖N𝐹 � 𝜋0 � 𝑖(V1
𝐹 )
⊥ . (23)

Composing the adjunction 𝜏−1 � 𝜏, where 𝜏 is the relative suspension functor from Construction 3.6,
with the sequence of adjunctions (23) yields the sequence of adjunctions

𝜋0 [1] � 𝑖(V1
𝐹 )
⊥ [−1] � 𝑇−1

N𝐹
rfib[1] � 𝑖N𝐹𝑇N𝐹 .

We have thus established the desired adjunction 𝑖(V1
𝐹 )
⊥𝑇−1

N𝐹
� rfib. �

Lemma 3.8. Let 𝐹 : V1
𝐹 ↔ N𝐹 : 𝐺 be a spherical adjunction with cotwist functor 𝑇N𝐹 . Denote the left

adjoint of F by E. For 𝑛 ≥ 2, consider the functor

𝐹 ′ : V𝑛𝐹 −→ N ×𝑛𝐹

with components 𝐹 ′ = (𝜚1, . . . , 𝜚𝑛).

1. The functor 𝐹 ′ admits left and right adjoints 𝐸 ′, 𝐺 ′, respectively, given by

𝐸 ′ =
(
𝜍2, . . . , 𝜍𝑛, 𝜍1𝑇

−1
N𝐹
[1 − 𝑛]
)
,

𝐺 ′ = (𝜍1, . . . , 𝜍𝑛).

2. The adjunction 𝐹 ′ � 𝐺 ′ is spherical.

Proof. We begin with showing statement 1. The adjunction 𝐹 ′ � 𝐺 ′ follows from composing the
adjunctions 𝜚𝑖 � 𝜍𝑖 with the adjunction Δ � ⊕ between the constant diagram functor Δ : N𝐹 → N ×𝑛𝐹
and its right adjoint given by the direct sum functor. Again by composing adjunctions, we obtain that
to show that 𝐸 ′ is left adjoint to 𝐹 ′, it suffices to show that 𝜍1𝑇

−1
N𝐹
[𝑛] is left adjoint to 𝜚𝑛. This follows

directly from the following observations:

◦ The functor 𝜚𝑛 factors as

V𝑛𝐹
𝜋1,2
−−−→ V2

𝐹

rfib[𝑛−1]
−−−−−−−→ N𝐹 .

◦ The left adjoint of rfib : V2
𝐹 → N𝐹 was determined in Lemma 3.7 and is given by the functor that

maps 𝑏 ∈ N𝐹 to 𝐸 (𝑏) ∗−→ 𝑇−1
N𝐹
(𝑏).

◦ The left adjoint of 𝜋1,2 is given by the functor that maps 𝐸 (𝑏) ∗−→ 𝑇−1
N𝐹
(𝑏) ∈ V2

𝐹 to

𝐸 (𝑏)
∗
−→ 𝑇−1

N𝐹
(𝑏)

id
−→ · · ·

id
−→ 𝑇−1

N𝐹
(𝑏) ∈ V𝑛𝐹 .

For statement 2, consider the endofunctor 𝑀 = 𝐹 ′𝐺 ′ : N ×𝑛𝐹 → N ×𝑛𝐹 of the adjunction 𝐹 ′ � 𝐺 ′ with
cotwist functor 𝑇N ×𝑛

𝐹
. We can depict M as the following matrix:

����������

idN𝐹 idN𝐹 0 · · · 0 0
0 idN𝐹 idN𝐹 · · · 0 0
0 0 idN𝐹 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · idN𝐹 idN𝐹

𝑇N𝐹 [𝑛 − 1] 0 0 · · · 0 idN𝐹

����������
.
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The counit 𝑐𝑢 : 𝑀 → idN×𝑛𝐹 is the projection to the diagonal, so we deduce that the cotwist 𝑇N×𝑛𝐹 is an
equivalence. We further observe that there exists an equivalence 𝑐𝑢 ◦𝑇N×𝑛𝐹 � 𝑇N×𝑛𝐹 ◦ 𝑐𝑢. The left adjoint
𝐸 ′ : N×𝑛𝐹 → V𝑛𝐹 clearly satisfies 𝐺 ′ ◦ 𝑇−1

N×𝑛𝐹
. We have shown that all conditions of [Chr20, Proposition

4.5] are fulfilled, and it follows that the adjunction 𝐹 ′ � 𝐺 ′ is spherical. �

Remark 3.9. We highlight the relation of Lemma 3.8 to other results in the literature. Let 𝐹 � 𝐺 be a
spherical adjunction. Consider further the (trivially) spherical adjunction 0N : 0↔ N : 0′N and denote
by 𝐹 ′′ : V𝑛0N

↔ N×𝑛 : 𝐺 ′′ the spherical adjunction associated in Lemma 3.8 to 0N � 0′N. The adjunction
𝐹 ′′ � 𝐺 ′′ appears in the special case N = D(𝑘)perf in [BD19, Theorem 5.14], where it is shown that 𝐹 ′′
carries a left Calabi–Yau structure. The spherical adjunction 𝐹 ′ � 𝐺 ′ associated to 𝐹 � 𝐺 in Lemma 3.8
can be described as the composition of the spherical adjunctions 𝐹 ′′ � 𝐺 ′′ and

(𝐹, 0 . . . , 0) : V1
𝐹 ←→ N×𝑛𝐹 : (𝐺, 0, . . . , 0)

in the sense of [Bar20].

Remark 3.10. Consider the setting of Lemma 3.8. Lurie’s ∞-categorical Barr–Beck theorem implies
that the adjunction 𝐹 ′ � 𝐺 ′ is monadic. Further, if the adjunction 𝐹 � 𝐺 is monadic, then the adjunction
𝐹 ′ � 𝐺 ′ is also comonadic. Lemma 3.7 thus implies that a monadic spherical adjunction 𝐹 � 𝐺 can be
recovered from the comonad 𝑀 = 𝐹 ′𝐺 ′ : N×𝑛𝐹 → N×𝑛𝐹 whose underlying endofunctor is determined
by the cotwist functor 𝑇N𝐹 . This does not imply that the spherical monadic adjunction 𝐹 � 𝐺 can be
recovered from its twist functor (see also [Chr20, Section 4.1]). All further data are encoded in the
comonad structure of M.

Proposition 3.11. Let 𝐹 : V1
𝐹 ↔ N𝐹 : 𝐺 be a spherical adjunction and consider the twist functor 𝑇V𝑛

𝐹

of the spherical adjunction 𝐹 ′ � 𝐺 ′ described in Lemma 3.8. Then there exist equivalences of functors

𝜚𝑖 ◦ 𝑇V𝑛
𝐹
=

{
𝜚𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1,
𝑇N𝐹 [𝑛 − 1] ◦ 𝜚1 for 𝑖 = 𝑛

(24)

and

𝑇−1
V𝑛
𝐹
◦ 𝜍𝑖 =

{
𝜍𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1,
𝜍1 ◦ 𝑇

−1
N𝐹
[1 − 𝑛] for 𝑖 = 𝑛.

(25)

Proof. By the 2/4 property of spherical adjunctions, there exists an equivalence 𝑇−1
V𝑛
𝐹
𝐺 ′ � 𝐸 ′, showing

the identities (25). The identities (24) follow from passing to left adjoints. �

4. Parametrised perverse schobers globally

In Section 4.1 we review background material on marked surfaces, their ideal triangulations and
associated ribbon graphs. In Sections 4.2 and 4.3 we introduce the notion of a perverse schober
parametrised by a ribbon graph and define the ∞-categories of global sections of such a perverse
schober. In Section 4.4 we discuss how perverse schobers parametrised by different ribbon graphs can
be related.

4.1. Marked surfaces, ideal triangulations and ribbon graphs

Definition 4.1. By a surface S, we mean a smooth, connected surface with possibly empty boundary.
We denote by 𝜕S and S◦ the boundary and interior of S, respectively.

A marked surface is a compact surface S together with a finite collection of marked points 𝑀 ⊂ S.
We further require that each boundary component of S contains at least one marked point, and if 𝜕S = ∅,
that 𝑀 ≠ ∅.
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Interior marked points are also called punctures. We denote by Σ = S\(𝑀 ∩ S◦) the noncompact
surface with these punctures removed.

We remark that the definition of marked surface does not exclude special cases, such as the twice-
punctured sphere or the once-punctured monogon.

We proceed by defining an ideal triangulation of a marked surface.

Definition 4.2. Let S be a marked surface. A curve 𝛾 in S is called simple if

◦ the endpoints of 𝛾 lie in M,
◦ 𝛾 does not intersect M and 𝜕S, except at the endpoints,
◦ 𝛾 does not self-intersect, except that its endpoints may coincide, and
◦ if 𝛾 is a closed loop, then it is not contractible onto M or 𝜕S.

An arc in S is an equivalence class of curves under isotopy and reversal of parametrisation. Two arcs are
called compatible if there are curves in their respective isotopy classes which do not intersect, except
possibly at the endpoints.

Definition 4.3 (e.g., [FST08, Definition 2.6]). Let S be a marked surface. An ideal triangulation T of S
consists of a maximal collection of distinct pairwise compatible arcs in S.

Any collection of distinct and pairwise compatible arcs can be realised by curves in the respective
isotopy classes which do not intersect except for the endpoints [FST08, Proposition 2.5]. Given an ideal
triangulation T of a surface S, we choose such a collection of nonintersecting curves. These curves cut
S into ideal triangles. An ideal triangle has three (possibly two identical) sides which each connect
two (possibly identical) marked points. The sides of an ideal triangle may lie on 𝜕S and be given by
nonsimple curves in 𝜕S connecting two marked points. An ideal triangle is called self-folded if it has a
side which connects a single marked point with itself (see Figure 2). Two of the sides of a self-folded
ideal triangle are identical.

Definition 4.4. Let T be an ideal triangulation of an oriented marked surface. We choose a collection
of nonintersecting simple curves representing T. These simple curves are called the internal edges of T.

The boundary edges of T are those sides of the ideal triangles which are nonsimple curves lying on
the boundary 𝜕S.

The interior ideal triangles of T are the ideal triangles of T which are disjoint from the boundary 𝜕S.

In the remainder of this section, we discuss how marked surfaces and their ideal triangulations can be
encoded in terms of ribbon graphs. Similar treatments of ribbon graphs can be found in [DK15, DK18].

Definition 4.5.
◦ A graph Γ consists of two finite sets Γ0 of vertices and HΓ of half-edges (sometimes simply denoted

H) together with an involution 𝜏 : H→ H and a map 𝜎 : H→ Γ0.
◦ Let Γ be a graph. We denote by Γ1 the set of orbits of 𝜏. The elements of Γ1 are called the edges of Γ.

An edge is called internal if the orbit contains two elements and called external if the orbit contains a
single element. An internal edge is called a loop at 𝑣 ∈ Γ0 if it consists of two half-edges both mapped
under 𝜎 to v. We denote the set of internal edges of Γ by Γ◦1 and the set of external edges by Γ𝜕1 .

◦ A ribbon graph consists of a graph Γ together with a choice of a cyclic order on the set H(𝑣) of
half-edges incident to v for each 𝑣 ∈ Γ0.

Figure 2. A self-folded ideal triangle.
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Definition 4.6. Let Γ be a graph. We denote by Exit(Γ) the poset with

◦ the set of elements Γ0  Γ1 and
◦ all nonidentity morphisms of the form 𝑣 → 𝑒, with 𝑣 ∈ Γ0 a vertex and 𝑒 ∈ Γ1 an edge incident to v;

if e is a loop at v, then there are two morphisms 𝑣 → 𝑒.

We call Exit(Γ) the exit path category of Γ.
The geometric realisation |Γ| of Γ is defined as the geometric realisation |Exit(Γ) | of Exit(Γ) as a

simplicial set.

We consider only connected graphs – that is, graphs whose geometric realisation is connected.

Remark 4.7. Let Γ be a graph and S an oriented surface. Any embedding of |Γ| into S determines a
ribbon-graph structure on Γ, where the cyclic order of the half-edges at any vertex is such that the cyclic
order in the geometric realisation is anticlockwise with respect to the orientation of S.

Notation 4.8. We use a graphical notation for ribbon graphs. We denote the vertices by · or sometimes
×, and internal edges by a straight line. We denote external edges as follows:

·

.Example 4.9. The diagram
·

· ·

denotes a ribbon graph Γ with three vertices, four edges in total, one external edge and one loop, with the
cyclic order of the half-edges at each vertex going in the anticlockwise direction. The exit path category
of Γ can be depicted as follows, with 𝑣, 𝑣′, 𝑣′′ denoting the vertices of Γ and 𝑒, 𝑒′, 𝑒′′, 𝑒′′′ denoting the
edges of Γ:

Exit(Γ) =

𝑣

𝑒

𝑒′′′ 𝑣′′ 𝑒′′ 𝑣′ 𝑒′.

Each ideal triangulation of an oriented marked surface determines a ribbon graph ΓT as follows:

Definition 4.10. Let S be an oriented surface with an ideal triangulation T. We denote by ΓT the ribbon
graph determined by the following:

◦ The set of vertices of ΓT is the set of ideal triangles of T.
◦ The set of internal edges of ΓT is the set of internal edges of T. An internal edge e represented by an

edge 𝛾𝑒 is incident to the two vertices of ΓT corresponding to the two ideal triangles incident to 𝛾𝑒.
Self-folded triangles give rise to loops in ΓT.

◦ The set of external edges of ΓT is the set of boundary edges of T. Such an external edge is incident to
the vertex of ΓT corresponding to the ideal triangle which it is a side of.

◦ Given a vertex v of ΓT, the cyclic order of H(𝑣) is given by the anticlockwise cyclic order of the
edges of the corresponding ideal triangle of T.

We call ΓT the dual ribbon graph of T.
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Example 4.11. We depict an ideal triangulation of the once-punctured 2-gon and its dual ribbon graph.

· ·

Ribbon graphs can be glued along their external edges.

Construction 4.12. Let Γ′ and Γ′′ be ribbon graphs and let I be a finite set and 𝑖′ : 𝐼 → (Γ′)𝜕1 and
𝑖′′ : 𝐼 → (Γ′′)𝜕1 injective maps. Then there exists a ribbon graph Γ satisfying the following:

◦ Γ0 = Γ′0 ∪ Γ′′0 .
◦ Γ1 = Γ′1 𝐼 Γ

′′
1 .

◦ The cyclic order of H(𝑣), with 𝑣 ∈ Γ′0 ⊂ Γ0 a vertex, is given by the cyclic order determined by the
ribbon graph Γ′. Analogously, the cyclic order of H(𝑣), with 𝑣 ∈ Γ′′0 ⊂ Γ0, is determined by Γ′′.

We call Γ the gluing of Γ′ and Γ′′ along I. Note that there exists an equivalence of posets Exit(Γ) �
Exit(Γ′) 𝐼 Exit(Γ′′).

Example 4.13. Let T be an ideal triangulation of a surface. To each ideal triangle 𝐹𝑖 we associate a
ribbon graph Γ𝑖 as follows:

◦ If 𝐹𝑖 is not a self-folded triangle, then Γ𝑖 is the following ribbon graph:

·

◦ If 𝐹𝑖 is a self-folded triangle, then Γ𝑖 is the following ribbon graph:

·

Then ΓT is the gluing of the ribbon graphs Γ𝑖 along their external edges determined by the incidence of
the ideal triangles.

4.2. Parametrised perverse schobers

We essentially define a parametrised perverse schober as a collection of the local models of Definition
3.4 arising from spherical adjunctions which are suitably glued together along a ribbon graph. This
approach is a categorification of the description of perverse sheaves on a surface given in [KS16a].

Definition 4.14. A perverse schober parametrised by a ribbon graph Γ is defined to be a functor
F : Exit(Γ) → St, subject to the following condition: for each vertex 𝑝 ∈ Γ0, there exist a spherical
functor 𝐹𝑣 : V1

𝐹 → N𝐹 and a choice of equivalence of posets 𝐶𝑛 � Exit(Γ)𝑝/, respecting the cyclic
ordering of {1, . . . , 𝑛} and H(𝑣), such that the restriction of F to the ribbon corolla 𝐶𝑛 � Exit(Γ)𝑝/ is
equivalent to G𝑛 (𝐹𝑣 ) as objects in Fun(𝐶𝑛, St).

We denote by𝔓(Γ) the full subcategory of the functor category Fun(Exit(Γ), St) spanned by perverse
schobers.
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Remark 4.15. In accordance with Section 3.1, we call V1
𝐹𝑣

the∞-category of vanishing cycles at v and
N𝐹𝑣 the∞-category of nearby cycles at v.

It follows from the definition of parametrised perverse schobers and the assumption that the ribbon
graph is connected that for any two vertices 𝑣, 𝑣′ of Γ, there exists an equivalence of ∞-categories
N𝐹𝑣 � N𝐹𝑣′

. The corresponding ∞-category, specified up to equivalence, is called the generic stalk
of F.

Notation 4.16. We will use a graphical notation for perverse schobers parametrised by ribbon graphs
similar to the graphical notation for ribbon graphs introduced in Notation 4.8. We denote a parametrised
perverse schober by specifying the spherical functor at each vertex of the corresponding ribbon graph
and specifying the functor associated to each nonidentity morphism in the exit path category.

Example 4.17. Let 𝐹 : V1
𝐹 → N𝐹 be a spherical functor and 𝑇 : N𝐹 → N𝐹 some autoequivalence.

The diagram

𝐹

0N𝐹 0N𝐹

(𝑇 ◦𝜚1 , 𝜚1)

( 𝜚1 , 𝜚2)
( 𝜚3 , 𝜚2)

𝜚3

(26)

corresponds to the parametrised perverse schober given by the following Exit(Γ)-indexed diagram in St:

V1
𝐹

N𝐹

N𝐹 V3
0N𝐹

N𝐹 V3
0N𝐹

N𝐹 .

𝑇 ◦𝐹

𝜚1

𝜚3

𝜚2
𝜚1

𝜚2 𝜚3

The next lemma shows that parametrised perverse schobers can be glued along external edges.

Lemma 4.18. Let Γ′ and Γ′′ be ribbon graphs, I be a finite set and 𝑖′ : 𝐼 → (Γ′)𝜕1 and 𝑖′′ : 𝐼 → (Γ′′)𝜕1
be injective maps. Denote by Γ the glued ribbon graph described in Construction 4.12. Consider the
functors ev′ : 𝔓(Γ′) → Fun(𝐼, St) and ev′′ : 𝔓(Γ′′) → Fun(𝐼, St), given by the restriction functors
along the inclusions 𝐼 → Exit(Γ′) and 𝐼 → Exit(Γ′′), respectively. There exists a pullback diagram in
Cat∞ as follows:

𝔓(Γ) 𝔓(Γ′′)

𝔓(Γ′) Fun(𝐼, St).

�
ev′′

ev′
(27)

Proof. Applying the functor Fun(-, St) to the pushout diagram in Cat∞

𝐼 Exit(Γ′′)

Exit(Γ′) Exit(Γ)
�
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yields the following pullback diagram in Cat∞:

Fun(Exit(Γ), St) Fun(Exit(Γ′′), St)

Fun(Exit(Γ′), St) Fun(𝐼, St).

�

The statement that diagram (27) is pullback follows from the following observation: an element F ∈
Fun(Exit(Γ), St) lies in 𝔓(Γ) if and only if its restriction to Fun(Exit(Γ′), St) and Fun(Exit(Γ′′), St)
lie in 𝔓(Γ′) and 𝔓(Γ′′), respectively. �

4.3. Global sections and duality

Definition 4.19. Let Γ be a ribbon graph and letF : Exit(Γ) → St be a Γ-parametrised perverse schober.

◦ We call the stable∞-category H(Γ,F) := limF the∞-category of global sections of F. Global
sections form a functor

H(Γ, -) : 𝔓(Γ) → St .

◦ For 𝑒 ∈ Γ1, we denote by ev𝑒 : H(Γ,F) → F(𝑒) the evaluation functor contained in the limit
diagram defining H(Γ,F). Given a subribbon graph Γ′ ⊂ Γ, we denote by HΓ′ (Γ,F) the full
subcategory of H(Γ,F) of global sections X such that ev𝑒 (𝑋) = 0 for all edges 𝑒 ∈ Γ1\Γ′1. We call
HΓ′ (Γ,F) the∞-category of sections of FT with support on Γ′.

Definition 4.20. Let Γ be a ribbon graph. We denote Entry(Γ) := Exit(Γ)𝑜𝑝. Given a Γ-parametrised
perverse schober F, we call the right adjoint and left adjoint diagrams, respectively,

D
𝑅F, D𝐿F : Entry(Γ) −→ St

the right and left dual of F.

Remark 4.21. Consider the setup of Definition 4.20. Lemma 3.8 implies that there exists an equivalence
D
𝑅F � D𝐿F in Fun(Entry(Γ), St), which restricts on each vertex v with corresponding spherical

adjunction 𝐹𝑣 � 𝐺𝑣 to the twist functor of the spherical adjunction 𝐹 ′𝑣 � 𝐺 ′𝑣 .

Remark 4.22. Let F be a Γ-parametrised perverse schober. All functors in the image of F are part of
a spherical adjunction and thus preserve all existing limits and colimits. If F : Exit(Γ) → St takes as
values presentable∞-categories, it thus factors through the two forgetful functors P𝑟𝐿St,P𝑟𝑅St → St.

Assume that F takes as values presentable ∞-categories. The left and right duals D𝐿F,D𝑅F :
Entry(Γ) → St both factor through the forgetful functor P𝑟𝐿St → St, and there exist equivalences of
∞-categories

H(Γ,F) � colim
P𝑟𝐿
D
𝑅F, (28)

H(Γ,F) � colim
P𝑟𝐿
D
𝐿F.

We can thus, under the assumption of presentability, equivalently express parametrised perverse schobers
and their global sections via their duals. These two perspectives may be seen as a categorification of
the two possible perspectives on perverse sheaves, either in terms of sheaves or in terms of cosheaves
interchanged by Verdier duality [KS19].
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4.4. Contractions of ribbon graphs

Definition 4.23. Let Γ be a ribbon graph and F a Γ-parametrised perverse schober. Let 𝑣 ∈ Γ0 be a
vertex of Γ and consider the∞-category V1

𝐹𝑣
of vanishing cycles of F at v. We call v a singularity of F

if there is no equivalence of∞-categories V1
𝐹𝑣
� 0.

Given a subset𝑉 ⊂ Γ0, we denote by𝔓(Γ, 𝑉) the full subcategory of𝔓 spanned by perverse schobers
whose singularities lie in V.

The goal of this section is to show that parametrised perverse schobers can be transported along
contractions of ribbon graphs which do not contract any edges joining two singularities, such that the
∞-categories of global sections are preserved up to equivalence.
Definition 4.24.
◦ Let Γ be a ribbon graph and 𝑒 ∈ Γ1 an edge connecting two distinct vertices 𝑣1, 𝑣2. Let {𝑒1, 𝑒2} be

the orbit representing the edge e. We define a ribbon graph Γ′ with the following properties:
– Γ′0 = Γ0/(𝑣1 ∼ 𝑣2) is the set obtained from Γ0 obtained by identifying 𝑣1 and 𝑣2.
– HΓ′ = HΓ \{𝑒1, 𝑒2}.
– 𝜏 : HΓ′ → HΓ′ is the restriction of 𝜏 : HΓ → HΓ.
– 𝜎 : HΓ′ → Γ′0 is the composite map : HΓ′ ⊂ HΓ

𝜎
−→ Γ0 → Γ′0.

– The cyclic order on HΓ′ (𝑣) with 𝑣 ∈ Γ′0\[𝑣1] is identical to the cyclic order on HΓ (𝑣). Choose any
two linear orders of the elements of HΓ (𝑣1)\{𝑒1} and HΓ (𝑣2)\{𝑒2} compatible with the given
cyclic ordering. Consider the total order on

HΓ′ ( [𝑣1]) =
(
HΓ (𝑣1)\{𝑒1}
)
∪
(
HΓ (𝑣2)\{𝑒2}
)

which restricts to the given total orders on HΓ (𝑣1)\{𝑒1},HΓ (𝑣2)\{𝑒2} and such that all elements
of HΓ (𝑣2)\{𝑒2} follow the elements in HΓ (𝑣1)\{𝑒1}). We let the cyclic order on HΓ′ ( [𝑣1]) be the
cyclic order induced by the total order in the sense of Remark 4.25.

We call Γ′ the edge contraction of Γ at e.
◦ Let Γ and Γ′ be ribbon graphs. We say that there exists a contraction from Γ to Γ′ if Γ′ is obtained

as a (finitely many times) repeated edge contraction of Γ. We write 𝑐 : Γ→ Γ′.
Remark 4.25. A total order on a finite set H with cardinality n can be defined as a bijection 𝜙 :
{1, . . . , 𝑛} � 𝐻. Such a total order induces a cyclic order, where 𝜙(𝑖 + 1) follows 𝜙(𝑖) if 𝑖 ≠ 𝑛 and 𝜙(1)
follows 𝜙(𝑛).
Lemma 4.26. Let 𝐹 : V1

𝐹 ↔ N𝐹 : 𝐺 be a spherical adjunction. Set 𝑚, 𝑛 ≥ 1 and consider the stable
∞-categories V𝑚0N𝐹

and V𝑛𝐹 with categorified restriction maps 𝜚1
𝑖 : V𝑚0N𝐹

→ N𝐹 , with 𝑖 = 1, . . . , 𝑚,
and 𝜚2

𝑗 : V𝑛𝐹 → N𝐹 , with 𝑗 = 1, . . . , 𝑛.
1. There exists a pullback diagram in Cat∞ as follows:

V𝑛+𝑚−2
𝐹 V𝑛𝐹

V𝑚0N𝐹
N𝐹 .

𝛼

𝛽
�

𝜚2
1

𝜚1
𝑚

(29)

2. Denote by 𝜚1, . . . , 𝜚𝑛+𝑚−2 : V𝑛+𝑚−2
𝐹 → N𝐹 the categorified restriction maps. There exist equiva-

lences of functors 𝜚 𝑗 � 𝜚1
𝑗 ◦ 𝛽 and 𝜚𝑖+𝑚−2 � 𝜚

2
𝑖 ◦ 𝛼 for 𝑗 = 1, . . . , 𝑚 − 1 and 𝑖 = 2, . . . , 𝑛.

Proof. Let 𝐷1 : Δ𝑚−2 → St be the constant diagram with value N𝐹 and 𝐷2 : Δ𝑛−1 → St, 𝐷 :
Δ𝑛+𝑚−3 → St be the diagrams obtained from the sequences of composable functors

V1
𝐹

𝐺
−−→ N𝐹

id
−−→ · · ·

id
−−→ N𝐹 .
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The diagram D restricts to the diagrams 𝐷1 and 𝐷2 on Δ {0,...,𝑛−1} and Δ {𝑛−1,...,𝑛+𝑚−3}, respectively.
The inclusion functor Δ {0,...,𝑛−1} Δ {𝑛−1} Δ {𝑛−1,...,𝑛+𝑚−3} → Δ𝑛+𝑚−3 is inner anodyne. It follows that
the restriction functor

res : Fun
(
Δ𝑛+𝑚−3, Γ(𝐷)
)
→ Fun
(
Δ𝑛−1, Γ(𝐷1)
)
×N𝐹 Fun
(
Δ𝑚−2, Γ(𝐷2)
)

is a trivial fibration, from which we obtain a further trivial fibration

FunΔ𝑛+𝑚−3

(
Δ𝑛+𝑚−3, Γ(𝐷)
)
→ FunΔ𝑛−1

(
Δ𝑛−1, Γ(𝐷1)
)
×N𝐹 FunΔ𝑚−2

(
Δ𝑚−2, Γ(𝐷2)
)
.

Using the equivalences of∞-categories

V𝑛𝐹 � FunΔ𝑛−1

(
Δ𝑛−1, Γ(𝐷2)
)
,

V𝑚0N𝐹
� FunΔ𝑚−2

(
Δ𝑚−2, Γ(𝐷1)
)
,

V𝑛+𝑚−3
𝐹 � FunΔ𝑛+𝑚−3

(
Δ𝑛+𝑚−3, Γ(𝐷)
)
,

it follows that there exists a pullback diagram in the form of diagram (29). The functors 𝛼[2 − 𝑚] and
𝛽 in this pullback diagram are given by the restriction functors to the first 𝑚 − 1 and last n components,
respectively. The description of the categorified restriction maps can thus be checked directly. �

Construction 4.27. Consider the setup of Lemma 4.26 and the diagram

V𝑛𝐹

V𝑚0N𝐹
N𝐹 ,

𝜚2
𝑗

𝜚1
𝑖

(30)

where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 are arbitrary. We can use the paracyclic twist functors
(
𝑇V𝑛

𝐹

)1− 𝑗
and(

𝑇V𝑚
0N𝐹

)𝑚−𝑖
(see Section 3.2 and Proposition 3.11 in particular) to find a natural equivalence between

diagram (30) and the following diagram:

V𝑛𝐹

V𝑚0N𝐹
N𝐹 .

𝜚2
1

𝜚1
𝑚

(31)

The limits of diagrams (30) and (31) are therefore both equivalent to V𝑛+𝑚−2
𝐹 . Proposition 3.11 also

shows that under this equivalence, the resulting categorified restriction maps 𝜚𝑖 : V𝑛+𝑚−2
𝐹 → N𝐹 are

cyclically permuted and may each further change by postcomposition with an autoequivalence of the
form
(
𝑇N𝐹 [𝑛 − 1]
) 𝑙 for some 𝑙 ∈ Z.

Proposition 4.28. Let 𝑐 : Γ → Γ′ be a contraction of ribbon graphs and let 𝑉 ⊂ Γ0 be a subset such
that no two vertices in V are contracted to a single vertex by c. There is a functor of ∞-categories
𝑐∗ : 𝔓(Γ, 𝑉) → 𝔓(Γ′) making the following diagram commute:

𝔓(Γ, 𝑉) 𝔓(Γ′)

St .

𝑐∗

H(Γ,-) H(Γ′,-)
(32)
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Proof. It suffices to show the statement in the case that c is the contraction of an edge 𝑒 ∈ Γ1 connecting
two vertices 𝑣1, 𝑣2 such that 𝑣1 ∉ 𝑉 . The edge contraction c induces a functor Exit(𝑐) : Exit(Γ) →
Exit(Γ′) determined by mapping

◦ 𝑥 ∈ Γ0\{𝑣1, 𝑣2} ⊂ Exit(Γ) to 𝑥 ∈ Γ0\{𝑣1, 𝑣2} ⊂ Exit(Γ′),
◦ 𝑣1, 𝑣2 ∈ Γ0 ⊂ Exit(Γ) to [𝑣1],
◦ 𝑓 ∈ Γ1\{𝑒} ⊂ Exit(Γ) to 𝑓 ∈ Γ1\{𝑒} ⊂ Exit(Γ′) and
◦ 𝑒 ∈ Γ1 ⊂ Exit(Γ) to [𝑣1] ∈ Γ′0 ⊂ Exit(Γ′).

We define E to be the poset determined by the following properties:

◦ There exist fully faithful functors Exit(Γ′),Exit(Γ) → E.
◦ The induced functor Exit(Γ′)  Exit(Γ) → E is bijective on objects.
◦ For 𝑥 ′ ∈ Exit(Γ′) and 𝑥 ∈ Exit(Γ), there exists a unique morphism from 𝑥 ′ to x in E if and only if

there exists a morphism 𝑥 ′ → Exit(𝑐) (𝑥). There are no morphisms from x to 𝑥 ′.

Note that the poset E can be equivalently described as the total space of a Cartesian fibration classifying
the functor Exit(𝑐) : Δ1 → Cat∞.

We define 𝑐∗ : Fun(Exit(Γ), St) → Fun(Exit(Γ), St) as the composition of the right Kan extension
functor along the inclusion Exit(Γ) → E with the restriction functor to Exit(Γ′). It follows from Lemma
4.26 and Construction 4.27 that 𝑐∗ maps 𝔓(Γ, 𝑉) to 𝔓(Γ′). The commutativity of diagram (32) follows
from right Kan extensions commuting with right Kan extensions. �

5. Algebraic descriptions of V𝑛𝑓 ∗
This section provides auxiliary computations to be used in Section 6. In Section 5.1 we study the ∞-
category Fun(𝑆𝑛,D(𝑘)) of local systems on the n-sphere with values in the derived ∞-category of a
commutative ring k and the spherical adjunction 𝑓 ∗ : D(𝑘) ↔ Fun(𝑆𝑛,D(𝑘)) : 𝑓∗. We show that there
is an equivalence of∞-categories Fun(𝑆𝑛,D(𝑘)) � D(𝑘 [𝑡𝑛−1]), where 𝑘 [𝑡𝑛−1] denotes the polynomial
algebra with generator in degree |𝑡𝑛−1 | = 𝑛 − 1. In Section 5.2 we describe the perverse schober on the
disc obtained from the spherical adjunction 𝑓 ∗ � 𝑓∗.

5.1. Local systems on spheres

In [Chr20], we showed the following:

Proposition 5.1. For 𝑛 ≥ 0, let 𝑆𝑛 denote the singular set of the topological n-sphere and consider the
map 𝑓 : 𝑆𝑛 → ∗. Further, let D be a stable∞-category and

𝑓 ∗ : D→ Fun(𝑆𝑛,D) (33)

be the pullback functor with right adjoint 𝑓∗, given by the limit functor. The adjunction 𝑓 ∗ � 𝑓∗ is
spherical with twist functor 𝑇D � [−𝑛].

We call the ∞-category Fun(𝑆𝑛,D) the ∞-category of local systems on 𝑆𝑛 with values in D. It
is well known that if D = D(𝑘) for some commutative ring k, the ∞-category of local systems on
𝑆1 with values in D(𝑘) is equivalent to the ∞-category D

(
𝑘
[
𝑡, 𝑡−1] ) , where 𝑘

[
𝑡, 𝑡−1] is the ring of

Laurent polynomials. In this section we show the existence of an equivalence of k-linear ∞-categories
Fun(𝑆𝑛,D(𝑘)) � D(𝑘 [𝑡𝑛−1]) for 𝑛 > 2, where 𝑘 [𝑡𝑛−1] is the polynomial algebra with generator in
degree |𝑡𝑛−1 | = 𝑛 − 1. In Section 7.2 we will show that this description also generalises to D = RMod𝑅
for R an E∞-ring spectrum. We will end this section with an explicit description of the cotwist functor
of the adjunction 𝑓 ∗ � 𝑓∗.
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We begin with the following observation:

Remark 5.2. Let Z be a simplicial set. The ∞-category Fun(𝑍,D(𝑘)) admits a symmetric monoidal
structure such that the pullback functor ℎ∗ along ℎ : 𝑍 → ∗ is a symmetric monoidal functor (see, for
example, [Chr20, Section 3.3]). We can thus consider Fun(𝑍,D(𝑘)) as a left module in P𝑟𝐿St over itself
and the functor ℎ∗ as a morphism of algebra objects inP𝑟𝐿 . Pulling back along ℎ∗ provides Fun(𝑍,D(𝑘))
with the structure of a left module over D(𝑘) and thus with the structure of a left-tensoring over D(𝑘).
This shows that Fun(𝑍,D(𝑘)) is a k-linear∞-category such that the functor ℎ∗ is k-linear.

We let L denote the simplicial set consisting of a single vertex and a single nondegenerate 1-simplex.
We use Remark 5.2 to lift Fun(𝐿,D(𝑘)) to a k-linear ∞-category. Denote by 𝑘 [𝑡0] the polynomial
algebra with |𝑡0 | = 0.

Lemma 5.3. Consider the pullback functor 𝑔∗ : D(𝑘) → Fun(𝐿,D(𝑘)) along 𝑔 : 𝐿 → ∗. There exists
an equivalence of k-linear ∞-categories Fun(𝐿,D(𝑘)) � D(𝑘 [𝑡0]) such that the following diagram
commutes:

D(𝑘)

Fun(𝐿,D(𝑘)) D(𝑘 [𝑡0]).

𝑔∗ 𝜙∗

�

(34)

Here 𝜙∗ denotes the pullback functor along the morphism of dg-algebras 𝑘 [𝑡0]
𝑡0 ↦→1
−−−−→ 𝑘 .

Proof. We observe that Fun(𝐿,D(𝑘)) admits a compact generator X, given by the diagram 𝑘 [𝑡0]
·𝑡0
−−→

𝑘 [𝑡0] in D(𝑘). The homology of the k-linear endomorphism algebra End𝑘 (𝑋) is concentrated in degree
0, and a direct computation shows that it is equivalent to the k-vector space 𝑘 [𝑡0]. It follows that End𝑘 (𝑋)
is formal. The composition of morphisms induces the polynomial algebra structure on 𝑘 [𝑡0]. In total,
this shows that End𝑘 (𝑋) is quasi-isomorphic as a dg-algebra to 𝑘 [𝑡0]. The existence of the equivalence
of k-linear ∞-categories 𝜖 : Fun(𝐿,D(𝑘)) � D(𝑘 [𝑡0]) thus follows from Lemma 2.5. The k-linear
functors 𝑔∗, 𝜙∗ are fully determined by 𝑔∗(𝑘) = (𝑘

id
−→ 𝑘) and 𝜙∗(𝑘), respectively [Lur17, Section

4.8.4]. The apparent equivalence 𝜖𝑔∗(𝑘) � 𝜙∗(𝑘) thus implies the commutativity of diagram (34). �

For 𝑛 ≥ 1, we denote by 𝑖 : ∗ → 𝑆𝑛 the inclusion functor of any vertex and by 𝑖∗ : Fun(𝑆𝑛,D(𝑘)) →
D(𝑘) the associated pullback functor. We use Remark 5.2 to lift 𝑖∗ and the functor 𝑓 ∗ from formula (33)
to k-linear functors. We further denote by 𝑔!, 𝑓! and 𝑖! the left adjoints of 𝑔∗, 𝑓 ∗ and 𝑖∗, respectively.

Lemma 5.4.

1. There exists a pushout diagram in LinCat𝑘 as follows:

Fun(𝐿,D(𝑘)) D(𝑘)

D(𝑘) Fun
(
𝑆2,D(𝑘)
)
.

𝑔!

𝑔! �
𝑖!

𝑖!

(35)

2. Set 𝑛 ≥ 2. There exists a pushout diagram in LinCat𝑘 as follows:

Fun
(
𝑆𝑛−1,D(𝑘)
)

D(𝑘)

D(𝑘) Fun (𝑆𝑛,D(𝑘)) .

𝑓!

𝑓! �
𝑖!

𝑖!

(36)
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Proof. We begin by showing statement 2. Consider the following pushout diagram of spaces:

𝑆𝑛−1 ∗

∗ 𝑆𝑛.

𝑓

𝑓 �
𝑖

𝑖

It is also pushout in Cat∞. Applying the limit-preserving functor Fun(-,D(𝑘)) : Cat𝑜𝑝∞ → Cat∞ maps
this pushout diagram to the following pullback diagram in P𝑟𝑅:

Fun(𝑆𝑛,D(𝑘)) D(𝑘)

D(𝑘) Fun
(
𝑆𝑛−1,D(𝑘)
)
.

𝑖∗

𝑖∗
�

𝑓 ∗

𝑓 ∗

The left adjoint diagram is diagram (36) and thus pushout in LinCat𝑘 .
We now show statement 1. The geometric realisation of L is equivalent to the topological 1-sphere.

There thus exists a morphism of simplicial sets 𝐿 → 𝑆1 such that the limit functor 𝑔∗ = lim :
Fun(𝐿,D(𝑘)) → D(𝑘) restricts via the pullback functor 𝑖∗ : Fun

(
𝑆1,D(𝑘)
)
→ Fun(𝐿,D(𝑘)) to the

limit functor 𝑓∗. The left adjoint 𝑔∗ : D(𝑘) → Fun(𝐿,D(𝑘)) thus factors through Fun
(
𝑆1,D(𝑘)
)
. It

thus follows from the explicit model for limits in Cat∞ that the right adjoint diagram of diagram (35) is
pullback in P𝑟𝑅. It follows that diagram (35) is pushout in LinCat𝑘 . �

Proposition 5.5. Set 𝑛 ≥ 2. There exists an equivalence of k-linear∞-categories

Fun(𝑆𝑛,D(𝑘)) � D(𝑘 [𝑡𝑛−1]), (37)

such that the following diagram in LinCat𝑘 commutes:

Fun(𝑆𝑛,D(𝑘)) D(𝑘 [𝑡𝑛−1])

D(𝑘)

Fun(𝑆𝑛,D(𝑘)) D(𝑘 [𝑡𝑛−1]).

�

𝑖∗

𝐺

𝑓 ∗ 𝜙∗

�

(38)

Here G denotes the monadic functor and 𝜙∗ the pullback functor along the morphism of dg-algebras
𝜙 : 𝑘 [𝑡𝑛−1]

𝑡𝑛−1 ↦→0
−−−−−−→ 𝑘 .

Proof. We observe that the composition of the autoequivalence of dg-algebras 𝑘 [𝑡0]
𝑡0 ↦→𝑡0−1
−−−−−−→ 𝑘 [𝑡0]

with the morphism of dg-algebras 𝑘 [𝑡0]
𝑡0 ↦→1
−−−−→ 𝑘 [𝑡0] is given by 𝑘 [𝑡0]

𝑡0 ↦→0
−−−−→ 𝑘 . It therefore follows from

Lemma 5.3 that for 𝑛 = 2, the pushout square (36) is equivalent to the image under D(-) of the following
homotopy pushout diagram of dg-categories with a single object:

𝑘 [𝑡0] 𝑘

(𝑘 [𝑡0, 𝑡1], 𝑑) 𝑘 [𝑡1],

𝑡0 ↦→0

𝑡0 ↦→𝑡0 �

where 𝑘 [𝑡0, 𝑡1] denotes the dg-algebra freely generated by 𝑡0 and 𝑡1 in degrees 0 and 1 and dif-
ferential d determined by 𝑑 (𝑡1) = 𝑡0, 𝑑 (𝑡0) = 0. It follows that there exists an equivalence of k-
linear ∞-categories Fun

(
𝑆2,D(𝑘)
)
� D(𝑘 [𝑡1]), making the the upper half of diagram (38) commute.
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The k-linear functors 𝜙∗ : D(𝑘) → D(𝑘 [𝑡1]) and 𝑓 ∗ : D(𝑘) → Fun
(
𝑆2,D(𝑘)
)

are determined by 𝜙∗(𝑘)
and 𝑓 ∗(𝑘), respectively. The homology of the chain complex underlying the right 𝑘 [𝑡1]-module 𝜙∗(𝑘) is
concentrated in degree 0, given by k. Using the facts that the upper half of diagram (38) commutes and
that 𝑖∗ 𝑓 ∗(𝑘) = 𝑘 , it follows that 𝑓 ∗(𝑘) is also mapped under the equivalence Fun

(
𝑆2,D(𝑘)
)
� D(𝑘 [𝑡1])

to a right 𝑘 [𝑡1]-module with homology k. There exists a unique right 𝑘 [𝑡1]-module, up to quasi-
isomorphism, with homology k. This right 𝑘 [𝑡1]-module k is equivalent to the module determined by
the morphism of dg-algebras 𝑘 [𝑡1]

𝑡1 ↦→0
−−−−→ 𝑘 . It follows that the lower half of diagram (38) commutes for

𝑛 = 2. For 𝑛 > 3, one can argue analogously and by induction. The pushout square (36) is equivalent to
the image under D(-) of the following homotopy pushout diagram of dg-categories:

𝑘 [𝑡𝑛−2] 𝑘

(𝑘 [𝑡𝑛−2, 𝑡𝑛−1], 𝑑) 𝑘 [𝑡𝑛−1] .

𝑡𝑛−2 ↦→0

𝑡𝑛−2 ↦→𝑡𝑛−2 �

Here again, 𝑘 [𝑡𝑛−2, 𝑡𝑛−1] denotes the freely generated dg-algebra with two generators in degrees 𝑛 − 2
and 𝑛−1 and differential determined by 𝑑 (𝑡𝑛−1) = 𝑡𝑛−2, 𝑑 (𝑡𝑛−2) = 0. We find the desired equivalence of
k-linear ∞-categories Fun(𝑆𝑛,D(𝑘)) � D(𝑘 [𝑡𝑛−1]), making the upper half of diagram (38) commute.
Showing that the lower half of diagram (38) commutes is analogous to the case 𝑛 = 2. �

Remark 5.6. The composite functor ∗ 𝑖
−→ 𝑆𝑛

𝑓
−→ ∗ is an equivalence of spaces. The functor

D(𝑘) 𝑖!
−→ Fun(𝑆𝑛,D(𝑘)) 𝑓!

−→ D(𝑘)

is thus equivalent to idD(𝑘) . By the sphericalness of 𝑓 ∗ � 𝑓∗, there exists an equivalence 𝑓∗ � 𝑓! [−𝑛]
and therefore 𝑓∗𝑖! (𝑘) � 𝑘 [−𝑛]. Note that Proposition 5.5 shows that 𝑖! (𝑘) is equivalent to the compact
generator 𝑘 [𝑡𝑛−1] ∈ D(𝑘 [𝑡𝑛−1]) � Fun(𝑆𝑛,D(𝑘)).

We now describe the cotwist functor 𝑇Fun(𝑆𝑛 ,D(𝑘)) of the spherical adjunction 𝑓 ∗ � 𝑓∗ for 𝑛 ≥ 2.
Consider the morphism of dg-algebras 𝜑 : 𝑘 [𝑡𝑛−1] → 𝑘 [𝑡𝑛−1] determined by 𝜑(𝑡𝑛−1) = (−1)𝑛−1𝑡𝑛−1.
Let 𝜑∗ : D(𝑘 [𝑡𝑛−1]) → D(𝑘 [𝑡𝑛−1]) be the pullback functor.

Proposition 5.7. Set 𝑛 ≥ 2 and let k be a commutative ring. There exists a commutative diagram in
LinCat𝑘 as follows:

Fun(𝑆𝑛,D(𝑘)) Fun(𝑆𝑛,D(𝑘))

D(𝑘 [𝑡𝑛−1]) D(𝑘 [𝑡𝑛−1]).

𝑇Fun(𝑆𝑛,D(𝑘) )

�formula (37) �formula (37)
𝜑∗ [−𝑛]

Remark 5.8. Note that only if n is odd does there exist an equivalence of functors 𝑇Fun(𝑆𝑛 ,D(𝑘)) � [−𝑛].
The functor 𝑇Fun(𝑆𝑛 ,D(𝑘)) [𝑛] is otherwise the involution reversing the sign of 𝑡𝑛−1.

Proof of Proposition 5.7. The dg-category of 𝑘 [𝑡𝑛−1]-bimodules is equivalent to the dg-category
dgMod(𝑘 [𝑡𝑛−1] ⊗𝑘 𝑘 [𝑡𝑛−1]

op). The former dg-category thus inherits a model structure from the pro-
jective model structure of the latter, whose underlying ∞-category is equivalent to the ∞-category of
k-linear endofunctors of D(𝑘 [𝑡𝑛−1]). Let � denote the multiplication in 𝑘 [𝑡𝑛−1]. We denote by 𝑘 [𝑡𝑛−1]

the 𝑘 [𝑡𝑛−1]-bimodule 𝑘 [𝑡𝑛−1] with

◦ underlying chain complex 𝑘 [𝑡𝑛−1],
◦ left action on 𝑎 ∈ 𝑘 [𝑡𝑛−1] determined by 𝑡𝑖𝑛−1.𝑎 = (−1)𝑖 (𝑛−1) 𝑡𝑖𝑛−1 � 𝑎 and
◦ right action on 𝑎 ∈ 𝑘 [𝑡𝑛−1] determined by 𝑎.𝑡𝑖𝑛−1 = 𝑎 � 𝑡𝑖𝑛−1.
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Note that 𝜑∗ � - ⊗𝑘 [𝑡𝑛−1 ]
 𝑘 [𝑡𝑛−1]. We can thus prove the proposition by showing that the composite of

the twist functor 𝑇 ′Fun(𝑆𝑛 ,D(𝑘)) of the spherical adjunction 𝑓! � 𝑓
∗ with the equivalence (37) is equivalent

to - ⊗ 𝑘 [𝑡𝑛−1] [𝑛]. Using the commutativity of the lower part of diagram (38), it suffices to show that the
twist functor T of the spherical adjunction 𝜙! � 𝜙

∗ is equivalent to - ⊗ 𝑘 [𝑡𝑛−1] [𝑛].
Using Remark 5.6, it follows that 𝜙∗𝜙! (𝑘 [𝑡𝑛−1]) � 𝑘 ∈ D(𝑘 [𝑡𝑛−1]), with k the 𝑘 [𝑡𝑛−1]-bimodule

determined by the morphism of dg-algebras 𝜙. The k-linear functor 𝜙∗𝜙! is thus equivalent to the
functor - ⊗𝑘 [𝑡𝑛−1 ] 𝑘 , for a 𝑘 [𝑡𝑛−1]-bimodule k. There is a unique such bimodule, which carries the action
𝑡𝑛−1.1 = 0 = 1.𝑡𝑛−1 ∈ 𝑘 . A cofibrant replacement of the 𝑘 [𝑡𝑛−1]-bimodule k is given the cone of the
morphism of bimodules

𝛼 : 𝑘 [𝑡𝑛−1] [𝑛 − 1] → 𝑘 [𝑡𝑛−1] .,

𝑡𝑖𝑛−1 ↦→ 𝑡𝑖𝑛−1.

To see that 𝛼 indeed exists, note that by the definition of 𝑘 [𝑡𝑛−1] and the sign rule for the shift
of left modules (see Remark 2.9), the left action of 𝑘 [𝑡𝑛−1] on 𝑘 [𝑡𝑛−1] [𝑛 − 1] is determined by
𝑡𝑛−1.1 = (−1) (𝑛−1)+(𝑛−1) 𝑡𝑛−1 = 𝑡𝑛−1. We deduce that the twist functor T is equivalent to the functor
given by tensoring with the homotopy pushout in the following diagram of cofibrant 𝑘 [𝑡𝑛−1]-bimodules:

𝑘 [𝑡𝑛−1] cone(𝛼)

0  𝑘 [𝑡𝑛−1] [𝑛] .

�

We have shown 𝑇 � - ⊗𝑘 [𝑡𝑛−1 ]
 𝑘 [𝑡𝑛−1] [𝑛], finishing the proof. �

5.2. V2
𝑓 ∗ and V3

𝑓 ∗

For 𝑛 ≥ 2, we consider the spherical adjunction 𝑓 ∗ : D(𝑘) ↔ Fun(𝑆𝑛,D(𝑘)) : 𝑓∗ of Proposition 5.1.
The goal of this section is to prove Propositions 5.9 and 5.12, describing the parametrised perverse
schober on a 2-gon and 3-gon obtained from the spherical adjunction 𝑓 ∗ � 𝑓∗.

Proposition 5.9. Let k be a commutative ring and set 𝑛 ≥ 2. Let 𝐷2 be the freely generated dg-category
with two objects 𝑥, 𝑧

𝑧 𝑥

𝑐

𝑐∗

with morphisms in degrees |𝑐 | = 0 and |𝑐∗ | = 𝑛 − 1 and vanishing differentials. Further, let 𝐷3 be the
freely generated dg-category with three objects 𝑥, 𝑦, 𝑧

𝑦

𝑥 𝑧
𝑎∗

𝑏𝑎

𝑐∗
𝑏∗

𝑐

with morphisms in degrees |𝑏 | = |𝑐 | = 0, |𝑎 | = 𝑛 − 2, |𝑏∗ | = |𝑐∗ | = 𝑛 − 1, |𝑎∗ | = 1 and differential
determined by

𝑑 (𝑎) = 𝑑 (𝑏) = 𝑑 (𝑐) = 0,
𝑑 (𝑎∗) = 𝑐𝑏, 𝑑 (𝑏∗) = 𝑎𝑐, 𝑑 (𝑐∗) = 𝑏𝑎.
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There exist equivalences of∞-categories

N 𝑓 ∗ � D(𝑘 [𝑡𝑛−1]), (39)

V2
𝑓 ∗ � D(𝐷2), (40)

V3
𝑓 ∗ � D(𝐷3). (41)

Remark 5.10. Proposition 5.9 shows that dimension 𝑛 = 2 is distinguished. Only in dimension 𝑛 = 2
do we find the morphisms 𝑎, 𝑏, 𝑐 in 𝐷3 to all be in degree 0.

Notation 5.11. For 𝜏 = +,−, denote by 𝑖𝜏1 , 𝑖
𝜏
2 , 𝑖

𝜏
3 : 𝑘 [𝑡𝑛−1] → 𝐷3 the dg-functors determined by mapping

∗ to 𝑥, 𝑧, 𝑦, respectively, and 𝑡𝑛−1 to 𝜏(𝑐𝑐∗ − 𝑎∗𝑎), 𝜏(𝑏𝑏∗ − 𝑐∗𝑐), 𝜏((−1)𝑛𝑎𝑎∗ − 𝑏∗𝑏). We further set
(−)𝑛 = + if n is even and (−)𝑛 = − if n is odd.

Proposition 5.12.

1. Under the equivalences (39) and (41), the functors 𝜍2, 𝜍3 : N 𝑓 ∗ → V3
𝑓 ∗ are equivalent to the image

under D(-) of the dg-functors 𝑖 (−)
𝑛−1

2 and 𝑖 (−)
𝑛

3 , respectively. If 𝑛 = 2, then 𝜍1 is equivalent to D
(
𝑖+1
)
.

2. Suppose that 𝑛 = 2. Under the equivalences (39) and (40), the functors 𝜍1, 𝜍2 : N 𝑓 ∗ → V2
𝑓 ∗ are

equivalent to the image under D(-) of the dg-functors 𝑘 [𝑡1] → 𝐷2 determined by mapping 𝑡1 to 𝑐𝑐∗
and 𝑐∗𝑐, respectively.

Lemma 5.13. Set 𝑛 ≥ 2.

1. There exists an equivalence of∞-categories

V2
𝑓 ∗ � D(A2), (42)

where

A2 =

(
𝑘 𝑘 [−𝑛]
0 𝑘 [𝑡𝑛−1]

)
is the upper triangular dg-algebra.

2. There exists an equivalence of∞-categories

V3
𝑓 ∗ � D(A3), (43)

where

A3 =
���
𝑘 𝑘 [−𝑛] 0
0 𝑘 [𝑡𝑛−1] 𝑘 [𝑡𝑛−1]
0 0 𝑘 [𝑡𝑛−1]

���
is the upper triangular dg-algebra.

Proof. This follows from Proposition 2.39 and the characterisation of 𝑓 ∗ in Proposition 5.5, as well as
Remark 5.6. �

Proof of Proposition 5.9. We have constructed equivalence (39) in Proposition 5.5.
Before we continue with the construction of the equivalences (40) and (41), we collect the following

sign rules used implicitly in the following. Let C be any dg-category, set 𝑥, 𝑦 ∈ dgMod(𝐶) two dg-
modules and consider a morphism 𝛼 : 𝑥 → 𝑦. The cone cone(𝛼) = 𝑥 [1] ⊕ 𝑦 has the differential
𝑑𝑛 (𝑥, 𝑦) = (−𝑑 (𝑥), 𝑑 (𝑦) − 𝛼(𝑥)). The morphism complex Hom(𝑥, 𝑦) has differential 𝑑 ( 𝑓 ) = 𝑑𝑦 ◦ 𝑓 −
(−1)deg( 𝑓 ) 𝑓 ◦ 𝑑𝑥 .
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We proceed with the construction of equivalence (41).
Consider the compact generators

𝑣 = 𝑝1A3 [−𝑛], 𝑦 = 𝑝2A3, 𝑧 = 𝑝3A3

of D(A3). Let 𝑤 = cone(𝑒), with e given by 1 ∈ 𝑘 [−𝑛] � HomdgMod(A3) (𝑣, 𝑦). Note that 𝑤, 𝑦, 𝑧
are also compact generators of D(A3). A direct inspection shows that the full dg-subcategory
〈𝑤, 𝑦, 𝑧〉 ⊂ dgMod(A3) spanned by 𝑤, 𝑦, 𝑧 is quasiequivalent to the dg-category C with objects 𝑤, 𝑦, 𝑧
and morphisms generated by the morphisms depicted in

𝑦

𝑤 𝑧

𝜖

𝜂

𝛾
𝑡𝑧

in the degrees |𝜖 | = |𝛾 | = 0, |𝑡𝑧 | = |𝜂 | = 𝑛 − 1, |𝛿 | = 𝑛 and with vanishing differentials, subject to the
relation 𝑡𝑧 ◦𝛾 = 𝛾◦𝜖 ◦𝜂. We list the images of the generating morphisms in C under the quasiequivalence
𝐶 → 〈𝑤, 𝑦, 𝑧〉.

◦ The morphism 𝜖 maps to
(
id𝑦 , 0
)
∈ Hom(𝑦, 𝑦) ⊕ Hom(𝑣 [1], 𝑦) � Hom(𝑤, 𝑦) (the splitting here and

in the following neglects the differentials).
◦ The morphism 𝜂 maps to 𝑡𝑛−1 ∈ 𝑘 [𝑡𝑛−1] � Hom(𝑦, 𝑦) ⊂ Hom(𝑤, 𝑦).
◦ The morphism 𝛾 maps to 1 ∈ 𝑘 [𝑡𝑛−1] � Hom(𝑦, 𝑧) ⊂ Hom(𝑤, 𝑧).
◦ The morphism 𝑡𝑧 maps to 𝑡𝑛−1 ∈ 𝑘 [𝑡𝑛−1] � Hom(𝑧, 𝑧).

We denote by x the cone of −𝛾 : 𝑤 → 𝑧 in dgMod(𝐶) and by 〈𝑥, 𝑦, 𝑧〉 the full dg-subcategory of
dgMod(𝐶) spanned by 𝑥, 𝑦, 𝑧. There exists a quasiequivalence of dg-categories 𝐶 ′ → 〈𝑥, 𝑦, 𝑧〉, where
𝐶 ′ is the dg-category with objects 𝑥, 𝑦, 𝑧 and generating morphisms given by

𝑦

𝑥 𝑧

𝑏

𝑎∗

𝑎

𝑐∗

𝑐

in the degrees |𝑎 | = 𝑛 − 2, |𝑏 | = |𝑐 | = 0, |𝑎∗ | = 1, |𝑐∗ | = 𝑛 − 1 subject to the relation 𝑎𝑐 = 0. The
differentials are determined on the generators by 𝑑 (𝑎∗) = 𝑐𝑏 and 𝑑 (𝑐∗) = 𝑏𝑎. We collect the images
under the dg-functor 𝐶 ′ → 〈𝑥, 𝑦, 𝑧〉 of the generating morphisms in 𝐶 ′.

◦ The morphism b maps to 𝛾 ◦ 𝜖 .
◦ The morphism a maps to (𝜂, 0) ∈ Hom𝐶 (𝑤 [1], 𝑦) ⊕ Hom𝐶 (𝑧, 𝑦) � Hom〈𝑥,𝑦,𝑧 〉 (𝑥, 𝑦) (the splitting

again neglects the differentials).
◦ The morphism c maps to (0, id𝑧) ∈ Hom𝐶 (𝑧, 𝑤 [1]) ⊕ Hom𝐶 (𝑧, 𝑧) � Hom〈𝑥,𝑦,𝑧 〉 (𝑧, 𝑥).
◦ The morphism 𝑎∗ maps to (𝜖, 0) ∈ Hom𝐶 (𝑦, 𝑤 [1]) ⊕ Hom𝐶 (𝑦, 𝑧) � Hom〈𝑥,𝑦,𝑧 〉 (𝑦, 𝑥).
◦ The morphism 𝑐∗ maps to (0, (−1)𝑛𝑡𝑧) ∈ Hom𝐶 (𝑤 [1], 𝑧) ⊕ Hom𝐶 (𝑧, 𝑧) � Hom〈𝑥,𝑦,𝑧 〉 (𝑥, 𝑧).

A direct inspection reveals the homology of the mapping complexes in 𝐶 ′:

𝐻∗ Hom𝐶′ (𝑥, 𝑥) � 𝐻∗ Hom𝐶′ (𝑦, 𝑦) � 𝐻∗ Hom𝐶′ (𝑧, 𝑧) � 𝑘 [𝑡𝑛−1],

𝐻∗Hom𝐶′ (𝑥, 𝑦) � 𝑘 [𝑡𝑛−1] [𝑛 − 1],
𝐻∗Hom𝐶′ (𝑦, 𝑧) � 𝐻∗ Hom𝐶′ (𝑧, 𝑥) � 𝑘 [𝑡𝑛−1],

𝐻∗ Hom𝐶′ (𝑥, 𝑧) � 𝐻∗ Hom𝐶′ (𝑦, 𝑥) � 𝐻∗Hom𝐶′ (𝑧, 𝑦) � 0.
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We define a dg-functor 𝜇 : 𝐷3 → 𝐶 ′ by mapping 𝑥, 𝑦, 𝑧 to 𝑥, 𝑦, 𝑧; 𝑎, 𝑏, 𝑐 to 𝑎, 𝑏, 𝑐; and 𝑎∗, 𝑏∗, 𝑐∗

to 𝑎∗, 0, 𝑐∗. Lemma 5.14 implies that 𝜇 is a quasiequivalence. In total, we obtain equivalences of ∞-
categories

D(𝐷3) � D(𝐶 ′) � D(〈𝑥, 𝑦, 𝑧〉) � D(𝐶) � D(A3)
formula (43)
� V3

𝑓 ∗ ,

which yields the desired equivalence (41).
For the construction of equivalence (40), we consider the pushout diagram in P𝑟𝐿

N 𝑓 ∗ V3
𝑓 ∗

0 V2
𝑓 ∗ ,

�

𝜍3

𝜋1,3

where 𝜋1,3 denotes the projection to the first and third components of the semiorthogonal decomposition.
The upper part of the diagram is equivalent to the image under D(-) of the diagram of dg-categories

𝑘 [𝑡1] 𝐷3

0,

𝑖
(−)𝑛

3

whose homotopy colimit is easily seen to be quasiequivalent to 𝐷2. This observation provides us with
the equivalence of∞-categories D(𝐷2) � V2

𝑓 ∗ . �

Lemma 5.14. There exist isomorphisms of graded k-modules

𝐻∗Hom𝐷3 (𝑥, 𝑥) � 𝐻∗Hom𝐷3 (𝑦, 𝑦) � 𝐻∗Hom𝐷3 (𝑧, 𝑧) � 𝑘 [𝑡𝑛−1],

𝐻∗ Hom𝐷3 (𝑥, 𝑦) [1 − 𝑛] � 𝐻∗Hom𝐷3 (𝑦, 𝑧) � 𝐻∗ Hom𝐷3 (𝑧, 𝑥) � 𝑘 [𝑡𝑛−1],

𝐻∗Hom𝐷3 (𝑥, 𝑧) � 𝐻∗Hom𝐷3 (𝑦, 𝑥) � 𝐻∗ Hom𝐷3 (𝑧, 𝑦) � 0.

Proof. The morphisms 𝑎, 𝑏, 𝑐 and 𝑎∗, 𝑏∗, 𝑐∗ freely generate 𝐷3. Any morphism in 𝐷3 is thus given
by a k-linear sum of composites of these generating morphisms. Given a morphism in 𝐷3, we call the
maximal number of generating morphisms appearing in any one of its summands the length of the
morphism. We show by induction over the length of a morphism u in 𝐷3 the following statements:

i) Any cycle 𝑢 : 𝑥 → 𝑥 (in the morphism complex of 𝐷3) is homologous to 𝜆(𝑎∗𝑎 − 𝑐𝑐∗)𝑖 , with 𝜆 ∈ 𝑘
and 𝑖 ≥ 0.

ii) Any cycle 𝑢 : 𝑥 → 𝑦 is homologous to 𝑎 ◦ 𝜆(𝑎∗𝑎 − 𝑐𝑐∗)𝑖 .
iii) Any cycle 𝑢 : 𝑧→ 𝑦 is null homologous.
iv) Further, the previous three statements also hold for 𝑥, 𝑦, 𝑧, for 𝑎, 𝑏, 𝑐 and for 𝑎∗, 𝑏∗, 𝑐∗ cyclically

permuted (and replacing 𝑏∗𝑏 − 𝑎𝑎∗ by 𝑏∗𝑏 − (−1)𝑛−2𝑎𝑎∗ because of the grading).

The base case is clear. For the induction step, we note that iv) can be shown in the same way as i), ii)
and iii) are shown in the following. We begin with i). Consider a cycle 𝑢 : 𝑥 → 𝑥 with summands up to
a given length. Using the fact that 𝐷3 is freely generated by 𝑎, 𝑏, 𝑐, 𝑎∗, 𝑏∗, 𝑐∗, we can decompose u into
𝑢 = 𝑎∗𝑢1 + 𝑐𝑢2 for two chains 𝑢1, 𝑢2. The condition 𝑑 (𝑢) = 0 implies that 𝑑 (𝑢1) = 0. By the induction
assumption, we find a chain v satisfying 𝑢1 = 𝑑 (𝑣) + 𝑎𝜆(𝑎∗𝑎 − 𝑐𝑐∗)𝑖 . It follows that u is homologous to
the cycle

𝑢′ = 𝑢 + 𝑑 (𝑎∗𝑣) = 𝑎∗𝑎𝜆(𝑎∗𝑎 − 𝑐𝑐∗)𝑖 + 𝑐(𝑢2 + 𝑏𝑣).
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From 𝑑 (𝑢′) = 0 it follows that 𝑑 (𝑢2+𝑏𝑣) = −𝑏𝑎𝜆(𝑎∗𝑎−𝑐𝑐∗)𝑖 . Note that 𝜆(𝑎∗𝑎−𝑐𝑐∗)𝑖 is not a boundary
unless 𝜆 = 0, in which case u is null homologous. We thus assume that 𝜆 ≠ 0 and find that there exists
a chain 𝑣′ with

𝑢2 + 𝑏𝑣 = −𝑐
∗𝜆(𝑎∗𝑎 − 𝑐𝑐∗)𝑖 + 𝑣′.

By the induction assumption it follows that 𝑣′ is a boundary, so we find that u is homologous to
𝜆(𝑎𝑎∗ − 𝑐𝑐∗)𝑖+1, completing the induction step for i).

We continue with the induction step for ii). Consider a cycle 𝑢 : 𝑥 → 𝑦. Write 𝑢 = 𝑎 ◦ 𝑢1 + 𝑏
∗ ◦ 𝑢2

for some morphisms 𝑢1 and 𝑢2 with 𝑑 (𝑢2) = 0. By the induction assumption we find a chain v with
𝑢2 = 𝑑 (𝑣). We thus find

𝑢 + (−1)𝑛𝑑 (𝑏∗𝑣) = 𝑎 ◦ 𝑢1 + (−1)𝑛𝑎𝑐𝑣,

with 𝑑 (𝑢1 + (−1)𝑛𝑐𝑣) = 0. By the induction assumption, we find 𝑢1 + (−1)𝑛𝑐𝑣 = 𝑑 (𝑣′) +𝜆(𝑎∗𝑎 − 𝑐𝑐∗)𝑖 ,
so that

𝑢 + (−1)𝑛𝑑 (𝑏∗𝑣) − (−1)𝑛𝑑 (𝑎𝑣′) = 𝜆𝑎 ◦ (𝑎∗𝑎 − 𝑐𝑐∗)𝑖 ,

finishing the induction step for ii).
For iii), we consider a cycle 𝑢 : 𝑧 → 𝑦. We decompose u into 𝑢 = 𝑎 ◦ 𝑢1 + 𝑏

∗ ◦ 𝑢2 with 𝑑 (𝑢2) = 0.
Using the induction assumption we thus find v with 𝑢2 = 𝜆(𝑏𝑏∗ − 𝑐∗𝑐)𝑖 + 𝑑 (𝑣). It follows that u is
homologous to

𝑎 ◦ (𝑢1 + 𝑐 ◦ 𝑣) + 𝜆𝑏
∗(𝑏𝑏∗ − 𝑐∗𝑐)𝑖 .

The condition 𝑑 (𝑢) = 0 implies that (−1)𝑛−1𝑑 (𝑢1 + 𝑐 ◦ 𝑣) = 𝜆𝑐(𝑏𝑏∗ − 𝑐∗𝑐)𝑙 . Since 𝑐(𝑏𝑏∗ − 𝑐∗𝑐)𝑙 is a
nonzero homology class unless 𝜆 = 0, we find that 𝜆 = 0 and 𝑑 (𝑢1 + 𝑐 ◦ 𝑣) = 0. Applying the induction
assumption once more, we find that u is homologous to 𝑎𝑐 ◦ 𝜆′(𝑏𝑏∗ − 𝑐∗𝑐) 𝑗 , which is the boundary of
𝑏∗𝜆′(𝑏𝑏∗ − 𝑐∗𝑐) 𝑗 . We conclude that u is null homologous, completing the induction step for iii) and the
proof. �

Proof of Proposition 5.12. We begin with the proof of statement 1. The functors 𝜍2, 𝜍3 [1] : N 𝑓 ∗ → V3
𝑓 ∗

are the inclusions of, respectively, the third and second components of the semiorthogonal decomposition
of V3

𝑓 ∗ . Using Proposition 2.39 and the notation from the proof of Proposition 5.9, we obtain that the
functor 𝜍2 is modelled by the dg-functor 𝜎2 : 𝑘 [𝑡𝑛−1] → 𝐶 ′ determined by mapping the unique object
∗ of 𝑘 [𝑡𝑛−1] to z and 𝑡𝑛−1 to (−1)𝑛𝑐∗𝑐 (the sign arises from the sign of the image of 𝑐∗ under the dg-
functor 𝐶 ′ → 〈𝑥, 𝑦, 𝑧〉). Further, let 𝜎′2 : 𝑘 [𝑡𝑛−1] → 𝐷3 be the dg-functor determined by mapping ∗ to
z and 𝑡𝑛−1 to (−1)𝑛 (𝑐∗𝑐 − 𝑏𝑏∗) = (−1)𝑛−1 (𝑏𝑏∗ − 𝑐∗𝑐). The commutative diagram of dg-categories

𝑘 [𝑡𝑛−1]

𝐶 ′ 𝐷3

𝜎2 𝜎′2

shows that 𝜍2 is also modelled by 𝜎′2. An analogous argument shows that 𝜍3 is modelled by the
dg-functor 𝜎3 : 𝑘 [𝑡𝑛−1] → 𝐷3 determined by mapping ∗ to 𝑦′ and 𝑡𝑛−1 to 𝑎𝑎∗ − (−1)𝑛−2𝑏∗𝑏 =
(−1)𝑛 ((−1)𝑛𝑎𝑎∗ − 𝑏∗𝑏). In the case that 𝑛 = 2, we can use the sequence of adjunctions

𝜍3 � 𝜚2 � 𝜍2 � 𝜚1 � 𝜍1

and the rotational symmetry of 𝐷3 (which only exists for 𝑛 = 2) to deduce that 𝜍1 is modelled by the
dg-functor 𝑘 [𝑡1] → 𝐷3 determined by mapping ∗ to 𝑥 ′ and 𝑡1 to (𝑐𝑐∗ − 𝑎∗𝑎).
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We now show statement 2. To clarify notation, we denote the right adjoints of the categorified
restriction maps 𝜚1, 𝜚2 : N 𝑓 ∗ → V2

𝑓 ∗ by 𝜍1 and 𝜍2, respectively, instead of 𝜍1 and 𝜍2. We note that
there are commutative diagrams in P𝑟𝐿 for 𝑖 = 1, 2 as follows:

N 𝑓 ∗ V3
𝑓 ∗ N 𝑓 ∗

0 V2
𝑓 ∗ ,

�

𝜍3

𝜋1,3

𝜍𝑖

𝜍𝑖

where 𝜋1,3 denotes the projection to the first and third components of the semiorthogonal decomposition.
The functor 𝜋1,3 is modeled by the dg-functor 𝐷3 → 𝐷2 given by mapping 𝑥, 𝑧 to 𝑥, 𝑧 and 𝑐, 𝑐∗ to 𝑐, 𝑐∗
and all other morphisms to zero. The desired models for 𝜍1 and 𝜍2 thus follow from the models for 𝜍1
and 𝜍2. �

6. Gluing Ginzburg algebras via perverse schobers

6.1. The main result

We fix a commutative ring k. Given an ideal triangulation T of an oriented marked surface, we defined
the relative Ginzburg algebra𝒢T in Section 1.1. Consider also the dual ribbon graph ΓT of T of Definition
4.10. In this section we construct a ΓT-parametrised perverse schober FT with the property that the
spherical adjunction at each vertex is given by 𝑓 ∗ : D(𝑘) ↔ Fun

(
𝑆2,D(𝑘)
)

: 𝑓∗ and whose∞-category
H(ΓT,FT) of global sections is equivalent to the derived ∞-category of the relative Ginzburg algebra
𝒢T. As we show in the proof of Theorem 6.1, we can achieve this by making for each vertex of ΓT a
choice of total order of the half-edges at the vertex compatible with the given cyclic order and then
defining FT via a gluing of the local model of a parametrised perverse schober from Definition 3.4.
To match the signs in the differential of the Ginzburg algebra, some care is required in the choices of
the gluing diagrams. This construction depends on the choices of total orders. However, we discuss in
Section 7.1 an interpretation of all involved choices in terms of spin structures on the surface without
the interior marked points Σ = S\(𝑀 ∩ S◦), as well as why the resulting parametrised perverse schober
is, up to equivalence, independent of the choices made.

Theorem 6.1. Let T be an ideal triangulation of an oriented marked surface. There exists a ΓT-
parametrised perverse schober FT and an equivalence of∞-categories

H(ΓT,FT) � D(𝒢T).

From Theorem 6.1 we deduce the following:

Corollary 6.2. Let T be an ideal triangulation of an oriented marked surface and let Γ◦T be the ribbon
graph obtained from ΓT by removing all external edges. Consider the associated quiver 𝑄◦T with 3-
cyclic potential 𝑊 ′T containing a 3-cycle for each interior ideal triangle of T from Section 1.1. There
exists an equivalence of∞-categories

HΓ◦T (ΓT,FT) � D
(
𝒢
(
𝑄◦T,𝑊

′
T
) )
.

Proof of Theorem 6.1. We prove the statement by an induction on the number of ideal triangles of T
and a comparison of the computation of H(ΓT,FT) with an explicit computation of homotopy colimits
in dgCat𝑘 with the quasiequivalence model structure.

We define a dg-category 𝐶T with objects the vertices of 𝑄T and morphisms freely generated by
the graded arrows of �̃�T (see Section 1.1), and two further endomorphisms 𝑙 ′𝑒,1, 𝑙

′
𝑒,2 of degrees 1, 2

at each vertex given by a boundary edge e. To clarify notation, we denote in this proof the degree 2
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loop 𝑙𝑒 : 𝑒 → 𝑒 for 𝑒 ∈ (𝑄T)0 by 𝑙𝑒,2. The differential d of the morphism complexes is determined on
the generators. It acts nontrivially on the generators 𝑙 ′𝑒,2, 𝑙𝑒,2 and 𝑎∗𝑝,𝑖; on the latter two it acts as the
differential of 𝒢T, and on 𝑙 ′𝑒,2 it acts as

𝑙 ′𝑒,2 ↦→ 𝑙 ′𝑒,1 −
∑

𝑎∈(𝑄T)1

𝑝𝑒 [𝑎, 𝑎
∗]𝑝𝑒 .

Note that the dg-category 𝐶T is Morita equivalent to 𝒢T. For each vertex e corresponding to a boundary
edge, we denote by 𝑖+𝑒 , 𝑖−𝑒 : 𝑘 [𝑡1] → 𝐶T the dg-functors determined by mapping the unique vertex ∗ of
𝑘 [𝑡1] to 𝑒 ∈ 𝐶T and the generator 𝑡1 to 𝑙 ′𝑒,1 and −𝑙 ′𝑒,1, respectively.

We deduce the theorem from the following statements, which we prove by an induction on the number
of ideal triangles of T:

Let T be an ideal triangulation of an oriented marked surface with dual ribbon graph ΓT. There
exists a ΓT-parametrised perverse schober FT with the following properties:

1. There exists an equivalence of ∞-categories

H(ΓT,FT) � D(𝐶T).

2. For each boundary edge e of T, we denote by ev𝑒 : H(ΓT,FT) → FT (𝑒) the evaluation functor at
𝑒 ∈ Exit(T ). The left adjoint of the functor

D(𝐶T) � H(ΓT,FT)
ev𝑒
−−→ FT (𝑒) = Fun

(
𝑆2,D(𝑘)
)
� D(𝑘 [𝑡1]) (44)

is equivalent to D
(
𝑖+𝑒
)
or D
(
𝑖−𝑒
)
.

In the following we will refer to functor (44) also as the evaluation functor.

Base case of the induction
Let T1 be the ideal triangulation consisting of a single ideal triangle that is not self-folded. We

choose a total order on the edges of T1 compatible with the cyclic order induced by the anticlockwise
orientation. This provides us with an equivalence of posets Exit

(
ΓT1

)
� 𝐶3. We can thus define FT1

as the parametrised perverse schober G3 ( 𝑓
∗) described in Definition 3.4 corresponding to the spherical

adjunction 𝑓 ∗ � 𝑓∗ (with 𝑛 = 2). The existence of the desired equivalence H
(
T1,FT1

)
� D
(
𝐶T1

)
is

shown in Propositions 5.9 and 5.12.
Let now T1 be the ideal triangulation consisting of a single self-folded triangle. We define FT1 using

Notation 4.16 as follows:

𝑓 ∗( 𝜚2 , 𝜚3) 𝜚1
(45)

The limit H
(
ΓT1 ,FT1

)
is equivalent to the colimit of the left dual colim

P𝑟𝐿
D
𝐿FT1 , which is equivalent

to the following coequaliser in P𝑟𝐿 , where 𝑇 = 𝑇Fun(𝑆2 ,D(𝑘)) [2] denotes the suspension of the cotwist
functor of the spherical adjunction 𝑓 ∗ � 𝑓∗, also described in Proposition 5.7:

N 𝑓 ∗ V3
𝑓 ∗ .𝜍3

𝜍1◦𝑇
(46)
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The colimit of formula (46) is in turn equivalent to the pushout of the following span in P𝑟𝐿:

N ×2
𝑓 ∗ V3

𝑓 ∗

N 𝑓 ∗ .

id× id

(𝜍3 , 𝜍1◦𝑇 )

(47)

Let T ′ be the ideal triangulation consisting of a single ideal triangle, not self-folded, and denote by
𝑒1, 𝑒3 two boundary edges of T ′. Diagram (47) is equivalent to the image under D(-) of the following
diagram in dgCat𝑘 :

𝑘 [𝑡1]  𝑘 [𝑡1] 𝐶T′

𝑘 [𝑡1] .

id  id

𝑖+𝑒3𝑖
−
𝑒1

(48)

The morphism 𝑖+𝑒3  𝑖
−
𝑒1 in diagram (48) is a cofibration, and we can thus compute the homotopy colimit

of the diagram as the (ordinary) colimit in the 1-category of k-linear dg-categories. This colimit is
quasiequivalent to 𝐶T1 , showing the desired equivalence H

(
ΓT1 ,FT1

)
� D
(
𝐶T1

)
. The left adjoint of

the evaluation functor D
(
𝐶T1

)
→ D(𝑘 [𝑡1]) to e factors as

D(𝑘 [𝑡1])
D
(
𝑖−𝑒2

)
−−−−−→ D (𝐶T ′ ) −→ D

(
𝐶T1

)
,

where 𝑒2 ≠ 𝑒1, 𝑒3 is the remaining boundary edge of T ′, and is thus equivalent to D
(
𝑖−𝑒
)
. This completes

the base case of the induction, where the ideal triangulation consists of a single ideal triangle.

Induction step
Assume now that the statement has been shown for all ideal triangulations with at most n ideal

triangles. Let T𝑛+1 be an ideal triangulation with 𝑛 + 1 ideal triangles. We choose any subtriangulation
T𝑛 consisting of n connected ideal triangles of T𝑛+1. The complement of T𝑛 in T𝑛+1 consists of a single
ideal triangle and is denoted by T1. Denote by S the set of edges along which T1 and T𝑛 are glued in T𝑛+1
and 𝑠 = |𝑆 |. To define the ΓT𝑛+1 -parametrised perverse schober FT𝑛+1 , we wish to glueFT1 andFT𝑛 in the
sense of Lemma 4.18. First, however, we modify the diagram FT𝑛 : Exit

(
ΓT𝑛

)
→ St by postcomposing

the functor FT𝑛 (𝑣 � 𝑒), for each edge 𝑣 → 𝑒 in Exit
(
ΓT𝑛

)
with 𝑒 ∈ 𝑆, with an autoequivalence 𝑇𝑒 of

Fun
(
𝑆2,D(𝑘)
)

described as follows. Consider the left adjoints of

D
(
𝒢T1

)
� H
(
ΓT1 ,FT1

) ev𝑒
−−→ Fun
(
𝑆2,D(𝑘)
)
� D(𝑘 [𝑡1])

and

D
(
𝒢T𝑛

)
� H
(
ΓT𝑛 ,FT𝑛

) ev𝑒
−−→ Fun
(
𝑆2,D(𝑘)
)
� D(𝑘 [𝑡1]).

The induction assumption implies that these two left adjoint are each equivalent to eitherD
(
𝑖+𝑒
)

orD
(
𝑖−𝑒
)

(abusing notation). If both superscripts in this description are identical, each + or −, we choose 𝑇𝑒 = 𝑇 ,
where T is as in the base case of the induction; otherwise we choose 𝑇𝑒 = idFun(𝑆2 ,D(𝑘)) . We denote the
ΓT𝑛 -parametrised perverse schober obtained from the modification of FT𝑛 by F ∗T𝑛

. We define FT𝑛+1 as
the gluing of FT1 and F ∗T𝑛

.
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We observe that H
(
ΓT𝑛 ,F ∗T𝑛

)
� H
(
ΓT𝑛 ,FT𝑛

)
. Using the induction assumption, we thus find

equivalences of∞-categories

H
(
ΓT𝑛 ,FT𝑛+1 |Exit(ΓT𝑛 )

)
= H
(
ΓT𝑛 ,F ∗T𝑛

)
� D
(
𝐶T𝑛

)
,

H
(
ΓT1 ,FT𝑛+1 |Exit(ΓT1)

)
= H
(
ΓT1 ,FT1

)
� D
(
𝐶T1

)
.

A standard result on the decomposition results of colimits [Lur09, 4.2.3.10] shows that global sections
commute with gluing in the sense that there is a pullback diagram in P𝑟𝐿 as follows:

H
(
ΓT𝑛+1 ,FT𝑛+1

)
H
(
ΓT𝑛 ,F ∗T𝑛

)
H
(
ΓT1 ,FT1

)
Fun
(
𝑆2,D(𝑘)
)×𝑠

.

�

The left adjoint diagram is equivalent to the image under D(-) of the following homotopy pushout
diagram in dgCat𝑘 :

𝑘 [𝑡1]
𝑠 𝐶T𝑛

𝐶T1 𝐶.

𝛼𝑛

𝛼1
�

𝑖𝐶
(49)

The dg-functors 𝛼1 and 𝛼𝑛 each restrict on the component of 𝑘 [𝑡1]𝑠 indexed by a given edge 𝑒 ∈ 𝑆 to
a dg-functor of the form 𝑖+𝑒 or 𝑖−𝑒 (again by abuse of notation); we denote these functors by 𝑖1𝑒 and 𝑖𝑛𝑒 ,
respectively. We will show that 𝛼1 and 𝛼𝑛 are cofibrations. Diagram (49) is thus also pushout, and we
find C to be given as follows. The number of objects of C is

!! (𝑄T𝑛

)
0
!! + !! (𝑄T1

)
0
!!− 𝑠. The morphisms are

freely generated by the edges of 𝑄T𝑛 , the edges of 𝑄T1 and, for each edge 𝑒 ∈ 𝑆, two endomorphisms(
𝑙 ′𝑒,2

)1
,
(
𝑙 ′𝑒,2

)𝑛
: 𝑒 → 𝑒 in degree 2 and one endomorphism 𝑙 ′𝑒,1 : 𝑒 → 𝑒 in degree 1 satisfying

𝑑

((
𝑙 ′𝑒,2

)1)
= 𝑖1𝑒 (𝑡1) −
∑

𝑎∈(𝑄T1)1

𝑝𝑒 [𝑎, 𝑎
∗]𝑝𝑒

and

𝑑
((
𝑙 ′𝑒,2

)𝑛)
= 𝑖𝑛𝑒 (𝑡1) −
∑

𝑎∈(𝑄T𝑛 )1

𝑝𝑒 [𝑎, 𝑎
∗]𝑝𝑒 .

This choice of 𝑇𝑒 ensures that 𝑖1𝑒 (𝑡1) = −𝑖𝑛𝑒 (𝑡1) = ±𝑙 ′𝑒,1, and it follows that

𝑑

(
−
(
𝑙 ′𝑒,2

)1
−
(
𝑙 ′𝑒,2

)𝑛)
=
∑

𝑎∈(𝑄T𝑛+1 )1

𝑝𝑒 [𝑎, 𝑎
∗]𝑝𝑒

is a boundary. We deduce the existence of a quasiequivalence 𝐶T𝑛+1 → 𝐶 mapping 𝑙𝑒,2 to −
(
𝑙 ′𝑒,2

)1
−(

𝑙 ′𝑒,2

)𝑛
. This shows the first part of the induction step.
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Let e be a boundary edge of T𝑛+1. Assume that it lies in T𝑛. The left adjoint of the evaluation functor
to e factors as

D(𝑘 [𝑡1])
D(𝑖±𝑒 )
−−−−−→ D
(
𝐶T𝑛

) D(𝑖𝐶 )
−−−−−→ D(𝐶) � D

(
𝐶T𝑛+1

)
and thus is equivalent to D

(
𝑖±𝑒
)
. If e lies in T1, we can argue analogously. This shows the second part of

the induction step, completing the induction.

𝛼1 and 𝛼𝑛 are cofibrations
To see that 𝛼1 is a cofibration, one can directly check the lifting property with respect to the fibrations

in the quasiequivalence model structure. To see that 𝛼𝑛 is a cofibration, we argue by induction on n and
decompose T𝑛 into two ideal triangulations T𝑖 , T 𝑗 with 𝑖, 𝑗 < 𝑛 such that T𝑛 is obtained by gluing T𝑖
and T 𝑗 along q edges. One then finds the following commutative diagram in dgCat𝑘 :

0 𝑘 [𝑡1]
𝑠2

𝑘 [𝑡1]
𝑞 𝐶T𝑖

𝑘 [𝑡1]
𝑠1 𝑘 [𝑡1]

𝑠

𝐶T 𝑗 𝐶T𝑛 ,

𝛼𝑖

𝛼𝑗 𝛼𝑛

(50)

whose front and back squares are pushout and where 𝑠1, 𝑠2 are the number of edges in S lying in T 𝑗 and
T𝑖 , respectively. Since we know all morphisms except 𝛼𝑛 in this diagram to be cofibrations, it follows
that 𝛼𝑛 is also a cofibration. This completes the argument and thus the proof. �

Proof of Corollary 6.2. The ∞-category HΓ◦T (Γ,FT) is equivalent to the pullback of the diagram of
∞-categories

0

H(Γ,FT)
∏
|𝜕ΓT | N 𝑓 ∗ ,

∏
|𝜕ΓT | ev

where |𝜕ΓT | denotes the number of external edges of ΓT (or equivalently, the number of boundary edges
of T ) and
∏
|𝜕ΓT | ev is the product of the evaluation functors at the external edges. The left adjoint of

this diagram lies in P𝑟𝐿 and is modelled by the diagram of cofibrant dg-categories∐
|𝜕ΓT |

𝑘 [𝑡1] 0

𝐶T,

𝛼
(51)

where 𝛼 restricts on each component corresponding to an external edge e to the dg-functor 𝑖+𝑒 or 𝑖−𝑒 . The
pushout of diagram (51) is easily seen to be Morita equivalent to the Ginzburg algebra 𝒢

(
𝑄◦T,𝑊

′
T
)
. We

thus find the desired equivalence of∞-categories HΓ◦T (Γ,FT) � D
(
𝒢
(
𝑄◦T,𝑊

′
T
) )

. �

We end this section by describing how the perverse schober FT can be modified so that its global
sections describe only the perfect or only the finite modules over the relative Ginzburg algebra 𝒢T.

Notation 6.3. We denote

◦ by D(𝑘)perf ⊂ D(𝑘) the full subcategory spanned by perfect complexes of k-vector spaces;
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◦ by Fun
(
𝑆2,D(𝑘)
)perf
⊂ Fun
(
𝑆2,D(𝑘)
)

the full subcategory spanned by compact objects – note that
Fun
(
𝑆2,D(𝑘)perf ) is contained in Fun

(
𝑆2,D(𝑘)
)perf ;

◦ by

( 𝑓 ∗)perf : D(𝑘)perf ←→ Fun
(
𝑆2,D(𝑘)
)perf

: 𝑓 perf
∗

and

( 𝑓 ∗)fin : D(𝑘)perf ←→ Fun
(
𝑆2,D(𝑘)perf
)

: 𝑓 fin
∗

the restrictions of the adjunction 𝑓 ∗ : D(𝑘) ↔ Fun
(
𝑆2,D(𝑘)
)
. For the well-definedness of 𝑓 perf

∗ ,
note that 𝑓 ∗ preserves filtered colimits, so that 𝑓∗ carries compact objects to compact objects.

Adapting the construction in the proof of Theorem 6.1, we define the ΓT-parametrised perverse
schobers

Ffin
T ,F

perf
T : Exit(ΓT) → St

by replacing inFT at each vertex of ΓT the spherical functor 𝑓 ∗ by ( 𝑓 ∗)fin and ( 𝑓 ∗)perf , respectively. Note
that F perf

T ,F fin
T take values in the∞-category Stidem ⊂ St of idempotent complete, stable∞-categories.

Proposition 6.4. Consider the morphisms F fin
T ,F perf

T → FT in 𝔓(ΓT), point-wise given by the fully
faithful functors. Passing to global sections and colimits, respectively, yields the following commutative
diagram of∞-categories:

colim
Stidem

D
𝐿Fperf

T colim
P𝑟𝐿
D
𝐿FT H(ΓT,FT) H

(
ΓT,F fin

T

)
D(𝒢T)

perf D(𝒢T) D(𝒢T) D(𝒢T)
fin,

� �

�

� �

=

where

◦ D(𝒢T)
perf ⊂ D(𝒢T) denotes the full subcategory spanned by the compact objects and

◦ D(𝒢T)
fin ⊂ D(𝒢T) denotes the full subcategory spanned by the modules with finite total

homological dimension.

In particular, we obtain that the finite 𝒢T-modules can be characterised as the global sections whose
point-wise values on the edges of T in Exit(ΓT) lie in N( 𝑓 ∗)fin .

Proof. Note that the morphism F perf
T → FT is point-wise given by Ind-completion. It thus follows from

the discussion on the computation of colimits in Stidem in Section 2.1 that the colimit of D𝐿 (FT)
perf

describes the∞-category of compact 𝒢T-modules.
A 𝒢T-module M is by definition finite if and only if RHom𝒢T (𝒢T, 𝑀) ∈ D(𝑘) is a finite k-module.

Note that𝒢T =
⊕

𝑒 𝑝𝑒𝒢T, where the sum runs over all edges of T. Using Proposition 6.7, we thus obtain
that M is finite if and only if RHom𝒢T (𝑝𝑒𝒢T, 𝑀) � 𝑖

∗ ev𝑒 (𝑀) ∈ D(𝑘) is a finite k-module for all e. The
latter is fulfilled if and only if the point-wise values of the co-Cartesian section corresponding to M lies
in N( 𝑓 ∗)fin . �

We illustrate how finite 𝒢T-modules can be described by locally finite global sections in examples in
Section 6.3.
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6.2. Two examples

In this section we illustrate the computation of the proof of Theorem 6.1 in the case of the once-punctured
torus and the unpunctured 4-gon.

Example 6.5. Let S be the once-punctured torus and consider the ideal triangulation T of S consisting
of two ideal triangles glued together at all three edges. Using the graphical notation from Notation 4.8,
the dual ribbon graph ΓT can be depicted as follows (the crossing has to do with the cyclic orderings of
the half-edges induced by the orientation of S):

· ·

In Section 5.2, we introduced the dg-category 𝐷3 with three objects 𝑥, 𝑦, 𝑧, freely generated by the
following morphisms:

𝑦

𝑥 𝑧
𝑎∗

𝑏𝑎

𝑐∗
𝑏∗

𝑐

These morphisms are in degrees |𝑎 | = |𝑏 | = |𝑐 | = 0 and |𝑎∗ | = |𝑏∗ | = |𝑐∗ | = 1. The differential is
determined by 𝑑 (𝑎∗) = 𝑐𝑏, 𝑑 (𝑏∗) = 𝑎𝑐, 𝑑 (𝑐∗) = 𝑏𝑎. The dg-category 𝐷3 is Morita equivalent to the
relative Ginzburg algebra of a single triangle. To describe the Ginzburg algebra of T, we consider the
following span of dg-categories, where the morphisms are defined in Notation 5.11:

𝑘 [𝑡1]
3

𝐷3 𝐷3.

(𝑖−1 ,𝑖
+
2 ,𝑖
−
3 )(𝑖+1 ,𝑖

−
2 ,𝑖
+
3 ) (52)

Informally, this span describes a gluing of two copies of the dg-category 𝐷3 at all vertices with matching
orientations. To compute the homotopy colimit of diagram (52), we consider the cofibrant replacement
of the diagram, which consists in replacing 𝐷3 with the following dg-category:

𝑦

𝑥 𝑧

𝑎∗

𝑏

𝑙𝑦,1

𝑙𝑦,2

𝑎

𝑐∗

𝑙𝑥,1

𝑙𝑥,2

𝑏∗

𝑐
𝑙𝑧,2

𝑙𝑧,1

(53)
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Here,
!!𝑙𝑥,1!! = !!𝑙𝑦,1!! = !!𝑙𝑧,1!! = 1 and

!!𝑙𝑥,2!! = !!𝑙𝑦,2!! = !!𝑙𝑧,2!! = 2, and the differential acts on the additional
generators as follows:

𝑑
(
𝑙𝑥,1
)
= 𝑑
(
𝑙𝑦,1
)
= 𝑑
(
𝑙𝑧,1
)
= 0

𝑑
(
𝑙𝑥,2
)
= 𝑙𝑥,1 − (𝑐𝑐

∗ − 𝑎∗𝑎)

𝑑
(
𝑙𝑦,2
)
= 𝑙𝑦,1 − (𝑎𝑎

∗ − 𝑏∗𝑏)

𝑑
(
𝑙𝑧,2
)
= 𝑙𝑧,1 − (𝑏𝑏

∗ − 𝑐∗𝑐).

The colimit of the cofibrant replacement of diagram (52) is, up to quasiequivalence, the freely generated
dg-category of the following form:

𝑦

𝑥 𝑧

𝑎∗1
𝑏1

𝑎∗2

𝑏2

𝑙𝑦

𝑎1

𝑐∗1
𝑙𝑥

𝑎2

𝑐∗2

𝑏∗1

𝑐1
𝑙𝑧

𝑏∗2

𝑐2

A direct computation shows that the differentials match the differentials of the Ginzburg algebra
𝒢
(
𝑄T,𝑊

′
T
)

of the quiver

·

· ·

𝑏1

𝑏2

𝑎1

𝑎2

𝑐1

𝑐2

(54)

with potential 𝑊 ′T = 𝑐1𝑏1𝑎1 + 𝑐2𝑏2𝑎2. Note that the once-punctured torus has no boundary, so the
relative Ginzburg algebra 𝒢T is identical to 𝒢

(
𝑄T,𝑊

′
T
)
.

The foregoing gluing description of the Ginzburg algebra is caputured by the perverse schober FT.
Denote by T the functor Fun

(
𝑆2,D(𝑘)
) formula (37)

� D(𝑘 [𝑡1])
𝜑∗

−−→ D(𝑘 [𝑡1])
formula (37)
� Fun
(
𝑆2,D(𝑘)
)
,

where 𝜑∗ is the pullback functor along the morphism of dg-algebras 𝜑 : 𝑘 [𝑡1]
𝑡1 ↦→−𝑡1
−−−−−→ 𝑘 [𝑡1], or

equivalently the suspended cotwist 𝑇Fun(𝑆𝑛−1 ,D(𝑘)) [2] of the adjunction 𝑓 ∗ � 𝑓∗ (see Proposition 5.7).
The ΓT-parametrised perverse schober FT : Exit(ΓT) → St is given by the following diagram (see
Section 3.1 for the notation):

V3
𝑓 ∗ N 𝑓 ∗

N 𝑓 ∗

N 𝑓 ∗ V3
𝑓 ∗ .

𝑇 ◦𝜚2

𝑇 ◦𝜚3

𝑇 ◦𝜚1

𝜚1

𝜚2

𝜚3 (55)

The limit of this diagram is equivalent to the colimit in P𝑟𝐿 of the right adjoint diagram (or the left
adjoint; the adjoint diagrams are equivalent). A standard argument, for example using the decomposition
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of colimits [Lur09, 4.2.3.10], shows that the colimit of the left adjoint diagram is equivalent to the colimit
of the following span in P𝑟𝐿 :

N ×3
𝑓 ∗

V3
𝑓 ∗ V3

𝑓 ∗ .

(𝜍1 , 𝜍2 , 𝜍3)(𝜍1◦𝑇 , 𝜍2◦𝑇 , 𝜍3◦𝑇 ) (56)

This span is modelled in terms of dg-categories by the span (52), so the colimit of diagram (56) in P𝑟𝐿
is equivalent to the image under D(-) of the homotopy colimit of diagram (52) and thus equivalent to
the derived category of the Ginzburg algebra 𝒢T. Finally, we wish to emphasise that the appearance of
the autoequivalence T in diagram (55) serves to fix the correct signs in the differential of the Ginzburg
algebra.

In next example, of the unpunctured 4-gon, the surface has a nonempty boundary, so that the
associated relative Ginzburg algebra 𝒢T contains more information than the nonrelative Ginzburg
algebra 𝒢
(
𝑄◦T,𝑊

′
T
)
.

Example 6.6. Consider the unpunctured square S and the ideal triangulation T depicted as follows:

·

·

The dual ribbon graph ΓT is included in this depiction. The left dual of the ΓT-parametrised perverse
schober FT : Exit(ΓT) → St is modelled by the following diagram of dg-categories:

𝑘 [𝑡1]

𝑘 [𝑡1] 𝐷3 𝑘 [𝑡1] 𝐷3 𝑘 [𝑡1] .

𝑘 [𝑡1]

𝑖+𝑥
𝑖−𝑧

𝑖+𝑦

𝑖−𝑦

𝑖−𝑧

𝑖+𝑥

(57)

To compute the homotopy colimit of this diagram, we again consider the cofibrant replacement, which
consists in replacing 𝐷3 with the dg-category depicted in diagram (53). The colimit of the cofibrant
replacement of diagram (57) is quasiequivalent to the freely generated dg-category with five objects,
which can be depicted as follows:

𝑧2 𝑥 𝑦1

𝑦2 𝑧1

𝑐2

𝑏∗2

𝑙𝑥

𝑐∗1

𝑎2

𝑐∗2

𝑎1

𝑏1

𝑎∗1

𝑎∗2
𝑏2

𝑐1

𝑏∗1
(58)
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The nonzero differentials are given by

𝑑 (𝑙𝑥) = 𝑐1𝑐
∗
1 + 𝑐2𝑐

∗
2 − 𝑎

∗
1𝑎1 − 𝑎

∗
2𝑎2

and, for 𝑖 = 1, 2,

𝑑
(
𝑎∗𝑖
)
= 𝑐𝑖𝑏𝑖 , 𝑑
(
𝑏∗𝑖
)
= 𝑎𝑖𝑐𝑖 , 𝑑
(
𝑐∗𝑖
)
= 𝑏𝑖𝑎𝑖 .

It follows that the dg-category (58) is Morita equivalent to the relative Ginzburg algebra 𝒢T.
The ∞-category of global sections of FT with support on the subribbon graph Γ◦T of internal edges

can be described as the colimit of the diagram in P𝑟𝐿

N 𝑓 ∗

V1
𝑓 ∗ V1

𝑓 ∗ ,

𝑓!𝑓! (59)

where 𝑓! : N 𝑓 ∗ = Fun
(
𝑆2,D(𝑘)
)
→ D(𝑘) = V1

𝑓 ∗ is the left adjoint of the pullback functor 𝑓 ∗ along
𝑓 : 𝑆2 → ∗. Diagram (59) is modelled by the following diagram in dgCat𝑘 :

𝑘 [𝑡1]

𝑘 𝑘,

𝜙𝜙 (60)

with 𝜙 : 𝑘 [𝑡1]
𝑡1 ↦→0
−−−−→ 𝑘 . The homotopy colimit of this diagram is given by the polynomial algebra 𝑘 [𝑡2]

with |𝑡2 | = 2, which is the Ginzburg algebra of the 𝐴1-quiver.
The gluing construction of the relative Ginzburg algebra can be adapted to describe global sections of

FT which vanish on any fixed subset of external edges of ΓT. The constructions of 𝒢T and 𝒢
(
𝑄◦T,𝑊

′
T
)

correspond to the case of sections which vanishing on, respectively, none and all of the external edges.
For example, the∞-category C of sections of FT which vanish on all but one external edge is equivalent
to the colimit of the following diagram in P𝑟𝐿 :

N 𝑓 ∗

V1
𝑓 ∗ V2

𝑓 ∗ .

𝜍1𝑓! (61)

The∞-category V2
𝑓 ∗ is modelled by the dg-category 𝐷2, which is the freely generated dg-category with

two objects 𝑦, 𝑧 and morphisms of the form

𝑦 𝑧,

𝑏

𝑏∗

with |𝑏 | = 0, |𝑏∗ | = 1 (see Proposition 5.9). The ∞-category C is thus equivalent to the derived
∞-category of the path algebra of the graded quiver

𝑦 𝑧

𝑏

𝑏∗

𝑙𝑧

with differential 𝑑 (𝑙𝑧) = 𝑏𝑏∗.
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6.3. Spherical and projective modules

Let T be an ideal triangulation of an oriented marked surface S. The∞-category D(𝒢T) contains

◦ for each edge e of T, a module 𝑆𝑒 which is 3-spherical if e is an internal edge and exceptional if e is
a boundary edge;

◦ for each interior marked point v of S, a module 𝐶𝑣 with its k-linear endomorphism object
quasi-isomorphic to 𝐻∗

(
𝑆1 × 𝑆2, 𝑘
)
;

◦ for each edge e of T, the projective module 𝑃𝑒 = 𝑝𝑒𝒢T, where 𝑝𝑒 is the lazy path.

The goal of this section is to identify these modules in H(ΓT,FT) � D(𝒢T). In terms of Smith’s
description of the∞-category Dfin (𝒢 (𝑄◦T,𝑊 ′T) ) ⊂ D(𝒢T) as a full subcategory of an untwisted Fukaya
category of a Calabi–Yau threefold Y [Smi15, Section 5.4], the 𝑆𝑒, where e is an internal edge, correspond
to Lagrangian matching spheres and the 𝐶𝑣 correspond to Lagrangian embeddings of 𝑆1 × 𝑆2 in Y.

We can use the limit descriptions of the ∞-categories of global sections to geometrically describe
the objects 𝑆𝑒 and 𝐶𝑣 , as co-Cartesian sections of the Grothendieck construction Γ(FT) → Exit(T)
(see also Section 2.1 at i). We begin with the case where e is an internal edge. Locally at e, we find FT
to be, up to natural equivalence, of the following form:

V3
𝑓 ∗

𝜚3
−−→ Fun
(
𝑆2,D(𝑘)
)

𝑇 ◦𝜚3
←−−−− V3

𝑓 ∗ .

Let 𝜄1 : D(𝑘) → V3
𝑓 ∗ denote the inclusion of the first component of the semiorthogonal decomposition.

We find a co-Cartesian section of Γ(FT), which is locally at e of the form

𝜄1 (𝑘)
!
−−→ 𝑓 ∗(𝑘)

!
←−− 𝜄1 (𝑘)

and vanishes otherwise (see also Notation 2.30). We define 𝑆𝑒 as this co-Cartesian section. Suppose
now that e is a boundary edge. Locally at e, FT is given up to natural equivalence as follows:

Fun
(
𝑆2,D(𝑘)
)

𝜚3
←−− V3

𝑓 ∗ .

We define 𝑆𝑒 to be the co-Cartesian section of Γ(FT) which is at e of the form

𝑓 ∗(𝑘)
!
←−− 𝜄1 (𝑘)

and vanishes otherwise.
For the definition of 𝐶𝑣 , we consider an interior marked point of S. Locally around v, FT is, up to

natural equivalence, of the following form:

Fun
(
𝑆2,D(𝑘)
)

Fun
(
𝑆2,D(𝑘)
)

V3
𝑓 ∗ Fun

(
𝑆2,D(𝑘)
)

Fun
(
𝑆2,D(𝑘)
)

V3
𝑓 ∗ V3

𝑓 ∗ Fun
(
𝑆2,D(𝑘)
)

Fun
(
𝑆2,D(𝑘)
)

· · ·
...

𝜚1

𝜚2

𝜚3

𝜚1

𝜚2

𝜚3

𝜚1

𝜚2

𝜚3

(62)
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The corresponding object 𝐶𝑣 is given by the co-Cartesian section which locally at v is given as
follows and vanishes everywhere else (𝜄3 is the inclusion of the third component of the semiorthogonal
decomposition of V3

𝑓 ∗):

0

𝑓 ∗(𝑘) 𝜄3 ( 𝑓
∗(𝑘)) 𝑓 ∗(𝑘)

0 𝜄3 ( 𝑓
∗(𝑘)) 𝜄3 ( 𝑓

∗(𝑘)) 0

𝑓 ∗(𝑘) · · ·
...

𝜚1

𝜚2

𝜚3

𝜚1

𝜚2

𝜚3

𝜚1

𝜚2

𝜚3

We now describe the projective modules 𝑃𝑒. For simplicity, we do not distinguish in notation
between 𝑃𝑒 ∈ D(𝒢T) and the corresponding element in the equivalent ∞-category H(ΓT,FT). We
denote by ev𝑒 : H(ΓT,FT) → Fun

(
𝑆2,D(𝑘)
)

the evaluation functor at the vertex 𝑒 ∈ Exit(ΓT). Note
that limits and colimits in H(ΓT,FT) are computed point-wise, so that the functor ev𝑒 preserves all
limits and colimits and thus admits a left adjoint, denoted ev∗𝑒. Consider further the adjoint functors
𝑖! : D(𝑘) ↔ Fun

(
𝑆2,D(𝑘)
)

: 𝑖∗ defined in the discussion before Lemma 5.4.

Proposition 6.7. The left adjoint ev∗𝑒 𝑖! of the functor

𝑖∗ ev𝑒 : H(ΓT,FT) → D(𝑘)

satisfies ev∗𝑒 𝑖!(𝑘) � 𝑃𝑒.

Proof. We prove the statement via an induction on the number of ideal triangles of T. Let T1 be the
ideal triangulation consisting of a single triangle, not self-folded. Proposition 5.12 shows that ev∗𝑒 𝑖! is
modeled by the dg-functor 𝛼 : 𝑘 → 𝐷3 determined by mapping the unique object of k to any one of the
objects of 𝐷3. This shows that ev∗𝑒 𝑖!(𝑘) � 𝑃𝑒, as desired. The case of the triangulation consisting of a
single self-folded triangle is treated similarly and left to the reader.

Suppose the statement has been shown for all ideal triangulations T with at most n ideal triangles. The
setup is as in the induction step in the proof of Theorem 6.1: we consider an ideal triangulation T𝑛+1 with
𝑛 + 1 ideal triangles obtained via the gluing of ideal triangulations T𝑛 and T1 with, respectively, n and

1 ideal triangles along s boundary edges. If e is an edge of T𝑛, the functor D(𝑘)
ev∗𝑒 𝑖!
−−−−→ H
(
ΓT𝑛+1 ,FT𝑛+1

)
factors as

D(𝑘)
ev∗𝑒 𝑖!
−−−−→ H
(
ΓT𝑛 ,FT𝑛

) 𝛼
−−→ H
(
ΓT𝑛+1 ,FT𝑛+1

)
,

where 𝛼 is modeled by a dg-functor 𝐶T𝑛 → 𝐶T𝑛+1 and thus satisfies 𝛼
(
𝑝𝑒𝒢T𝑛

)
� 𝑝𝑒𝒢T𝑛+1 = 𝑃𝑒.

Using the induction assumption, it thus follows that ev∗𝑒 𝑖!(𝑘) � 𝑃𝑒. If e is an edge of T1, we can argue
analogously. This completes the induction. �

6.4. Derived equivalences arising from flips of the triangulation

We consider two ideal triangulations T and T ′ of a surface related by the flip of internal edge e of T
which is not self-folded. Locally at e, the change in the triangulations can be depicted as follows:
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𝑒
flip 𝑒′

As shown in [LF09], the flip at edge e corresponds on the associated quivers with potential to the
quiver mutation at the vertex of the quiver corresponding to e. It is shown in [Kel11, Section 7.6] that
there exists an associated equivalence between the derived categories of the 3-CY Ginzburg algebras
𝒢
(
𝑄◦T,𝑊T
)

and𝒢
(
𝑄◦T ′ ,𝑊T ′
)
. The goal of this section is to associate to the flip an equivalence between

the derived ∞-categories of the relative Ginzburg algebras 𝒢T and 𝒢T ′ , thus extending the combined
result of [LF09] and [Kel11] to relative Ginzburg algebras.

From the perspective of dual ribbon graphs, the flip at e relates the two ribbon graphs ΓT and ΓT ′ ,
which locally differ, as follows:

·

·

flip
�

·

·
(63)

The flip (63) can be described by the following pair of spans of contractions of ribbon graphs:

·

·

𝑐1
←−−

· ·

· ·

𝑐2
−−→ · · · (64)

· · ·
𝑐3
←−−

· ·

· ·

𝑐4
−−→

·

·
(65)

Denote by

𝑇 : N 𝑓 ∗
formula (39)
� D(𝑘 [𝑡1])

𝜑∗

−−→ D(𝑘 [𝑡1])
formula (39)
� N 𝑓 ∗

the autoequivalence, with 𝜑 : 𝑘 [𝑡1]
𝑡1 ↦→−𝑡1
−−−−−→ 𝑘 [𝑡1]. The contractions (64) and (65) give rise to the

following arrangement of perverse schobers, related via equivalences and push-forwards along the
contractions. Note that no edges joining two singularities of the perverse schobers are contracted. Each
step preserves the∞-category of global sections up to a canonical equivalence of∞-categories.

𝑓 ∗

𝑓 ∗

𝜚2
𝜚3

( 𝜚1 ,𝑇 ◦𝜚1)

𝜚3

𝜚2

� (66)
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�

𝑓 ∗

𝑓 ∗

𝜚2
𝜚3

( 𝜚1 , 𝜚1)

𝑇 ◦𝜚3

𝑇 ◦𝜚2

(𝑐1)∗
←−−−−−

𝑓 ∗ 0N 𝑓 ∗

0N 𝑓 ∗
𝑓 ∗

𝜚2
𝜚2 ( 𝜚1 , 𝜚3)

( 𝜚1 , 𝜚1)

( 𝜚3 , 𝜚1) 𝑇 ◦𝜚2

𝑇 ◦𝜚2

� (67)

�

𝑓 ∗ 0N 𝑓 ∗

0N 𝑓 ∗
𝑓 ∗

𝜚1 [1]
𝜚2

( 𝜚1 , 𝜚2 [1])
( 𝜚3 , 𝜚1)

( 𝜚3 , 𝜚1) 𝑇 ◦𝜚2

𝑇 ◦𝜚2

(𝑐2)∗
−−−−−→ 𝑓 ∗ 0N 𝑓 ∗

𝑓 ∗
𝜚1 [1]

𝜚2

( 𝜚1 , 𝜚2 [1])
( 𝜚4 , 𝜚1) 𝑇 ◦𝜚2

𝑇 ◦𝜚3

�

(68)

� 𝑓 ∗ 0N 𝑓 ∗
𝑓 ∗

𝜚4 [1]
𝜚2 ( 𝜚1 , 𝜚1 [3]) ( 𝜚3 [2], 𝜚1) 𝑇 ◦𝜚2

𝑇 ◦𝜚2 [2]

(𝑐3)∗
←−−−−−

0N 𝑓 ∗
𝑓 ∗

𝑓 ∗ 0N 𝑓 ∗

𝜚3 [1]
( 𝜚2 [2], 𝜚1) 𝑇 ◦𝜚2

𝜚2 ( 𝜚1 , 𝜚1 [3])

( 𝜚3 , 𝜚1)

𝑇 ◦𝜚2 [2]

�

(69)

�

0N 𝑓 ∗
𝑓 ∗

𝑓 ∗ 0N 𝑓 ∗

𝜚1 [2]
( 𝜚3 [2], 𝜚1) 𝑇 ◦𝜚2

𝜚2 ( 𝜚1 , 𝜚3 [3])

( 𝜚2 [1], 𝜚2)

𝑇 ◦𝜚1 [3]

(𝑐4)∗
−−−−−→

𝑓 ∗

𝑓 ∗

𝜚1 [2]

𝑇 ◦𝜚3 [2]

𝜚3 [3]

( 𝜚2 [1], 𝜚2)

𝑇 ◦𝜚1 [3]

� (70)

�

𝑓 ∗

𝑓 ∗

𝑇 ◦𝜚1

𝜚3

𝜚3

( 𝜚2 ,𝑇 ◦𝜚2)

𝑇 ◦𝜚1

(71)

Each of these equivalences of parametrised perverse schobers is nontrivial only at one or two vertices
with label 0N 𝑓 ∗

, where it is given by the paracyclic twist functor 𝑇V𝑛
0N 𝑓 ∗

of Section 3.2 (see also

Proposition 3.11), except for the equivalence between the parametrised perverse schober in diagram
(66) and the left parametrised perverse schober in diagram (67), and that between the right parametrised
perverse schober of diagram (70) and the parametrised perverse schober of diagram (71). The former is
nontrivial only at the lower vertex labeled 𝑓 ∗, where it is given by the autoequivalence 𝜖 of V3

𝑓 ∗ which
restricts on both the components Fun

(
𝑆2,D(𝑘)
)

of the semiorthogonal decomposition to T and on the
component D(𝑘) of the semiorthogonal decomposition to the identity functor. The latter equivalence

https://doi.org/10.1017/fms.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.1


Forum of Mathematics, Sigma 61

of parametrised perverse schobers is nontrivial at three objects of the exit path category corresponding
to the two vertices and the edge connecting them. At the lower vertex, the equivalence is given by
[3], at the upper vertex by 𝜖 ◦ [2] and at the object of Exit(T ) corresponding to the diagonal edge
by [−2].

We assume for the moment that neither e nor its flip 𝑒′ is the outer edge of a self-folded triangle.
The perverse schober FT from Theorem 6.1 can be chosen to restrict locally at e to the perverse schober
(66). We can thus describe FT as the gluing (in the sense of Lemma 4.18) of the parametrised perverse
schober of diagram (66) and its complement in FT. Similarly, FT ′ can be chosen to be the gluing of
the complement of the parametrised perverse schober (66) in FT and the parametrised perverse schober
(71).

We can thus glue the complement of the parametrised perverse schober (66) in FT with the
parametrised perverse schobers (66)–(71) and use the fact that the global sections are in each step
preserved up to equivalence of ∞-categories (see Proposition 4.28) to obtain an equivalence of
∞-categories

𝜇𝑒 : H(ΓT,FT) → H (ΓT ′ ,FT ′ ) , (72)

which we call the mutation equivalence at e.
If e or 𝑒′, say e, is the outer edge of a self-folded triangle, we cannot take the naive complement of

diagram (66) in FT, because the underlying ribbon graph would have an edge without any endpoints.
We change ΓT by replacing the edge e with the ribbon graph

·
𝑓

and obtain a parametrised perverse schober F̃T by changing FT at e to

0N 𝑓 ∗
.

We also change FT ′ accordingly to F̃T ′ . The contraction of the edge f then induces equivalences
between global sections of FT and F̃T as well as FT ′ and F̃T ′ . Composing with the equivalence on
global sections as in formula (72) applied to F̃T, we obtain the equivalence of∞-categories (72).

Remark 6.8. The mutation equivalence 𝜇𝑒 maps global sections of FT with support on Γ◦T to global
sections of FT ′ with support on Γ◦T ′ . We thus obtain an equivalence of∞-categories

D
(
𝑄◦T,𝑊

′
T
)
� HΓ◦T (ΓT,FT)

𝜇𝑒
−−→ HΓ◦T ′

(ΓT ′ ,FT ′ ) � D
(
𝑄◦T ′ ,𝑊

′
T ′
)
.

Proposition 6.9. Let T, T ′ be two ideal triangulations of a surface, differing by a flip of an internal
edge 𝑒 ∈ T to 𝑒′ ∈ T ′. Given an edge 𝑓 ≠ 𝑒 of T, we denote by 𝑓 ′ the corresponding edge of T ′.

1. There exists an equivalence in H (ΓT ′ ,FT ′ )

𝜇𝑒 (𝑃𝑒) � cof ���𝑃𝑒′ →
⊕

𝛼∈(𝑄T)1 , 𝑠 (𝛼)=𝑒

𝑃𝑡 (𝛼)′
��� . (73)

2. Let 𝑓 ≠ 𝑒 be an edge of T. There exists an equivalence in H (ΓT ′ ,FT ′ )

𝜇𝑒
(
𝑃 𝑓
)
� 𝑃 𝑓 ′ .

Proof. We begin by showing statement 1. The idea of the proof is to trace through the equivalences on
global sections induced by diagrams (66)–(71) and describe the composition of the inverses of these
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equivalences with the evaluation at a point functor H(ΓT,FT)
ev𝑒
−−→ Fun
(
𝑆2,D(𝑘)
) 𝑖∗
−→ D(𝑘). Passing

to left adjoints and evaluating at 𝑘 ∈ D(𝑘) yields the image of 𝑃𝑒 under 𝜇𝑒.
We denote the complement of the parametrised perverse schober of diagram (66) in FT by F𝑐 .
We denote the gluing of F𝑐 with the parametrised perverse schobers

◦ on the right of diagram (68) by G1,
◦ on the left of diagram (69) by G2,
◦ on the right of diagram (69) by G3 and
◦ on the left of diagram (70) by G4.

The evaluation of G1 at the central vertex yields the∞-category

V4
0N 𝑓 ∗

�
{
Fun
(
𝑆2,D(𝑘)
)
, Fun
(
𝑆2,D(𝑘)
)
, Fun
(
𝑆2,D(𝑘)
)}
.

A direct computation shows that the composite of the equivalence limG1 � H(ΓT,FT) with ev𝑒 is given
by the composite functor 𝑅1 of the evaluation at the central vertex – labelled V4

0N 𝑓 ∗
– with the restriction

functor to the second component of the semiorthogonal decomposition of V4
0N 𝑓 ∗

. Precomposing the

functor 𝑅1 : limG1 → Fun
(
𝑆2,D(𝑘)
)

with the equivalence limG2 � limG1 yields the functor 𝑅2 given
by the composite of the evaluation functor to the central vertex – labelled V4

0N 𝑓 ∗
– with the functor

cof1,3 [1], which is the composite of the suspension of the cofibre functor with the restriction functor
to the first and third components of the semiorthogonal decomposition. We denote the diagonal edge
of the central ribbon graph of diagram (65) by 𝑒′′, adjacent to the upper vertex denoted 𝑣1 and the
lower vertex denoted 𝑣2. Note that ev𝑒′′ � 𝜚1 ◦ ev𝑣1 � 𝜚3 ◦ ev𝑣2 . Further, there exist canonical natural
transformations

𝑎 : 𝜚3 [−1] = 𝜋1 −→ 𝜋2 = 𝜚1,

given at a vertex 𝑥 𝛼
−→ 𝑦 ∈ V3

0N 𝑓 ∗
=
{
Fun
(
𝑆2,D(𝑘)
)
, Fun
(
𝑆2,D(𝑘)
)}

by the edge 𝛼, and

𝑏 : 𝜚2 = cof1,2 −→ 𝜋1 [1] = 𝜚3,

given by 𝑏 = 𝑎 ◦ 𝑇V3
0N 𝑓 ∗

[−1]. Again, it can be directly checked that the composition of 𝑅2 with

the equivalence limG3 � limG2 induced by the contraction 𝑐3 yields the functor 𝑅3 : limG3 →
Fun
(
𝑆2,D(𝑘)
)

given by the suspension of the cofibre

cof
(
𝜚3 [−1] ◦ ev𝑣1 ⊕𝜚2 ◦ ev𝑣2

(𝑎◦ev𝑣1 ,𝑏◦ev𝑣2 )
−−−−−−−−−−−−−→ ev𝑒′′

)
[1]

in the stable ∞-category Fun (limG3, Fun
(
𝑆2,D(𝑘)
)
. The composition 𝑅4 of 𝑅3 with limG4 � limG3

yields the functor given by the suspension of the cofibre

cof
(
𝜚1 ◦ ev𝑣1 ⊕𝜚1 [1] ◦ ev𝑣2 → ev𝑒′′

)
[1] � cof
(
ev 𝑓1 [−2] ⊕ ev 𝑓2 [−2] → ev𝑒′′

)
[1] .

Here 𝑓1 and 𝑓2 denote the two edges of ΓT which precede e in the cyclic order of the edges at the
two vertices incident to e (we consider these edges as edges of the ribbon graph underlying diagram
(70)). Note also that the two edges 𝑓1, 𝑓2 exactly describe the targets of the arrows 𝛼 ∈ (𝑄T)1 satisfying
𝑠(𝛼) = 𝑒. Continuing as before, we see that the composite of the equivalence H (ΓT ′ ,FT ′ ) � H(ΓT,FT)
with ev𝑒 yields the functor

𝑅 = cof
(
ev 𝑓1 [−2] ⊕ ev 𝑓2 [−2] → ev𝑒′ [−2]

)
[1] � fib
(
ev 𝑓1 ⊕ ev 𝑓2 → ev𝑒′

)
.
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It follows from Proposition 6.7 that ev∗𝑔 𝑖! � - ⊗ 𝑃𝑔 for 𝑔 = 𝑒′, 𝑓1, 𝑓2. The functor 𝑖∗ ◦ ev𝑔 is thus
equivalent to the morphism object functor MorH(ΓT ′ ,FT ′ ) (𝑃𝑒, -) with respect to the k-linear structure
of H (ΓT ′ ,FT ′ ) � D (𝒢T ′ ) [Lur17, 4.2.1.28]. It follows that the functor 𝑖∗ ◦ 𝑅 is equivalent to

MorH(ΓT ′ ,FT ′ )

(
cof
(
𝑃𝑒′ → 𝑃 𝑓1 ⊕ 𝑃 𝑓2

)
, -
)

for some morphism 𝑃𝑒′ → 𝑃 𝑓1 ⊕ 𝑃 𝑓2 , and the left adjoint thus maps 𝑘 ∈ D(𝑘) to cof
(
𝑃𝑒′ → 𝑃 𝑓1 ⊕ 𝑃 𝑓2

)
,

showing statement 1.
Statement 2 can be approached like statement 1, but it is more immediate, because the respective

edges of the ribbon graphs corresponding to the the projective objects are not affected by diagrams
(66)–(71). �

Remark 6.10. The formulas in Proposition 6.9 for the images of the the projective modules under 𝜇𝑒
recover the formulas given in the context of completed nonrelative Ginzburg algebras in [KY11]. In
the context of completed Ginzburg algebras, it is noted in [Kel12, Theorem 7.4] that there exist two
mutation equivalences for each vertex i of the quiver, whose values on objects differ by the spherical
twist of the spherical object associated to i. In terms of our construction, we can also produce a second
mutation equivalence 𝜇′𝑒, which differs on objects by the spherical twist around 𝑆𝑒 by replacing the
spans of ribbon graphs (64) and (65) with the spans

·

·
←−

·

·

·

·

−→

·

·

·

·

·

·

←−

·

·

·

·

−→
·

·

and adapting the construction of the mutation equivalence 𝜇𝑒 accordingly.
It remains an interesting problem to construct a natural equivalence 𝜇𝑒 � 𝑇𝑆𝑒 ◦ 𝜇′𝑒, where 𝑇𝑆𝑒 denotes

the twist functor of the spherical adjunction induced by the spherical object 𝑆𝑒.

7. Further directions

7.1. Invariants of triangulated spin surfaces

In this section we show that the equivalence class of the parametrised perverse schober FT constructed
in Theorem 6.1 does not depend on any of the choices made in its construction. Before we can state a
precise result, we need to briefly discuss combinatorial models for spin surfaces, following [DK15].
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Definition 7.1. Let S be an oriented marked surface. Let Γ be a graph with an embedding 𝑓 : |Exit(Γ) | →
S\𝑀 and consider the induced ribbon graph Γ (see Remark 4.7). Let 𝐵 = 𝜕 |Exit(Γ) | be the boundary
of |Exit(Γ) | in S\𝑀 . We call f (or, by abuse of notation, Γ) a spanning graph for S if

1. the embedding f is a homotopy equivalence and
2. f induces a homotopy equivalence 𝐵→ 𝜕S\𝑀 .

Example 7.2. Let S be a marked surface with an ideal triangulation T. The dual ribbon graph ΓT is a
spanning graph for S.

Definition 7.3. Let Γ be a ribbon graph. We define the incidence diagram 𝐼 : Exit(Γ) → Set to be the
functor determined by

◦ 𝐼 (𝑣) = H(𝑣) for 𝑣 ∈ Γ0 ⊂ Exit(Γ)0,
◦ 𝐼 (𝑒) = {𝑒1, 𝑒2} for an edge 𝑒 ∈ Γ1 consisting of half-edges 𝑒1, 𝑒2 (counted twice for external edges)

and
◦ assigning to a morphism 𝑣 → 𝑒 from a vertex 𝑣 ∈ Γ0 to an incident edge 𝑒 ∈ Γ1 consisting of {𝑒1, 𝑒2},

with 𝜎(𝑒1) = 𝑣 the morphism of sets H(𝑣) → {𝑒1, 𝑒2}, mapping 𝑒1 to 𝑒2 and H(𝑣1)\{𝑒1} to 𝑒1.

We proceed with the definition of the 2-cyclic category Λ2. The definition is similar to the definition
of the paracyclic category Λ∞ (see Definition 3.5), with the difference that the cyclic automorphisms
𝜏𝑛 satisfy the additional relation (𝜏𝑛)2(𝑛+1) = id[𝑛] .

Definition 7.4. For 𝑛 ≥ 0, let [𝑛] denote the set {0, . . . , 𝑛}. The 2-cyclic category Λ2 has as objects the
sets [𝑛]. The morphism in Λ2 are generated by morphisms

◦ 𝛿0, . . . , 𝛿𝑛 : [𝑛 − 1] → [𝑛],
◦ 𝜎0, . . . , 𝜎𝑛−1 : [𝑛] → [𝑛 − 1],
◦ 𝜏𝑛 : [𝑛] → [𝑛],

subject to the simplicial relations and the further relations

(𝜏𝑛)2(𝑛+1) = id[𝑛] ,
𝜏𝑛𝛿𝑖 = 𝛿𝑖−1𝜏𝑛−1 for 𝑖 > 0, 𝜏𝑛𝛿0 = 𝛿𝑛,

𝜏𝑛𝜎𝑖 = 𝜏𝑛+1𝜎𝑖−1 for 𝑖 > 0, 𝜏𝑛𝜎0 = 𝜎𝑛.

Definition 7.5. Let S be an oriented marked surface and Γ a spanning ribbon graph. Denote by N ⊂ Set
the full subcategory spanned by objects of the form [𝑛] with 𝑛 ≥ 0. Choose any diagram

𝐼 : Exit(Γ) → N,

equipped with a natural equivalence 𝜈 : 𝐼
�
=⇒ 𝐼, which respects the cyclic orders on 𝐼 (𝑥) for 𝑥 ∈ Exit(Γ)

and on 𝐼 (𝑥) = [|𝐼 (𝑥) | − 1] (obtained from the apparent linear order). A 2-spin structure, or simply a
spin structure, on S\(𝑀 ∩ S◦) (or on Γ) is a lift 𝐼2

Λ2

Exit(Γ) N
𝐼

𝐼 2

of the diagram 𝐼.

Remark 7.6. In the definition of a spin structure on a surface, we deviate from [DK15] to keep the
exposition more direct and better applicable. While a spin structure in [DK15] consists of a Z6-torsor at
every trivalent vertex of the ribbon graph and a Z4-torsor at every edge of the ribbon graph, we include
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an identity element for each torsor, encoded in 𝜈. Every spin structure in the sense of Definition 7.5
defines a spin structure in the sense of [DK15] and vice versa. Note that in [DK15, Lemma IV.26] , it
is shown that the datum of a spin structure coincides with the more standard notion of a spin structure
on S\(𝑀 ∩ S◦) in the sense of a reduction of the structure group of the tangent bundle to the connected
2-fold covering of GL+(2,R) ⊂ GL(2,R).

Definition 7.7. An equivalence of two ribbon graphs Γ � Γ′ is defined as an equivalence of posets
𝜙 : Exit(Γ) �−→ Exit(Γ′).

Note that an equivalence 𝜙 : Exit(Γ) �−→ Exit(Γ′) extends to a natural equivalence

𝜂𝜙 : 𝐼Γ′ ◦ 𝜙
�
==⇒ 𝐼Γ

between the incidence diagrams.

Definition 7.8. An equivalence between two ribbon graphs with spin structure
(
Γ, 𝐼2

Γ

)
,
(
Γ′, 𝐼2

Γ′
)

consists
of an equivalence 𝜙 : Γ �

−→ Γ′ of ribbon graphs together with a lift

𝜂2
𝜙 : 𝐼2

Γ′ ◦ 𝜙
�
==⇒ 𝐼2

Γ

of

𝐼Γ′ ◦ 𝜙
�
=⇒ 𝐼Γ′ ◦ 𝜙

𝜂𝜙

==⇒ 𝐼Γ
�
=⇒ 𝐼Γ .

The main result of this section is the following:

Proposition 7.9. Let S be an oriented marked surface equipped with an ideal triangulation T and let
Σ = S\(𝑀 ∩ S◦) be the surface without the interior marked points.

1. For every spin structure U on Σ, there exists a ΓT-parametrised perverse schober F𝑈T . If two spin
structures 𝑈,𝑈 ′ on Σ are equivalent, then there exists an equivalence of parametrised perverse
schobers

F𝑈T � F𝑈 ′T . (74)

If char(𝑘) ≠ 2, the converse is also true – that is, if there exists an equivalence as in formula (74),
then 𝑈 � 𝑈 ′.

2. Given a parametrised perverse schober FT as constructed in the proof of Theorem 6.1, there exist a
spin structure U on Σ and an equivalence of parametrised perverse schobers

FT � F𝑈T .

Definition 7.10. A ribbon graph Γ is called trivalent if all vertices have valency 3.

Definition 7.11. We denote by 𝑀2 the subcategory of Λ2 spanned by the two objects [1], [2] and
morphisms generated under composition by 𝜏1 : [1] → [1], 𝜏2 : [2] → [2] and 𝛿𝑙 : [1] → [2] for
𝑙 = 1, 2, 3.

Remark 7.12. Let Γ be a trivalent ribbon graph and 𝐼2 : Exit(Γ) → Λ2 a spin structure. Then 𝐼2 factors
through the inclusion 𝑀2 → Λ2.
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Proof of Proposition 7.9. Consider the morphism of dg-algebras 𝜑 : 𝑘 [𝑡1]
𝑡1→−𝑡1
−−−−−→ 𝑘 [𝑡1], the pullback

functor 𝜑∗ : dgMod(𝑘 [𝑡1]) → dgMod(𝑘 [𝑡1]) and Notation 5.11. We further denote by 𝑇𝐷3 : 𝐷3 → 𝐷3
the dg-functor determined by

𝑥, 𝑦, 𝑧 ↦→ 𝑦, 𝑧, 𝑥,

𝑎, 𝑏, 𝑐 ↦→ 𝑏, 𝑐, 𝑎,

𝑎∗, 𝑏∗, 𝑐∗ ↦→ −𝑏∗,−𝑐∗,−𝑎∗.

We define a functor

Q : 𝑀op
2 → dgCat𝑘

by

Q([2]) = 𝐷3,

Q([1]) = 𝑘 [𝑡1],

Q
(
𝜏2
)
= 𝑇𝐷3 ,

Q
(
𝜏1
)
= 𝜑∗,

Q(𝛿1) = 𝑖
+
1 ,

Q(𝛿2) = 𝑖
−
2 ,

Q(𝛿3) = 𝑖
+
3 .

Let T be an ideal triangulation and ΓT the dual ribbon graph. Given a spin structure U on ΓT described
in terms of 𝐼2 : Exit(ΓT) → 𝑀2, we obtain a parametrised perverse schober F𝑈T defined via its left dual

D
𝐿F𝑈T : Entry(ΓT)

(𝐼2)
op

−−−−−→ 𝑀
op
2

Q
−→ dgCat𝑘

𝐿
−→ dgCat𝑘
[
𝑊−1] D(-)−−−→ St .

Given an equivalence of spin structures 𝑈 � 𝑈 ′, expressed in terms of an equivalence of ribbon
graphs with spin structure

(
ΓT, 𝐼2) � (ΓT, (𝐼2) ′) , it is immediate from the construction that there is an

equivalence between F𝑈T and F𝑈 ′T . For the converse, we note that by a standard result, spin structures on
Σ are classified by H1(Σ,Z2). Thus, if two spin structures differ, then there exists an embedded circle
in ΓT such that the restrictions of the spin structures to the full ribbon subgraph spanned by the vertices
on the circle differ. Up to equivalence of spin structures, these two spin structures can be assumed to
be identical, except that they assign to the incidence of some fixed edge lying on the circle and some
fixed vertex two morphisms [1] → [2] in Λ2 which differ exactly by precomposition with 𝜏1. The
corresponding restrictions of the parametrised perverse schobers thus differ at this subgraph in terms of
their monodromy by D(𝜙∗). Note that the assumption char(𝑘) ≠ 2 implies D(𝜙∗) ≠ idD(𝑘 [𝑡1 ]) . The two
parametrised perverse schobers can thus not be equivalent, showing the converse implication.

Let T be an ideal triangulation and consider a parametrised perverse schober FT as constructed in
Theorem 6.1. In the following we describe a spin structure U on ΓT such that F𝑈T � FT. We follow the
iterative procedure and notation used in the proof of Theorem 6.1. Starting with any ideal triangle T1
of T, one can directly find a spin structure U on ΓT1 such that FT1 � F𝑈T1

. We continue by extending
the spin structure in each induction step by gluing. Consider an ideal triangulation T𝑛+1, obtained
from gluing two ideal triangulations T𝑛 and T1 equipped with spin structures. There is a spin structure
𝐼2
𝑛+1 : Exit
(
ΓT𝑛+1

)
→ 𝑀2 on ΓT𝑛+1 with the property that the restriction to Exit

(
ΓT𝑛

)
and Exit
(
ΓT1

)
recovers the respective spin structures of ΓT𝑛 and ΓT1 . We now modify 𝐼2

𝑛+1 to obtain the desired spin

https://doi.org/10.1017/fms.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.1


Forum of Mathematics, Sigma 67

structure U on ΓT𝑛+1 . At each edge e used in the gluing of T𝑛 and T1 and connecting two vertices 𝑣𝑛 and
𝑣1 in ΓT𝑛 and ΓT1 , respectively, the spin structure 𝐼2

𝑛+1 is locally of the form

[2] = 𝐼2
𝑛+1 (𝑣1)

𝛿𝑖 (𝜏1)
𝑙1

←−−−−−−− [1] = 𝐼2
𝑛+1 (𝑒)

𝛿 𝑗 (𝜏1)
𝑙2

−−−−−−−→ [2] = 𝐼2
𝑛+1(𝑣𝑛).

We obtain U by changing the spin structure 𝐼2
𝑛+1 at each edge e used in the gluing of ΓT𝑛 and ΓT1 in the

local picture to

[2]
𝛿𝑖 (𝜏1)

𝑙1+1

←−−−−−−−− [1]
𝛿 𝑗 (𝜏1)

𝑙2

−−−−−−−→ [2]

if the superscripts of the associated functors 𝑖1𝑒 = 𝑖±𝑒 and 𝑖𝑛𝑒 = 𝑖±𝑒 , appearing in the proof of Theorem
6.1, match. The resulting parametrised perverse schober F𝑈T𝑛+1

is then equivalent to FT𝑛+1 . This shows
statement 2, thus completing the proof. �

7.2. Coefficients in spectra

Let T be an ideal triangulation of an oriented marked surface and consider the construction of the
parametrised perverse schober FT of Theorem 6.1. Given any stable ∞-category D, we can construct
a parametrised perverse schober FT (D) by replacing the spherical adjunction at each vertex with the
spherical adjunction

𝑓 ∗ : D←→ Fun
(
𝑆2,D
)

: 𝑓∗

and the autoequivalence 𝑇 = 𝑇Fun(𝑆2 ,D(𝑘)) [2] (used there for fixing the correct signs) by the 2-fold
suspension of the cotwist functor 𝑇Fun(𝑆2 ,D) [2] of the same adjunction 𝑓 ∗ � 𝑓∗ but with values in D
instead of D(𝑘). The goal of this section is to discuss which results of this paper translate to this more
general setting.

We begin by noting that the main result which works irrespective of the choice ofD is the construction
of the derived equivalence

𝜇𝑒 : H(ΓT,FT (D)) � H (ΓT ′ ,FT ′ (D))

of Section 6.4 associated to the flip of the edge e of the triangulation T.
More results extend in the case where D = RMod𝑅 is the ∞-category of right modules of an

E∞-ring spectrum R. We can, for example, choose R to be the sphere spectrum, so that D � Sp is
the ∞-category of spectra. The construction of the spherical/exceptional objects 𝑆𝑒, the objects 𝐶𝑝
and the projective objects 𝑃𝑒 given in Section 6.3 works in the same way for H(ΓT,FT (RMod𝑅)).
We denote by 𝑅[𝑡𝑛] the free algebra object in RMod𝑅 generated by 𝑅[𝑛]. Note that if 𝑅 = 𝑘 is
a commutative ring, there exists an equivalence 𝑅[𝑡𝑛] � 𝑘 [𝑡𝑛]. We show in Proposition 7.15 that
there exists an equivalence of ∞-categories Fun(𝑆𝑛,RMod𝑅) � RMod𝑅 [𝑡𝑛−1 ] . We thus find a compact
generator of the∞-category H(ΓT,FT (RMod𝑅)), as in Proposition 6.7, given by the sum of the images
of 𝑅[𝑡1] ∈ RMod𝑅 [𝑡1 ] � Fun

(
𝑆2,RMod𝑅
)

under the left adjoints of the evaluation functors to the edges
of ΓT. Furthermore, Proposition 6.9, describing the images of the 𝑃𝑒 under the derived equivalences,
also translates. Contrary to the dg-setting, however, it is not clear whether the endomorphism algebra
of the compact generator admits an explicit description.

Crucial for a relation between the construction of FT (D(𝑘)) and spin structures on the surface
without the interior marked points Σ in Section 7.1 is the observation that the suspended cotwist functor
𝑇Fun(𝑆2 ,D(𝑘)) [2] is an involution – that is,(

𝑇Fun(𝑆2 ,D(𝑘)) [2]
)2
� idFun(𝑆2 ,D(𝑘)) .
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It seems likely that if the cotwist functor 𝑇Fun(𝑆2 ,D) [2] is also an involution, Proposition 7.9 can be
generalised to FT (D). The remainder of this section consists of a proof of Proposition 7.15 and a
conjecture for a description of 𝑇Fun(𝑆2 ,D) and an algebraic description of 𝑇Fun(𝑆2 ,RMod𝑅) .

The following lemma is a generalisation of Lemma 5.3:

Lemma 7.13. Consider the morphism of simplicial sets 𝑔 : 𝐿 → ∗ and the associated pullback functor
𝑔∗ : RMod𝑅 → Fun(𝐿,RMod𝑅). There exists an equivalence of R-linear∞-categories

Fun(𝐿,RMod𝑅) � RMod𝑅 [𝑡0 ]

such that the following diagram commutes:

RMod𝑅

Fun(𝐿,RMod𝑅) RMod𝑅 [𝑡0 ] .

𝑔∗ 𝜙∗

�

(75)

Here 𝜙∗ denotes the pullback functor along the morphism of R-algebras 𝑅[𝑡0] → 𝑅, determined on the
generator by the morphism 𝑅

id
−→ 𝑅 in RMod𝑅.

Proof. Consider the object 𝑋 ∈ Fun(𝐿,RMod𝑅) given by the diagram 𝑅[𝑡0]
·𝑡0
−−→ 𝑅[𝑡0] in RMod𝑅.

Let ℎ : ∗ → 𝐿 be the morphism of simplicial sets given by inclusion of the unique vertex and
consider the associated pullback functor ℎ∗ : RMod𝑅 → Fun(𝐿,RMod𝑅) with right adjoint ℎ∗ given
by evaluation at ∗ ∈ 𝐿. We prove that 𝑋 � ℎ∗(𝑅) by showing that MorFun(𝐿,RMod𝑅) (𝑋, -) � ℎ∗, where
MorFun(𝐿,RMod𝑅) (-, -) is the R-linear morphism object functor of [Lur17, 4.2.1.28].

Set𝑌 ∈ Fun(𝐿,RMod𝑅). The morphism object MorFun(𝐿,RMod𝑅) (𝑋,𝑌 ) is equivalent to the equaliser

∏
𝑖∈N ℎ∗(𝑌 ) Mor𝑅 (𝑅[𝑡0], 𝑌 ) Mor𝑅 (𝑅[𝑡0], 𝑌 )

∏
𝑖∈N ℎ∗(𝑌 )

�
(-)◦𝑡0

𝑌 (𝑙)◦(-)

�
,

where l is the unique nondegenerate 1-simplex of L. This can be seen as follows. Consider the simplicial
set 𝐿 ′ consisting of four vertices 𝑥1, 𝑥2, 𝑥3, 𝑥4 and four nondegenerate 1-simplices 𝑙1, 𝑙2, 𝑙3, 𝑙4 arranged
as follows:

𝑥1 𝑥3

𝑥4 𝑥2.

𝑙1

𝑙4 𝑙2
𝑙3

The morphism of simplicial sets 𝑝 : 𝐿 ′ → 𝐿, mapping all vertices to ∗ ∈ 𝐿, 𝑙1 to l and 𝑙2, 𝑙3, 𝑙4 to the de-
generate 1-simplex, induces a fully faithful R-linear functor 𝑝∗ : Fun(𝐿,RMod𝑅) → Fun(𝐿 ′,RMod𝑅).
The description of MorFun(𝐿,RMod𝑅) (𝑋,𝑌 ) � MorFun(𝐿′,RMod𝑅) (𝑝

∗(𝑋), 𝑝∗(𝑌 )) as an equaliser can now
be obtained by using a pushout description of 𝑝∗(𝑋) � 𝑋1 𝑋3 𝑋2, with

𝑋1 =
𝑅[𝑡0] 𝑅[𝑡0]

𝑅[𝑡0] 0

�

� , 𝑋2 =
0 𝑅[𝑡0]

𝑅[𝑡0] 𝑅[𝑡0]

�

�

, 𝑋3 =
0 𝑅[𝑡0]

𝑅[𝑡0] 0,

and the fact that MorFun(𝐿′,RMod𝑅) (-, 𝑝∗(𝑌 )) is an exact functor. The equaliser is given by ℎ∗(𝑌 ),
and the morphism of R-modules ℎ∗(𝑌 ) →

∏
𝑖∈N ℎ∗(𝑌 ) is informally given by mapping 𝑧 ∈ ℎ∗(𝑌 ) to(

𝑌 (𝑙)𝑖 (𝑧)
)
𝑖∈N ∈
∏
𝑖∈N ℎ∗(𝑌 ). We note that the equivalence MorFun(𝐿,RMod𝑅) (𝑋,𝑌 ) � ℎ∗(𝑌 ) is functorial

in Y, so that indeed MorFun(𝐿,RMod𝑅) (𝑋, -) � ℎ∗.
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It follows that X is a compact generator of Fun(𝐿,RMod𝑅). Applying [Lur17, Proposition 4.1.1.18],
we further obtain an equivalence of R-linear ring spectra End𝑅 (𝑋) � 𝑅[𝑡0], showing the existence of
an equivalence of R-linear∞-categories Fun(𝐿,RMod𝑅) � RMod𝑅 [𝑡0 ] .

The commutativity of diagram (75) can be checked using the fact that the R-linear functors 𝜙∗, 𝑔∗ :
RMod𝑅 → RMod𝑅 [𝑡0 ] are fully determined by, respectively, 𝜙∗(𝑅) and 𝑔∗(𝑅) [Lur17, Section 4.8.4].

�

Lemma 7.14. 1. There exists a pushout diagram in LinCat𝑅 as follows:

Fun(𝐿,RMod𝑅) RMod𝑅

RMod𝑅 Fun
(
𝑆2,RMod𝑅
)
.

𝑔!

𝑔! �
𝑖!

𝑖!

(76)

2. Set 𝑛 ≥ 2. There exists a pushout diagram in LinCat𝑅 as follows:

Fun
(
𝑆𝑛−1,RMod𝑅
)

RMod𝑅

RMod𝑅 Fun (𝑆𝑛,RMod𝑅) .

𝑓!

𝑓! �
𝑖!

𝑖!

(77)

Proof. The proof of Lemma 5.4 directly generalises. �

We now prove the analogue of Proposition 5.5.

Proposition 7.15. Set 𝑛 ≥ 2. There exists an equivalence of R-linear∞-categories

Fun(𝑆𝑛,RMod𝑅) � RMod𝑅 [𝑡𝑛−1 ] , (78)

such that the following diagram in LinCat𝑅 commutes:

Fun(𝑆𝑛,RMod𝑅) RMod𝑅 [𝑡𝑛−1 ]

RMod𝑅

Fun(𝑆𝑛,RMod𝑅) RMod𝑅 [𝑡𝑛−1 ] .

�

𝑖∗

𝐺

𝑓 ∗ 𝜙∗

�

(79)

Here G denotes the monadic functor and 𝜙∗ the pullback functor along the morphism of R-algebras
𝜙 : 𝑅[𝑡𝑛−1] → 𝑅 determined on the generator by the morphism 𝑅[𝑛 − 1] 0

−→ 𝑅 in RMod𝑅.

Proof. Consider the following bi-Cartesian square in RMod𝑅:

𝑅[𝑛 − 1] 0

0 𝑅[𝑛] .

�
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Applying the colimit-preserving free R-algebra functor RMod𝑅 → Alg(RMod𝑅) yields the following
pushout diagram of R-algebras:

𝑅[𝑡𝑛−1] 𝑅

𝑅 𝑅[𝑡𝑛] .

𝑡𝑛−1 ↦→0

𝑡𝑛−1 ↦→0
�

(80)

Consider the morphism of ring spectra 𝑅[𝑡0]
𝑡0 ↦→𝑡0+1
−−−−−−→ 𝑅[𝑡0], determined from the universal property by

the morphism 𝑅
1↦→1+𝑡0
−−−−−−→ 𝑅[𝑡0] in RMod𝑅. Using the commutativity of the diagram

𝑅[𝑡0] 𝑅

𝑅[𝑡0],

𝑡0 ↦→1

𝑡0 ↦→𝑡0+1 𝑡0 ↦→0

it follows that for 𝑛 = 1 the image of diagram (80) under 𝜃 : Alg(RMod) → LinCat𝑅 is equiva-
lent to the pushout diagram (76). It follows that there exists an equivalence of R-linear ∞-categories
Fun
(
𝑆2,RMod𝑅
)
� RMod𝑅 [𝑡1 ] . Using the fact that the monadic functor G is equivalent to the pullback

along 𝑅 → 𝑅[𝑡1], we find that the upper half of diagram (38) commutes.
Using the fact that 𝑓! ◦𝑖! � idRMod𝑅 (see Remark 5.6), we obtain the following commutative diagram:

Fun(𝐿,RMod𝑅) RMod𝑅

RMod𝑅 Fun
(
𝑆2,RMod𝑅
)

RMod𝑅 .

�

𝑔!

𝑔! 𝑖! id
𝑖!

id

𝑓!

(81)

Diagram (81) is equivalent to the image under 𝜃 of the following diagram in Alg(RMod𝑅):

𝑅[𝑡0] 𝑅

𝑅 𝑅[𝑡1]

𝑅.

� id

id

(82)

By the universal property of the pushout in Alg(RMod𝑅), there exists a unique morphism of ring spectra
𝑅[𝑡1] → 𝑅 such that diagram (82) commutes. Such a map is given by 𝜙. It follows that the functor 𝑓!
is equivalent to 𝜃 (𝜙) and, using [Lur17, 4.6.2.17] also, that the functor 𝑓 ∗ is equivalent to the pullback
functor along 𝜙.

For 𝑛 ≥ 2, we can continue by induction and as before. The image of diagram (80) under the functor
𝜃 is the pushout diagram (77). We thus find the desired equivalence Fun(𝑆𝑛,RMod𝑅) � RMod𝑅 [𝑡𝑛−1 ] ,
so the upper half of diagram (79) commutes. Analogous to the case 𝑛 = 1, it can be checked that the
lower half of diagram (79) commutes. �

Our proof of Proposition 5.7 characterising the cotwist functor of the spherical adjunction 𝑓 ∗ � 𝑓∗
does not directly generalise to the spectral setting. We conjecture the following:
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Conjecture 7.16. For any stable ∞-category D and 𝑛 ≥ 2, consider the cotwist functor 𝑇Fun(𝑆𝑛 ,D) of
the spherical adjunction 𝑓 ∗ : D↔ Fun(𝑆𝑛,D) : 𝑓∗ (see Proposition 5.1).

1. Let R be an E∞-ring spectrum and D = RMod𝑅. Let 𝜑 : 𝑅[𝑡𝑛−1] → 𝑅[𝑡𝑛−1] be the equivalence
of ring spectra determined by 𝜑(𝑡𝑛−1) = (−1)𝑛−1𝑡𝑛−1 (via the involved universal properties). There
exists a commutative diagram in LinCat𝑅 as follows:

Fun(𝑆𝑛,RMod𝑅) Fun(𝑆𝑛,RMod𝑅)

RMod𝑅 [𝑡𝑛−1 ] RMod𝑅 [𝑡𝑛−1 ] .

𝑇Fun(𝑆𝑛,RMod𝑅)

formula (78) � formula (78) �
𝜑∗ [−𝑛]

2. Denote by 𝑆𝑛top the topological n-sphere embedded as the unit sphere into R𝑛+1, so that its singular

set is given by Sing
(
𝑆𝑛top

)
= 𝑆𝑛. Let 𝑟 : 𝑆𝑛top → 𝑆𝑛top be the antipodal map, mapping 𝑥 ∈ 𝑆𝑛top to

−𝑥 ∈ 𝑆𝑛top, and 𝑟∗ its pullback functor. There exists a natural equivalence

𝑇Fun(𝑆𝑛 ,D) � 𝑟
∗ [−𝑛] .
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