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Abstract

Hayman has shown that if f is a transcendental meromorphic function and n 2> 3, then f” f’ assumes all
finite values except possibly zero infinitely often. We extend his result in three directions by considering
an algebroid function w, its monomial w"w™!, and by estimating the growth of the number of a-points
of the monomial.
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1. Introduction and results

As Hayman noted in [2, p. 34], the problem of possible Picard values of derivatives
of a meromorphic function having no zeros reduces to the problem of whether certain
differential polynomials of an entire function necessarily have zeros. In this connection
he proved the following theorem:

THEOREM A. (i) If f(z) is a transcendental entire function and n > 2, then
f(D)" f(z) assumes all values except possibly zero infinitely often.

(ii) If f(z) is a transcendental meromorphic function and n > 3, then f(2)" f'(z)
assumes all finite values except possibly zero infinitely often.

Clunie [1] showed that Theorem A(i) is also true for n = 1. Moreover, Mues [6]
showed that Theorem A(ii) is also true for n = 2.

It is assumed that the reader is familiar with the notation of standard Nevanlinna
theory [3] and its algebroid counterpart [7, 8, 9]. In [5], Theorem A(ii) was generalized
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as follows:

THEOREM B. Let w(z) be a v-valued transcendental algebroid function and set
¢ (2) == w(z)"w'(z), wheren € N. Then ifn > 4v — 1, we have

N(r, d)ib) # S(r, w)

foreach b € C\ {0}

In this paper, we will prove the following generalization of Theorem A(ii) and
Theorem B:

THEOREM. Let w(z) be a v-valued transcendental algebroid function and set
V() = w@"w' (@™, ny neN.

Thenifng = 4v — 1 + 2(v — 1)(n, — 1), we have for each a € C\ {0},

— 1
N<r’ )>pT(rvw)_S(rvw)v
¥ —a
where p :=ny—4v+2-2w—-1(n; - 1) > 1.
COROLLARY. With the same hypotheses we have

. N@, 1/(y —
O@, y)=1- llmsup—(.';f.(/_r(_lf//)_a)) <1-— - _}_1’2‘)”1

for each a € C\ {0}.

2. Proof of the theorem and its corollary

To prove the theorem, we write #(z) := 1/w(z) and get
1p(z) _— wnowm, — (_u/)nl/u2n1+n0.

In what follows, we regard v, u’/u, etcetera as functions on the Riemann surface of u;
see [5, Section 2].
If v is a constant function, then

(—uy"

@ny +n)T(r,u) =T(r,u™ ™) =T (r, ) =mTr u)+ 0Q)

< 2vm T(r, u) + S(r, u).
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But this is impossible since ny > 2(v — 1)n,. Hence y is non-constant.
Leta € C\ {0}. The second main theorem (see [4, p. 18]) then yields

— — 1 —
1) Try)<SNrYy)+N (r, E) +N (r, ) + N3(r, ) + S(r, ¥),

1
Y —a
where Ns(r, ¥) is the integrated counting function of branch points of ¥. On the
other hand, we have
nT(r,u’)+ 2ny +ng)T(r,u) + O(1)
(2w + Dny + no)T(r, u) + S(r, u),

T(r,y)

NN

so that we may replace S(r, ¥) in (1) by S(r,u). By [5, Lemma], we also have
N3(r, ¥) < N3(r, u). Thus (1) becomes

—a

Q) Try)<NEY)+N (r, —1/1;) +N <r, m : ) + N3(r,u) + S(r,u).

In what follows, we denote by t’ the orders of the zeros of «’ and write

n(r, %) =Zr/+ Zt’+Zt’+ Z T’
=0 r =0

u'= u'=0
u7#0 u=0 u=0 u=0
PY=00 ¥=0 ¥ #0,00

= n1(r) + Rooo(r) + neo(r) + nei (r).

First, let us estimate the term N (r, ¥) in (2). Let u have expansions of the general

form
&) u(z) = u(zg) + b (z —z0)"™*+ -, or
) u@ =b_(z—z)""+---,

where 7, A € N and A < v. We denote by nj3, (r, u) the counting function of branch
points of u such that 7 < A in (3). Then we have

) (2ny + no)n(r, ¥) < n(r, ¥) + minoeo(r) + (11 + no)ns, (r, w).

In fact, poles of y arise from zeros of u and poles of u’. Suppose that z, is a pole
of i, a zero of u of order T > 1 and a zero of u’ of order ' > 0. Then z; is a pole
of ¢ of order 2n, + ng)t — n;t’. So, the point zy contributes (2n; + ng)t — N7’
to n(r, ¥) and n,7’ t0 RNy (r). Thus the contribution to n(r, ¥) + ninge(r) is
(2n; + ng)T = 2n; + ne. On the other hand, a pole of u as in (4) is a zero of ¢ of
order

(6) (2"1 +n0)r —-—mT —n])\. = (n1 +n0)r — nl)» 2 n+no—nv> 0
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as soon as ny > n;(v — 1). Thus the remaining poles of i, that is, poles of ', are

branch points of u such that T < A in (3). But the contribution of such a point to

n(r, ¥) + (n, + no)ns, (r, u) is at least 2n, + ny. The estimate (5) now follows.
Integrating (5) logarithmically we obtain

— 1 ny +ng
7 N@r¢y) < —N( 4———Noo +——N,r,u,
(7 (r,.¥) I T e (r, ¥) 1+0o() ]+03()
where N (r) and N3 (r, u) are defined similarly to N (r, u).
Secondly, let us estimate the term N(r, 1/y) in (2). We denote by n3,(r, u) the
counting function of those branch points of u that are also poles of u. Then we have

(8) non <r, %) <n ( ]/l,) + (ny —npn(r) + T_’:Onm(r) ~+ mins, (r, u).

In fact, zeros of ¥ arise from poles of u and zeros of u’. By (6), a pole of u
as in (4) contributes (n, + ng)t — A +n (A — 1) = (n, + no)t —n; 2 ny to
n(r, 1/¥) 4+ nins,(r,u). A zero of u’ of order t’ that is not a zero of u contributes
mt' + (ng — n))t’ = net’ = ng to n(r, 1/y) + (ng — ny)n,(r). Finally, a zero of
u’ that is also a zero of u and ¥ must be of order greater than (2n, 4 n¢)/n; and so
contributes more than ng to (ngn,/(2n, + ng))ng(r). The estimate (8) now follows.
Integrating (8) logarithmically we obtain

&)

— 1 1 1 ng —
Nlr,—)<—N|r— )+ N -+———Nr+ Nzu
(r‘//) ng (r'/f> ng ) 21+000() (1),

where N, (r) and Ny (r) are defined similarly to N(r, u).
Combining (2), (7) and (9), and noticing N(r, ¢¥) < T(r,¥) and N(r, 1/¢) <
T(r,¥)+ O(1), we now get

(10)
1 1
l—-——« — — ) TA(r, S Nr+—Noor + Ny(r
( In + g no) ¥) . 1(r) 2 +n 0( 000 (1) 00 ( ))
ny+ng
—— N (7, —N;, (7,
TRy u)+n0 n(nu)

1
+ N{r,—— )+ N3(r,u)+ S(r,u).
v —a
On the other hand, we have

(11D N 1/¥) 2 ngN@,u) + nyNi(r) — nyN5,(r, u).
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Infact, at a pole of u asin (4), Y has azero of order (n,+no)t —nm A 2 ngt—nA4n, =
not — n(A — 1). Also, at a zero of u’ of order 7’ that is not a zero of u, the function
Y has a zero of order n;t’. Thus (11) holds.

Furthermore, we have

Q@ny +noym@r,u) = m(r, (—u')" /) < nym(r,u') +m (r, 1/9)
<mm(r,u) + nym (r,u' Ju) + m (r, 1/9),

and so
(ny +noym(r,u) <m(r, 1/y) + S(r, u).
Combining this with (11) we obtain
noT(r,u) < T(r,¥) = mNi(r) + n N3, (r,u) + S(r, u).

Using this and (10) we get

1 1
- — — | T,
no( 2n; + ng no) (r,u)

1 1 ngp—nm
<sml—+—-1 N+ N\(r)
ng 2n;+ng no

ny
——(Nooo N
+2n.+n0( 000 (1) + 00(’))‘*‘

ny+ng

L0 N. (s
2+ 1o 3,(r u)

nj 1 1
—N-.(r, l - —— — — } N3,(r,
+ ng 32(r u)+m ( 2”1 + ny no) 3_(r u)

+ﬁ<r, 1 )+N3(r,u)+S(r,u), or
Y —a

ny
- — 1) TA(r,
(no 2n; +ng ) ()

n
<A =m)N(r) + 57— —(Ni(r) + Nowo(r) + Noo(1))
ny +ng
2 -1
+MN3,(r, u)+n1( 1+ o )N32(r, u)

2n1 + ny
+N(r,

2n1+no
) +N3(r’ u) + S(r1u)'

1
v —a
Since

Ni(r) + Nooo(r) + Neo(r) < N (r, %) <T@ u)y+ 0) <2vT(r,u) + S(r, u)
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and

N31(r7 u) + N32(r’ u) < N3(r, u) < (2\) - 2)T(r’ u) + 0(1))
we get

(12)
2”1

— =2 T,
(n0+2n1+no )(ru)

21)”1 n1(2n1 +ny — 1)
S|l———+Q@v-2 1)) T(r,
(2n1+n0+( Y )( 2n; +ng + )) )

— 1
+N<r, W—a)+s(r’u)

2 —
= <2vn| +2v—2n + T 2) T(r,u)+ N (r,
2"1 +n0

)+S(r, u).

—a

Set p :=ng~2vn; —2v+2n, = ng —4v+2—2(v — 1)(n; — 1). By the hypothesis
we then have p > 1 and (12) yields

pT(r,w) = pT(r,u)+ O(1) < ﬁ(n :
¥ —a

) + S(r, w).

This completes the proof.

PROOF OF THE COROLLARY. Firstly, we have
(13) T(r,v) =T, ww™) < (ng +2vn)T(r, w) + S(r, w).

Leta € C\ {0}. By (13) and the theorem, there exists a set E of finite linear measure

such that
mN(r, 1/(y —a)) > Tim (p—o()T(r,w) _ P

r¢E T(r, ¥) r¢E (ng 4+ 2vny + o(INT (r, w)  no+ 2vn,

The corollary is proved.
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