Investigation of biomarker responses to depletion/repletion with vitamin B\textsubscript{12}

C. F. Hughes1, M. Ward1, L. Hoey1, A. Molloy2, K. Pentieva1, J. M. Scott2, F. Tracey3 and H. McNulty1

1Northern Ireland Centre for Food and Health, University of Ulster, Coleraine BT52 1SA, UK, 2Trinity College, School of Biochemistry and Immunology, Dublin, Ireland, and 3Causeway Hospital, Coleraine BT52 IHS, UK

Despite dietary intakes well above current recommendations, low biomarker status of vitamin B\textsubscript{12} is a common problem in older adults, largely as a result of malabsorption of food-bound vitamin B\textsubscript{12}. This arises mainly from atrophic gastritis which leads to reduced gastric acid production (hypochlorhydria). Hydrochloric acid is essential for the absorption of food-bound vitamin B\textsubscript{12}, and thus vitamin B\textsubscript{12} absorption is reduced in states of hypochlorhydria, although in theory free vitamin B\textsubscript{12} (from supplements or fortified) should still be absorbed. Gastric acid suppressant medications, such as proton pump inhibitors (PPI) drugs induce hypochlorhydria and therefore a state similar to atrophic gastritis. The aim of the present study is to investigate the effect of hypochlorhydria on absorption of food-bound vitamin B\textsubscript{12} and to determine whether low-dose supplemental vitamin B\textsubscript{12} would overcome any vitamin B\textsubscript{12} malabsorption. Forty-one healthy males, aged 18–45, participated in a vitamin B\textsubscript{12} depletion/repletion trial. During the depletion phase (week 0–6) all subjects were administered with a PPI (omeprazole, 20 mg/d); after which they were randomised (by vitamin B\textsubscript{12} status as measured by serum holo-transcobalamin; holoTC; the metabolically active fraction of total circulating vitamin B\textsubscript{12}) into one of the two treatment groups to receive; omeprazole (20 mg/d) plus supplemental vitamin B\textsubscript{12} (10 mg/d) or omeprazole (20 mg/d) plus placebo for the repletion phase of the study (week 7–12).

Contrary to expectations, no significant change in vitamin B\textsubscript{12} status (as assessed by either total vitamin B\textsubscript{12} or holoTC) was observed during the depletion phase of the study. During the repletion phase of the study, an increase in vitamin B\textsubscript{12} status was observed in the treatment group, but this was significant \((P = 0.006)\) only using the biomarker holoTC, with the response for total vitamin B\textsubscript{12} failing to reach significance. In conclusion, these results supports the emerging view that holoTC (compared with the traditional biomarker of status, serum total vitamin B\textsubscript{12}) is a more sensitive biomarker in detecting small changes in vitamin B\textsubscript{12} intake. Although the acute administration of PPI drugs did not significantly suppress vitamin B\textsubscript{12}, repletion with 10 \textmu{g}/d of supplemental vitamin B\textsubscript{12} was sufficient to significantly increase biomarker status within just 4 weeks. The consequence of long-term PPI therapy on vitamin B\textsubscript{12} status is still to be determined.