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Abstract

Hayman has shown that if / is a transcendental meromorphic function and n ^ 3, then / " / ' assumes all
finite values except possibly zero infinitely often. We extend his result in three directions by considering
an algebroid function w, its monomial wn° w'"', and by estimating the growth of the number of a-points
of the monomial.
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1. Introduction and results

As Hayman noted in [2, p. 34], the problem of possible Picard values of derivatives
of a meromorphic function having no zeros reduces to the problem of whether certain
differential polynomials of an entire function necessarily have zeros. In this connection
he proved the following theorem:

THEOREM A. (i) If f(z) is a transcendental entire function and n ^ 2, then
f(z)nf'(z) assumes all values except possibly zero infinitely often.

(ii) If f(z) is a transcendental meromorphic function and n ^ 3, then f(z)"f'(z)
assumes all finite values except possibly zero infinitely often.

Clunie [1] showed that Theorem A(i) is also true for n = 1. Moreover, Mues [6]
showed that Theorem A(ii) is also true for n = 2.

It is assumed that the reader is familiar with the notation of standard Nevanlinna
theory [3] and its algebroid counterpart [7, 8,9]. In [5], Theorem A(ii) was generalized
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as follows:

THEOREM B. Let w(z) be a v-valued transcendental algebroid function and set
<j){z) '•= w(z)"w'(z), where n e N. Then ifn ^ 4v — 1, we have

~N

for each be €\{0}.

In this paper, we will prove the following generalization of Theorem A(ii) and
Theorem B:

THEOREM. Let w{z) be a v-valued transcendental algebroid function and set

\/r(z) :=w(z)now'(zy', n0, «i € N.

Then ifn0 ^ 4v — 1 + 2(v — l)(n\ — 1), we have for each a e C \ {0},

N I r, I ^ pT(r, w) — S(r, w),

where p : = n0 — 4v + 2 — 2(v — l ) (« i — 1) ^ 1.

COROLLARY. With the same hypotheses we have

T(r, iff) n0

for each a e C \ {0}.

2. Proof of the theorem and its corollary

To prove the theorem, we write u(z) := \/w(z) and get

In what follows, we regard ijf,u'/u, etcetera as functions on the Riemann surface of u;
see [5, Section 2].

If \fr is a constant function, then

r, u) = T(r, u2"'*"*) = T (r, ^ ^ ) =(2m + no)T(r, u) = T(r, u2"'*"*) = T (r, ^ ^ ) = nxT{r, «') + 0(1)

2vniT(r, u) + S(r, u).
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But this is impossible since «o > 2(v — l)«i. Hence ir is non-constant.
Let a e C \ {0}. The second main theorem (see [4, p. 18]) then yields

(1) T(r,if) ^ 77(r, i / r )+77( r , — ) + ~N (r, } + N3(r, if) + S(r, if),
\ if / \ if — a)

where N$(r, if) is the integrated counting function of branch points of if. On the
other hand, we have

T(r, yjr) < mT(r, u) + (2/i, + no)T(r, u) + 0(1)

< (2(v + l)n, + no)T(r, u) + S(r, u),

so that we may replace S(r, \j/) in (1) by S(r, u). By [5, Lemma], we also have
N3(r, \jr) < N3(r, u). Thus (1) becomes

(2) T(r, yjf) < ~N{r, f) +~N (r, ±-\ + TV (r, J ^ A + N3(r, u) + S(r, «).

In what follows, we denote by r ' the orders of the zeros of u' and write

u'=0 «'=0 H'=0 U'=0
u/0 u=0 u=0 «=0

1^=00 ^ = 0 i/f^O.oo

- : ni(r) + nQoo(r) + itoo(r) + nol(r).

First, let us estimate the term N(r, iff) in (2). Let u have expansions of the general
form

(3) u(z) = u(zo) + bT(z - zv)r/k + • • • , or

(4) i i ( z ) = 6 _ r ( z - * b ) - T A + - " ,

where r, A e N and >. ^ v. We denote by n3l (r, M) the counting function of branch
points of u such that r < k in (3). Then we have

(5) (2«! + no)n(r, i/r) ^ n(r, ^ ) + «i«ooo(r) + (n{ + «0)n3l (r, M).

In fact, poles of Vr arise from zeros of u and poles of u'. Suppose that z0 is a pole
of i/f, a zero of M of order x ^ 1 and a zero of M' of order r ' ^ 0. Then Zo is a pole
of i/̂  of order (2«i + «0)^ — n\t'. So, the point z0 contributes (2ri\ + no)x — nxx'
to n(r, \jf) and n i t ' to nin0oo(r). Thus the contribution to n(r, \j/) + ni^ooo^) is
(2«i + no)r ^ 2«i + n0- On the other hand, a pole of M as in (4) is a zero of \js of
order

(6) (2«] + «o) r — «iT — n]A. = (rti + «o)^ ~ n\k ^ /zj + «0 — n\V > 0
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as soon as n0 > «i(v — 1). Thus the remaining poles of \Js, that is, poles of u', are
branch points of u such that x < k in (3). But the contribution of such a point to
n(r, \jr) + (/ij + «o)«3, (r, u) is at least 2«i + n0. The estimate (5) now follows.

Integrating (5) logarithmically we obtain

(7) N{r,f)

where N0oo(r) and N^(r, u) are defined similarly to N(r, u).
Secondly, let us estimate the term N(r, \/\jr) in (2). We denote by «32(r, u) the

counting function of those branch points of u that are also poles of u. Then we have

(8) non' * ' - ' 1 A • ' ' n°Hl(r, —

In fact, zeros of ^ arise from poles of u and zeros of u!. By (6), a pole of u
as in (4) contributes (nx + no)x — nxk + n^A. — 1) = («[ + no)r — n{ ^ n0 to
n(r, 1/V )̂ + «i«32(r, M). A zero of u' of order r ' that is not a zero of u contributes
n\x' + («o — n\)x' = nox' ^ n0 to n(r, 1/i/f) + (n0 — n^tiiir). Finally, a zero of
u! that is also a zero of a and is must be of order greater than {2n\ + no)/«i and so
contributes more than n0 to (no«i/(2«i + n0))noo(r). The estimate (8) now follows.
Integrating (8) logarithmically we obtain

(9)

N (r, I ) < liV (r, I ) + ̂ ^ l ( r ) + - ^ _ ^ o o ( D + ^ ( r , u),
\ f / n0 \ x/r / n0 2ni+n0 nQ

where N\ (r) and N<yo(r) are defined similarly to N(r, u).
Combining (2), (7) and (9), and noticing N(r, xfr) ^ T(r, \]/) and N(r, l/f)

T(r, \jr) + 0(1) , we now get

(10)

r ) r(r, V) ^

i + n 0

f r, —— )f ) + W3(r, M) + S(r, M).

On the other hand, we have

(11) N (r, l/f) > n0N(r, u) + n,#i(r) - nxN^{r, u).

https://doi.org/10.1017/S1446788700001087 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001087


402 Kari Katajamaki [5]

In fact, at a pole of was in (4), \jr hasazerooforderfaj+rto)^ — nxX ^ nox —ti\k+n\ =
nox — n\ (A. — 1). Also, at a zero of u' of order x' that is not a zero of «, the function
y\r has a zero of order nx x'. Thus (11) holds.

Furthermore, we have

(2n, + no)w(r, II) = m (r, (-«')"'/V) < «,m(r, u') + m (r,

^ nxm(r, u) + n\m (r, u'/u) + m (r, 1/V0 ,

and so

(«i + no)m(r, u) ^ m (r, l/f) + S(r, u).

Combining this with (11) we obtain

n0T(r, u) ^ T(r, xjr) - nxNx(r) + n{N52(r, u) + S(r, u).

Using this and (10) we get

+ Nm(r)) + ^ ~
2«i+2«i+«0

f 1 - -—l- - ) Nyir,
\ 2ni+n0 noj

-AT32(r, II) + n, f 1 - - — l - - ) Nyir, u)

(no -

r, —}—) + W3(r, M) + S(r, u), or

- l ) r(r, «)
2«,+n0

(1 - ni)W,(r) + — ^ (A ,̂(r) + A W ) +

., , , , «i(2ni +n0- 1)
N3l(r, u) + — Ni2(r, u)

2n+ni 0

(r, —— )+ N (r, —— ) + A 3̂(r, u) + 5(r, II).

Since

T H «) + 5(r, n)
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and

N3l(r, «) + N^r, u) ^ N3(r, u) ^ (2v - 2)T(r, u) + 0(1),

we get

(12)

2) 7(r, H)= (2vn, + 2v - 2m + — ^ 2) 7(r, H) + yV fr, —L_) + S(r, u).

Set/? :=n o -2vn, -2v + 2n, — no-4v+ 2-2(v - l)(n, - 1). By the hypothesis

we then have p ^ 1 and (12) yields

f r, )/?r(r, w) = pT(r, u) + 0(1) ^ 77 f r, ) + S(r, w).
V i r a j

This completes the proof.

PROOF OF THE COROLLARY. Firstly, we have

(13) T(r, >jr) = T(r, wn°w'n') < (n0 + 2vm)T(r, w) + S(r, w).

Let a € C \ {0}. By (13) and the theorem, there exists a set E of finite linear measure

such that

. . v , . / v r -a)) — (p - o(l))T(r, w)
hm — — > hm -

+ 2vnl+o(l))T(r,w)

The corollary is proved.
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