VALUE DISTRIBUTION OF CERTAIN MONOMIALS OF ALGEBROID FUNCTIONS

KARI KATAJAMÄKI
(Received 30 April 1996; revised 30 September 1996)

Communicated by P. C. Fenton

Abstract

Hayman has shown that if f is a transcendental meromorphic function and $n \geqslant 3$, then $f^{n} f^{\prime}$ assumes all finite values except possibly zero infinitely often. We extend his result in three directions by considering an algebroid function w, its monomial $w^{n_{0}} w^{n_{1}}$, and by estimating the growth of the number of a-points of the monomial.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 30D35.
Keywords and phrases: Algebroid functions, differential polynomials, monomials.

1. Introduction and results

As Hayman noted in [2, p. 34], the problem of possible Picard values of derivatives of a meromorphic function having no zeros reduces to the problem of whether certain differential polynomials of an entire function necessarily have zeros. In this connection he proved the following theorem:

THEOREM A. (i) If $f(z)$ is a transcendental entire function and $n \geqslant 2$, then $f(z)^{n} f^{\prime}(z)$ assumes all values except possibly zero infinitely often.
(ii) If $f(z)$ is a transcendental meromorphic function and $n \geqslant 3$, then $f(z)^{n} f^{\prime}(z)$ assumes all finite values except possibly zero infinitely often.

Clunie [1] showed that Theorem $\mathrm{A}(\mathrm{i})$ is also true for $n=1$. Moreover, Mues [6] showed that Theorem A (ii) is also true for $n=2$.

It is assumed that the reader is familiar with the notation of standard Nevanlinna theory [3] and its algebroid counterpart [7, 8, 9]. In [5], Theorem A(ii) was generalized

[^0]as follows:
THEOREM B. Let $w(z)$ be a v-valued transcendental algebroid function and set $\phi(z):=w(z)^{n} w^{\prime}(z)$, where $n \in \mathbb{N}$. Then if $n \geqslant 4 v-1$, we have
$$
\bar{N}\left(r, \frac{1}{\phi-b}\right) \neq S(r, w)
$$
for each $b \in \mathbb{C} \backslash\{0\}$.
In this paper, we will prove the following generalization of Theorem A (ii) and Theorem B:

THEOREM. Let $w(z)$ be a v-valued transcendental algebroid function and set

$$
\psi(z):=w(z)^{n_{0}} w^{\prime}(z)^{n_{1}}, \quad n_{0}, n_{1} \in \mathbb{N}
$$

Then if $n_{0} \geqslant 4 v-1+2(v-1)\left(n_{1}-1\right)$, we have for each $a \in \mathbb{C} \backslash\{0\}$,

$$
\bar{N}\left(r, \frac{1}{\psi-a}\right) \geqslant p T(r, w)-S(r, w)
$$

where $p:=n_{0}-4 v+2-2(v-1)\left(n_{1}-1\right) \geqslant 1$.
Corollary. With the same hypotheses we have

$$
\Theta(a, \psi):=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, 1 /(\psi-a))}{T(r, \psi)} \leqslant 1-\frac{p}{n_{0}+2 v n_{1}}
$$

for each $a \in \mathbb{C} \backslash\{0\}$.

2. Proof of the theorem and its corollary

To prove the theorem, we write $u(z):=1 / w(z)$ and get

$$
\psi(z)=w^{n_{0}} w^{n_{1}}=\left(-u^{\prime}\right)^{n_{1}} / u^{2 n_{1}+n_{0}}
$$

In what follows, we regard $\psi, u^{\prime} / u$, etcetera as functions on the Riemann surface of u; see [5, Section 2].

If ψ is a constant function, then

$$
\begin{aligned}
\left(2 n_{1}+n_{0}\right) T(r, u) & =T\left(r, u^{2 n_{1}+n_{0}}\right)=T\left(r, \frac{\left(-u^{\prime}\right)^{n_{1}}}{\psi}\right)=n_{1} T\left(r, u^{\prime}\right)+O(1) \\
& \leqslant 2 \nu n_{1} T(r, u)+S(r, u)
\end{aligned}
$$

But this is impossible since $n_{0}>2(v-1) n_{1}$. Hence ψ is non-constant.
Let $a \in \mathbb{C} \backslash\{0\}$. The second main theorem (see [4, p. 18]) then yields

$$
\begin{equation*}
T(r, \psi) \leqslant \bar{N}(r, \psi)+\bar{N}\left(r, \frac{1}{\psi}\right)+\bar{N}\left(r, \frac{1}{\psi-a}\right)+N_{3}(r, \psi)+S(r, \psi) \tag{1}
\end{equation*}
$$

where $N_{\mathcal{Z}}(r, \psi)$ is the integrated counting function of branch points of ψ. On the other hand, we have

$$
\begin{aligned}
T(r, \psi) & \leqslant n_{1} T\left(r, u^{\prime}\right)+\left(2 n_{1}+n_{0}\right) T(r, u)+O(1) \\
& \leqslant\left(2(v+1) n_{1}+n_{0}\right) T(r, u)+S(r, u),
\end{aligned}
$$

so that we may replace $S(r, \psi)$ in (1) by $S(r, u)$. By [5, Lemma], we also have $N_{3}(r, \psi) \leqslant N_{3}(r, u)$. Thus (1) becomes

$$
\begin{equation*}
T(r, \psi) \leqslant \bar{N}(r, \psi)+\bar{N}\left(r, \frac{1}{\psi}\right)+\bar{N}\left(r, \frac{1}{\psi-a}\right)+N_{3}(r, u)+S(r, u) \tag{2}
\end{equation*}
$$

In what follows, we denote by τ^{\prime} the orders of the zeros of u^{\prime} and write

$$
\begin{aligned}
n\left(r, \frac{1}{u^{\prime}}\right) & =\sum_{\substack{u^{\prime}=0 \\
u \neq 0}} \tau^{\prime}+\sum_{\substack{u^{\prime}=0 \\
u=0 \\
\psi=\infty}} \tau^{\prime}+\sum_{\substack{u^{\prime}=0 \\
u=0 \\
\psi=0}} \tau^{\prime}+\sum_{\substack{u^{\prime}=0 \\
u=0 \\
\psi \neq 0, \infty}} \tau^{\prime} \\
& =: n_{1}(r)+n_{0 \infty}(r)+n_{00}(r)+n_{01}(r)
\end{aligned}
$$

First, let us estimate the term $\bar{N}(r, \psi)$ in (2). Let u have expansions of the general form

$$
\begin{align*}
& u(z)=u\left(z_{0}\right)+b_{\tau}\left(z-z_{0}\right)^{\tau / \lambda}+\cdots, \quad \text { or } \tag{3}\\
& u(z)=b_{-\tau}\left(z-z_{0}\right)^{-\tau / \lambda}+\cdots, \tag{4}
\end{align*}
$$

where $\tau, \lambda \in \mathbb{N}$ and $\lambda \leqslant \nu$. We denote by $n_{3_{1}}(r, u)$ the counting function of branch points of u such that $\tau<\lambda$ in (3). Then we have

$$
\begin{equation*}
\left(2 n_{1}+n_{0}\right) \bar{n}(r, \psi) \leqslant n(r, \psi)+n_{1} n_{0 \infty}(r)+\left(n_{1}+n_{0}\right) n_{3_{1}}(r, u) \tag{5}
\end{equation*}
$$

In fact, poles of ψ arise from zeros of u and poles of u^{\prime}. Suppose that z_{0} is a pole of ψ, a zero of u of order $\tau \geqslant 1$ and a zero of u^{\prime} of order $\tau^{\prime} \geqslant 0$. Then z_{0} is a pole of ψ of order $\left(2 n_{1}+n_{0}\right) \tau-n_{1} \tau^{\prime}$. So, the point z_{0} contributes $\left(2 n_{1}+n_{0}\right) \tau-n_{1} \tau^{\prime}$ to $n(r, \psi)$ and $n_{1} \tau^{\prime}$ to $n_{1} n_{0 \infty}(r)$. Thus the contribution to $n(r, \psi)+n_{1} n_{0 \infty}(r)$ is $\left(2 n_{1}+n_{0}\right) \tau \geqslant 2 n_{1}+n_{0}$. On the other hand, a pole of u as in (4) is a zero of ψ of order

$$
\begin{equation*}
\left(2 n_{1}+n_{0}\right) \tau-n_{1} \tau-n_{1} \lambda=\left(n_{1}+n_{0}\right) \tau-n_{1} \lambda \geqslant n_{1}+n_{0}-n_{1} \nu>0 \tag{6}
\end{equation*}
$$

as soon as $n_{0}>n_{1}(v-1)$. Thus the remaining poles of ψ, that is, poles of u^{\prime}, are branch points of u such that $\tau<\lambda$ in (3). But the contribution of such a point to $n(r, \psi)+\left(n_{1}+n_{0}\right) n_{3_{1}}(r, u)$ is at least $2 n_{1}+n_{0}$. The estimate (5) now follows.

Integrating (5) logarithmically we obtain

$$
\begin{equation*}
\bar{N}(r, \psi) \leqslant \frac{1}{2 n_{1}+n_{0}} N(r, \psi)+\frac{n_{1}}{2 n_{1}+n_{0}} N_{0 \infty}(r)+\frac{n_{1}+n_{0}}{2 n_{1}+n_{0}} N_{\mathcal{Z}_{1}}(r, u) \tag{7}
\end{equation*}
$$

where $N_{0 \infty}(r)$ and $N_{3_{1}}(r, u)$ are defined similarly to $N(r, u)$.
Secondly, let us estimate the term $\bar{N}(r, 1 / \psi)$ in (2). We denote by $n_{3_{2}}(r, u)$ the counting function of those branch points of u that are also poles of u. Then we have
(8) $n_{0} \bar{n}\left(r, \frac{1}{\psi}\right) \leqslant n\left(r, \frac{1}{\psi}\right)+\left(n_{0}-n_{1}\right) n_{1}(r)+\frac{n_{0} n_{1}}{2 n_{1}+n_{0}} n_{00}(r)+n_{1} n_{3_{2}}(r, u)$.

In fact, zeros of ψ arise from poles of u and zeros of u^{\prime}. By (6), a pole of u as in (4) contributes $\left(n_{1}+n_{0}\right) \tau-n_{1} \lambda+n_{1}(\lambda-1)=\left(n_{1}+n_{0}\right) \tau-n_{1} \geqslant n_{0}$ to $n(r, 1 / \psi)+n_{1} n_{3_{2}}(r, u)$. A zero of u^{\prime} of order τ^{\prime} that is not a zero of u contributes $n_{1} \tau^{\prime}+\left(n_{0}-n_{1}\right) \tau^{\prime}=n_{0} \tau^{\prime} \geqslant n_{0}$ to $n(r, 1 / \psi)+\left(n_{0}-n_{1}\right) n_{1}(r)$. Finally, a zero of u^{\prime} that is also a zero of u and ψ must be of order greater than $\left(2 n_{1}+n_{0}\right) / n_{1}$ and so contributes more than n_{0} to $\left(n_{0} n_{1} /\left(2 n_{1}+n_{0}\right)\right) n_{00}(r)$. The estimate (8) now follows. Integrating (8) logarithmically we obtain

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{\psi}\right) \leqslant \frac{1}{n_{0}} N\left(r, \frac{1}{\psi}\right)+\frac{n_{0}-n_{1}}{n_{0}} N_{1}(r)+\frac{n_{1}}{2 n_{1}+n_{0}} N_{00}(r)+\frac{n_{1}}{n_{0}} N_{3_{2}}(r, u) \tag{9}
\end{equation*}
$$

where $N_{1}(r)$ and $N_{00}(r)$ are defined similarly to $N(r, u)$.
Combining (2), (7) and (9), and noticing $N(r, \psi) \leqslant T(r, \psi)$ and $N(r, 1 / \psi) \leqslant$ $T(r, \psi)+O(1)$, we now get

$$
\begin{align*}
\left(1-\frac{1}{2 n_{1}+n_{0}}-\frac{1}{n_{0}}\right) T(r, \psi) \leqslant & \frac{n_{0}-n_{1}}{n_{0}} N_{1}(r)+\frac{n_{1}}{2 n_{1}+n_{0}}\left(N_{0 \infty}(r)+N_{00}(r)\right) \tag{10}\\
& +\frac{n_{1}+n_{0}}{2 n_{1}+n_{0}} N_{3_{1}}(r, u)+\frac{n_{1}}{n_{0}} N_{3_{2}}(r, u) \\
& +\bar{N}\left(r, \frac{1}{\psi-a}\right)+N_{3}(r, u)+S(r, u)
\end{align*}
$$

On the other hand, we have

$$
\begin{equation*}
N(r, 1 / \psi) \geqslant n_{0} N(r, u)+n_{1} N_{1}(r)-n_{1} N_{3_{2}}(r, u) \tag{11}
\end{equation*}
$$

In fact, at a pole of u as in (4), ψ has a zero of order $\left(n_{1}+n_{0}\right) \tau-n_{1} \lambda \geqslant n_{0} \tau-n_{1} \lambda+n_{1}=$ $n_{0} \tau-n_{1}(\lambda-1)$. Also, at a zero of u^{\prime} of order τ^{\prime} that is not a zero of u, the function ψ has a zero of order $n_{1} \tau^{\prime}$. Thus (11) holds.

Furthermore, we have

$$
\begin{aligned}
\left(2 n_{1}+n_{0}\right) m(r, u) & =m\left(r,\left(-u^{\prime}\right)^{n_{1}} / \psi\right) \leqslant n_{1} m\left(r, u^{\prime}\right)+m(r, 1 / \psi) \\
& \leqslant n_{1} m(r, u)+n_{1} m\left(r, u^{\prime} / u\right)+m(r, 1 / \psi)
\end{aligned}
$$

and so

$$
\left(n_{1}+n_{0}\right) m(r, u) \leqslant m(r, 1 / \psi)+S(r, u)
$$

Combining this with (11) we obtain

$$
n_{0} T(r, u) \leqslant T(r, \psi)-n_{1} N_{1}(r)+n_{1} N_{3_{2}}(r, u)+S(r, u)
$$

Using this and (10) we get

$$
\begin{aligned}
n_{0}(1- & \left.\frac{1}{2 n_{1}+n_{0}}-\frac{1}{n_{0}}\right) T(r, u) \\
\leqslant & n_{1}\left(\frac{1}{n_{0}}+\frac{1}{2 n_{1}+n_{0}}-1\right) N_{1}(r)+\frac{n_{0}-n_{1}}{n_{0}} N_{1}(r) \\
& +\frac{n_{1}}{2 n_{1}+n_{0}}\left(N_{0 \infty}(r)+N_{00}(r)\right)+\frac{n_{1}+n_{0}}{2 n_{1}+n_{0}} N_{3_{1}}(r, u) \\
& +\frac{n_{1}}{n_{0}} N_{3_{2}}(r, u)+n_{1}\left(1-\frac{1}{2 n_{1}+n_{0}}-\frac{1}{n_{0}}\right) N_{3_{2}}(r, u) \\
& +\bar{N}\left(r, \frac{1}{\psi-a}\right)+N_{3}(r, u)+S(r, u), \quad \text { or } \\
\left(n_{0}-\right. & \left.\frac{n_{0}}{2 n_{1}+n_{0}}-1\right) T(r, u) \\
\leqslant & \left(1-n_{1}\right) N_{1}(r)+\frac{n_{1}}{2 n_{1}+n_{0}}\left(N_{1}(r)+N_{0 \infty}(r)+N_{00}(r)\right) \\
& +\frac{n_{1}+n_{0}}{2 n_{1}+n_{0}} N_{3_{1}}(r, u)+\frac{n_{1}\left(2 n_{1}+n_{0}-1\right)}{2 n_{1}+n_{0}} N_{3_{2}}(r, u) \\
& +\bar{N}\left(r, \frac{1}{\psi-a}\right)+N_{3}(r, u)+S(r, u) .
\end{aligned}
$$

Since

$$
N_{1}(r)+N_{0 \infty}(r)+N_{00}(r) \leqslant N\left(r, \frac{1}{u^{\prime}}\right) \leqslant T\left(r, u^{\prime}\right)+O(1) \leqslant 2 \nu T(r, u)+S(r, u)
$$

and

$$
N_{3_{1}}(r, u)+N_{3_{2}}(r, u) \leqslant N_{3}(r, u) \leqslant(2 v-2) T(r, u)+O(1)
$$

we get
(12)

$$
\begin{aligned}
\left(n_{0}+\right. & \left.\frac{2 n_{1}}{2 n_{1}+n_{0}}-2\right) T(r, u) \\
\leqslant & \left(\frac{2 v n_{1}}{2 n_{1}+n_{0}}+(2 v-2)\left(\frac{n_{1}\left(2 n_{1}+n_{0}-1\right)}{2 n_{1}+n_{0}}+1\right)\right) T(r, u) \\
& +\bar{N}\left(r, \frac{1}{\psi-a}\right)+S(r, u) \\
= & \left(2 v n_{1}+2 v-2 n_{1}+\frac{2 n_{1}}{2 n_{1}+n_{0}}-2\right) T(r, u)+\bar{N}\left(r, \frac{1}{\psi-a}\right)+S(r, u)
\end{aligned}
$$

Set $p:=n_{0}-2 v n_{1}-2 v+2 n_{1}=n_{0}-4 v+2-2(v-1)\left(n_{1}-1\right)$. By the hypothesis we then have $p \geqslant 1$ and (12) yields

$$
p T(r, w)=p T(r, u)+O(1) \leqslant \bar{N}\left(r, \frac{1}{\psi-a}\right)+S(r, w)
$$

This completes the proof.
PROOF OF THE COROLLARY. Firstly, we have

$$
\begin{equation*}
T(r, \psi)=T\left(r, w^{n_{0}} w^{n_{1}}\right) \leqslant\left(n_{0}+2 v n_{1}\right) T(r, w)+S(r, w) \tag{13}
\end{equation*}
$$

Let $a \in \mathbb{C} \backslash\{0\}$. By (13) and the theorem, there exists a set E of finite linear measure such that

$$
\varlimsup_{r \notin E} \frac{\bar{N}(r, 1 /(\psi-a))}{T(r, \psi)} \geqslant \varlimsup_{r \notin E} \frac{(p-o(1)) T(r, w)}{\left(n_{0}+2 \nu n_{1}+o(1)\right) T(r, w)}=\frac{p}{n_{0}+2 v n_{1}}
$$

The corollary is proved.

References

[1] J. Clunie, 'On a result of Hayman', J. London Math. Soc. 42 (1967), 389-392.
[2] W. Hayman, 'Picard values of meromorphic functions and their derivatives', Ann. of Math. (2) 70 (1959), 9-42.
[3] ——, Meromorphic functions (Clarendon Press, Oxford, 1964).
[4] K. Katajamäki, 'Algebroid solutions of binomial and linear differential equations', Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes No. 90 (1993), 48pp.
[5] __, 'Value distribution of certain differential polynomials of algebroid functions', Arch. Math. (Basel) 67 (1996), 422-429.
[6] E. Mues, 'Über ein Problem von Hayman’, Math. Z. 164 (1979), 239-259.
[7] H. Selberg, ‘Über die Wertverteilung der algebroiden Funktionen’, Math. Z. 31 (1930), 709-728.
[8] E. Ullrich, 'Über den Einfluß der Verzweigtheit einer Algebroide auf ihre Wertverteilung', J. Reine Angew. Math. 167 (1932), 198-220.
[9] G. Valiron, 'Sur la dérivée des fonctions algébroïdes', Bull. Soc. Math. France 59 (1931), 17-39.

Department of Mathematics
University of Joensuu
P.O. Box 111

80101 Joensuu

Finland

[^0]: Supported by the Finnish Academy of Science and Letters.
 (c) 1997 Australian Mathematical Society 0263-6115/97\$A2.00+0.00

