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Abstract Let X be a Banach space and let Y be a closed subspace of a Banach space Z. The following
theorem is proved. Assume that X∗ or Z∗ has the approximation property. If there exists a bounded linear
extension operator from Y ∗ to Z∗, then any bounded linear operator T : X → Y is nuclear whenever T

is nuclear from X to Z. The particular case of the theorem with Z = Y ∗∗ is due to Grothendieck and
Oja and Reinov. Numerous applications are presented. For instance, it is shown that a bounded linear
operator T from an arbitrary Banach space X to an L∞-space Y is nuclear whenever T is nuclear from
X to some Banach space Z containing Y as a subspace.
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1. Introduction

Let X and Y be Banach spaces. A bounded linear operator T ∈ L(X, Y ) is said to
be nuclear if there exist x∗

n ∈ X∗ and yn ∈ Y such that
∑∞

n=1 ‖x∗
n‖ ‖yn‖ < ∞ and

Tx =
∑∞

n=1 x∗
n(x)yn for all x ∈ X. In this case, one writes T =

∑∞
n=1 x∗

n ⊗ yn and calls
the latter sum a nuclear representation of T . Let us denote by N (X, Y ) the collection of
all nuclear operators from X to Y .

Every operator T ∈ L(X, Y ) may be viewed as an operator from X to Y ∗∗ considering
the operator jY T , where jY : Y → Y ∗∗ denotes the canonical embedding. Grothendieck
proved, in his famous memoir [7, Chapter I, pp. 85, 86], that

jY T ∈ N (X, Y ∗∗) ⇒ T ∈ N (X, Y ) (1.1)

whenever X∗ has the approximation property. He also affirmed (see [6, p. 17] and [7,
Chapter I, p. 86]) that implication (1.1) holds whenever the second dual space Y ∗∗ has
the approximation property. A counterexample to this affirmation of Grothendieck was
given by Oja and Reinov (see [24] or [25]). On the other hand, they proved [25] that
implication (1.1) is true whenever the third dual space Y ∗∗∗ has the approximation
property. The latter assumption seems to be rather confusing because one does not know
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much about the third duals of non-reflexive Banach spaces, even of so-called classical
ones (for instance, let us quote Diestel [1, p. 35] here: ‘ba = c∗∗∗

0 is the best I can do’).
The purpose of the present article is to extend the above-described Grothendieck–Oja–

Reinov theorem to a more general natural setting in such a way that the assumption about
the approximation property would solely concern the first dual spaces. In particular, this
clarifies the appearance of the third dual Y ∗∗∗ in the Oja–Reinov result.

To state the main result of this article, Theorem 1.1 below, we need the notion of
an extension operator. Let Y be a closed subspace of a Banach space Z. An operator
Φ ∈ L(Y ∗, Z∗) is called an extension operator if (Φy∗)(y) = y∗(y) for all y∗ ∈ Y ∗ and all
y ∈ Y . Remark that the existence of an extension operator is equivalent to the annihilator
of Y being complemented in Z∗.

Let us also recall that the nuclear norm ‖T‖N of a nuclear operator T ∈ N (X, Y ) is
defined by the equality

‖T‖N = inf
{ ∞∑

n=1

‖x∗
n‖ ‖yn‖ : T =

∞∑
n=1

x∗
n ⊗ yn

}
,

where the infimum is taken over all possible nuclear representations of T . It is straight-
forward to verify that if there are two more bounded linear operators A, acting to X,
and B, acting from Y , then BTA is a nuclear operator and ‖BTA‖N � ‖B‖ ‖T‖N ‖A‖.

Theorem 1.1. Let X be a Banach space. Let Y be a closed subspace of a Banach
space Z and let j : Y → Z denote the identity embedding. Assume that there is an
extension operator Φ ∈ L(Y ∗, Z∗). If X∗ or Z∗ has the approximation property, then,
for every operator T ∈ L(X, Y ), the following implication holds:

jT ∈ N (X, Z) ⇒ T ∈ N (X, Y ). (1.2)

Moreover,
1

‖Φ‖‖T‖N � ‖jT‖N � ‖T‖N .

Pairs of Banach spaces Z and their closed subspaces Y for which there exists an exten-
sion operator Φ ∈ L(Y ∗, Z∗) were systematically studied by Fakhoury [3] and Kalton [11].
The existence of Φ with ‖Φ‖ = 1 means, according to the terminology of Godefroy, Kalton
and Saphar [5], that Y is an ideal in Z. Different subclasses of ideals have been extensively
studied by many authors (for references see [22, § 4]).

Theorem 1.1 obviously contains the Grothendieck–Oja–Reinov result as a special case
when Z = Y ∗∗ and Φ = jY ∗ . Other applications of Theorem 1.1 will be discussed in § 5
of this article.

Sections 2 and 3 contain preliminaries and preparatory results needed for the proof
of Theorem 1.1. For instance, we prove (see Proposition 2.1) that the approximation
property of a Banach space Z is inherited by its closed subspace Y whenever there exists
an extension operator Φ ∈ L(Y ∗, Z∗). This result is essentially due to Kalton [11] and
Lima [12], but we give here a direct proof that does not rely on the principle of local
reflexivity. We also prove (see Theorems 3.3 and 3.4) that the existence of an extension
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operator (respectively, a norm-preserving extension operator) is sufficient and necessary
for projective tensor products to respect their subspace structure isomorphically (respec-
tively, isometrically). This improves a result due to Grothendieck [7, Chapter I, p. 40]
where Y was assumed to be complemented in its bidual Y ∗∗ (see Remark 3.5).

Section 4 contains the proof of Theorem 1.1. We have tried to give a self-contained
proof with as few prerequisites as possible. It turns out (see Remark 4.1) that our proof
is simpler than the existing proofs for the above-mentioned special case when Z = Y ∗∗.

The notation we use is standard. We consider Banach spaces over the same, either real
or complex, field. Let X and Y be Banach spaces. We denote by L(X, Y ) the Banach
space of bounded linear operators from X to Y and by F(X, Y ) its linear subspace of
finite-rank operators. If A ∈ L(X, Y ) is an into isomorphism, then its injection modulus
i(A) is defined by

i(A) = sup{τ > 0 : ‖Ax‖ � τ‖x‖ ∀x ∈ X}.

The identity operator on X is denoted by IX . We shall always consider X as a subspace
of X∗∗, identifying the canonical embedding jX : X → X∗∗ with the identity embedding.

2. Approximation property

A Banach space X is said to have the approximation property if the identity operator
IX on X can be uniformly approximated on compact subsets of X by bounded linear
operators of finite rank. In other words, this means that IX belongs to the closure of
F(X, X) in the topology τ of uniform convergence on compact sets in X. Using the
description (due to Grothendieck [7]) of the linear functionals on L(X, X) which are
continuous in τ (see, for example, [20, p. 31]), it is easy to show (see, for example, [20,
p. 32]) that X has the approximation property if and only if the following condition
holds.

(AP). For all sequences (xn) ⊂ X and (x∗
n) ⊂ X∗ such that

∑∞
n=1 ‖x∗

n‖ ‖xn‖ < ∞
and

∑∞
n=1 x∗

n(x)xn = 0, whenever x ∈ X, one has
∑∞

n=1 x∗
n(xn) = 0.

Criterion (AP) is one of the most well known from the eight criteria of the approxima-
tion property established by Grothendieck in his memoir [7, Chapter I, p. 165], called by
him the ‘condition de biunivocité’. Several recent criteria of the approximation property
may be found in [13], [15], [14] and [23].

By now, it is well known that the approximation property is generally not inherited by
subspaces. For instance, the spaces �p, p 	= 2, and c0 are saturated with subspaces which
do not have the approximation property: every infinite-dimensional closed subspace of
them contains a closed subspace without the approximation property (see, for example,
[20, pp. 53 and 90] and [21, p. 107]). Relying on condition (AP), we shall prove the
following positive result which is essentially known (see Remark 2.2 below).

Proposition 2.1. Let Y be a closed subspace of a Banach space Z. Assume that there
is an extension operator Φ ∈ L(Y ∗, Z∗). If Z has the approximation property, then Y

also has the approximation property.
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Proof. Suppose that Z has the approximation property. We shall use condition (AP)
to show that Y has the approximation property.

Let (yn) ⊂ Y and (y∗
n) ⊂ Y ∗ satisfy

∑∞
n=1 ‖y∗

n‖ ‖yn‖ < ∞ and let
∑∞

n=1 y∗
n(y)yn = 0

for all y ∈ Y . Then
∑∞

n=1 y∗(yn)y∗
n = 0 for all y∗ ∈ Y ∗, the series being absolutely

converging in Y ∗. Therefore,
∞∑

n=1

y∗(yn)Φy∗
n = 0 ∀y∗ ∈ Y ∗,

meaning that

y∗
( ∞∑

n=1

(Φy∗
n)(z)yn

)
= 0 ∀y∗ ∈ Y ∗, ∀z ∈ Z.

Hence
∞∑

n=1

(Φy∗
n)(z)yn = 0 ∀z ∈ Z.

Since Φ is an extension operator and Z has the approximation property, we have, using
condition (AP) for Z,

∞∑
n=1

y∗
n(yn) =

∞∑
n=1

(Φy∗
n)(yn) = 0.

Consequently, Y has the approximation property. �

Remark 2.2. Kalton [11, Theorem 5.1] and Lima [12, Corollary 2] proved Proposi-
tion 2.1 for a locally complemented subspace Y of Z. A closed subspace Y of a Banach
space Z is called locally complemented in Z if there exists a constant λ � 1 such that
whenever F is a finite-dimensional subspace of Z and ε > 0, there is a linear operator
T : F → Y with Tx = x for all x ∈ F ∩ Y and ‖T‖ � λ + ε. Kalton considered the
separable case and the bounded approximation property, but his argument clearly works
also for the general (non-separable) case and for the approximation property, and it was
essentially applied by Lima. Let us mention that if Y is locally complemented in Z, then,
using a compactness argument due to Lindenstrauss [16], one can prove (see [3, Theo-
rem 2.14] or [11, Theorem 3.5]) that there exists an extension operator Φ ∈ L(Y ∗, Z∗).
On the other hand, by the principle of local reflexivity, the converse also holds true
(see [3, Theorem 2.14] or [11, Theorem 3.5]).

3. Projective tensor products and nuclear operators

Let X and Y be Banach spaces. For the sake of readers who are not acquainted with
the theory of tensor products of Banach spaces, let us recall that any element u =∑m

n=1xn ⊗ yn of the algebraic tensor product X ⊗ Y can be algebraically identified with
the finite-rank operator

m∑
n=1

xn ⊗ yn : x∗ �→
m∑

n=1

x∗(xn)yn
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from X∗ to Y . Thus X ⊗ Y may always be viewed as a linear subspace of F(X∗, Y ). In
particular, X∗ ⊗ Y = F(X, Y ).

The class of nuclear operators is closely related to the so-called projective tensor prod-
ucts of Banach spaces. Let us recall that the projective tensor product X ⊗̂ Y of Banach
spaces X and Y is the completion of the algebraic tensor product X⊗Y in the (projective
or π-) norm ‖ · ‖π defined as

‖u‖π = inf
{ m∑

n=1

‖xn‖ ‖yn‖ : u =
m∑

n=1

xn ⊗ yn

}
, u ∈ X ⊗ Y,

where the infimum is taken over all possible representations of u.
The projective tensor product X ⊗̂ Y has a simple description due to Grothendieck [7]

(for a proof, we refer, for example, to [2, p. 227]): every u ∈ X ⊗̂ Y has a representation

u =
∞∑

n=1

xn ⊗ yn with
∞∑

n=1

‖xn‖ ‖yn‖ < ∞ (3.1)

(the series is (absolutely) converging for the π-norm). Moreover,

‖u‖π = inf
{ ∞∑

n=1

‖xn‖ ‖yn‖ : u =
∞∑

n=1

xn ⊗ yn

}
, u ∈ X ⊗̂ Y,

where the infimum is taken over all representations of u of the form (3.1).
The dual space of a projective tensor product is even easier to describe than the

projective tensor product itself. A simple straightforward verification (see, for example,
[2, pp. 229, 230]) shows that the dual space of X ⊗̂ Y can be identified with L(X, Y ∗)
or with L(Y, X∗) under the duality

〈
A,

∞∑
n=1

xn ⊗ yn

〉
=

∞∑
n=1

(Axn)(yn)

or, respectively, under the duality

〈
B,

∞∑
n=1

xn ⊗ yn

〉
=

∞∑
n=1

(Byn)(xn).

This identification is, in fact, a linear isometry. Therefore, one writes

(X ⊗̂ Y )∗ = L(X, Y ∗) or (X ⊗̂ Y )∗ = L(Y, X∗).

The above description was known already to Schatten [31].
Let X be a Banach space and let Y be a closed subspace of a Banach space Z. Denote

by j : Y → Z the identity embedding and consider the identity embedding

IX ⊗ j : X ⊗ Y → X ⊗̂ Z.
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It clearly satisfies
‖(IX ⊗ j)u‖π � ‖u‖π.

Let us denote its (unique) bounded extension to X ⊗̂ Y also by IX ⊗ j and call
IX ⊗ j : X ⊗̂ Y → X ⊗̂ Z the natural inclusion.

It is well known (see, for example, [2, pp. 230, 231]) that the natural inclusion IX ⊗
j need not be isometric: the projective tensor products do not respect the subspace
structure. The natural inclusion need not even be isomorphic (see [7, Chapter I, p. 40];
for a stronger result in this direction, see [33, Theorem V.1]). However, as can be seen
from the next result, the natural inclusion is an into isomorphism whenever an extension
operator exists.

Theorem 3.1. Let X be a Banach space. Let Y be a closed subspace of a Banach
space Z and let j : Y → Z denote the identity embedding.

(a) If there exists an extension operator Φ ∈ L(Y ∗, Z∗), then the natural inclusion
IX ⊗ j : X ⊗̂ Y → X ⊗̂ Z is an into isomorphism satisfying the inequalities

1
‖Φ‖‖u‖π � ‖(IX ⊗ j)u‖π � ‖u‖π ∀u ∈ X ⊗̂ Y.

(b) If the natural inclusion IY ∗ ⊗ j : Y ∗ ⊗̂ Y → Y ∗ ⊗̂ Z is an into isomorphism, then
there exists an extension operator Φ ∈ L(Y ∗, Z∗) with ‖Φ‖ = 1/i(IY ∗ ⊗ j).

Proof. (a) Consider any u =
∑∞

n=1 xn ⊗ yn ∈ X ⊗̂ Y . One need only verify that

‖u‖π � ‖Φ‖ ‖(IX ⊗ j)u‖π.

Since (X ⊗̂ Y )∗ = L(X, Y ∗), there exists an operator A ∈ L(X, Y ∗) with ‖A‖ = 1 so
that

‖u‖π = 〈A, u〉 =
∞∑

n=1

(Axn)(yn) =
∞∑

n=1

(Φ(Axn))(yn).

On the other hand, since ΦA ∈ L(X, Z∗) = (X ⊗̂ Z)∗, we have

∞∑
n=1

(Φ(Axn))(yn) = 〈ΦA, (IX ⊗ j)u〉 � ‖ΦA‖ ‖(IX ⊗ j)u‖π

� ‖Φ‖ ‖(IX ⊗ j)u‖π.

This yields the desired inequality.

(b) Using the description of duals of projective tensor products, let us consider

(IY ∗ ⊗ j)∗ : L(Y ∗, Z∗) → L(Y ∗, Y ∗).

Since IY ∗ ⊗ j is an into isomorphism, there exists a Φ ∈ L(Y ∗, Z∗) so that (IY ∗ ⊗ j)∗Φ =
IY ∗ and

‖Φ‖ � 1
i(IY ∗ ⊗ j)

‖IY ∗‖ =
1

i(IY ∗ ⊗ j)
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(for a proof of this ‘folkloristic’ fact, see, for example, [8, Lemma 2.2]). Since, for all
y∗ ∈ Y ∗ and y ∈ Y ,

(Φy∗)(y) = 〈Φ, y∗ ⊗ y〉 = 〈(IY ∗ ⊗ j)∗Φ, y∗ ⊗ y〉 = 〈IY ∗ , y∗ ⊗ y〉 = y∗(y),

Φ is an extension operator. By the already-proved part (a), we also have i(IY ∗ ⊗ j) �
1/‖Φ‖. �

Remark 3.2. If ‖Φ‖ = 1 in Theorem 3.1 (a), that is, if Φ is a norm-preserving extension
operator, then IX ⊗ j is an isometry and X ⊗̂ Y is a subspace of X ⊗̂ Z (this result was
proved by Randrianantoanina [27] and Rao [28]). In particular, if Z = Y ∗∗ and Φ = jY ∗ ,
one has the well-known result due to Grothendieck [7] that X ⊗̂ Y is a subspace of
X ⊗̂ Y ∗∗. The special case of Theorem 3.1 (a), when Y is complemented in Z (observe
that if P ∈ L(Z, Y ) is a projection onto Y , then P ∗ is clearly an extension operator), is
well known (see [7, Chapter I, p. 40] or, for example, [30, p. 18]).

The following characterizations of the situations when the projective tensor products
respect the subspace structure isomorphically or isometrically are immediate from The-
orem 3.1.

Theorem 3.3. Let Y be a closed subspace of a Banach space Z. Then the following
assertions are equivalent.

(a) The natural inclusion from X ⊗̂ Y to X ⊗̂ Z is an into isomorphism for all Banach
spaces X.

(b) The natural inclusion from Y ∗ ⊗̂ Y to Y ∗ ⊗̂ Z is an into isomorphism.

(c) There exists an extension operator Φ ∈ L(Y ∗, Z∗).

Moreover, in this case, i(IX ⊗ j) � i(IY ∗ ⊗ j), for all Banach spaces X, and

i(IY ∗ ⊗ j) = max{1/‖Φ‖ : Φ ∈ L(Y ∗, Z∗) is an extension operator},

where j denotes the identity embedding from Y to Z.

Theorem 3.4. Let Y be a closed subspace of a Banach space Z. Then the following
assertions are equivalent.

(a) X ⊗̂ Y is a closed linear subspace of X ⊗̂ Z (under the natural inclusion) for all
Banach spaces X.

(b) Y ∗ ⊗̂ Y is a closed linear subspace of Y ∗ ⊗̂ Z (under the natural inclusion).

(c) There exists a linear norm-preserving extension operator from Y ∗ to Z∗.

Remark 3.5. Theorem 3.3, together with Theorem 3.4, improves the following result
due to Grothendieck [7, Chapter I, p. 40].

Let Y be a closed subspace of a Banach space Z such that Y is complemented in its
bidual Y ∗∗. Then the natural inclusion from Y ∗ ⊗̂ Y to Y ∗ ⊗̂ Z is an into isomorphism
if and only if Y is complemented in Z.
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To see that Theorem 3.3 contains Grothendieck’s result as a particular case, let us
observe that if P ∈ L(Y ∗∗, Y ) is a projection onto Y and if Φ ∈ L(Y ∗, Z∗) is an extension
operator, then, clearly, Φ∗|Y = IY and therefore PΦ∗|Z is a projection from Z onto Y .
On the other hand, if Q ∈ L(Z, Y ) is a projection onto Y , then Q∗ is clearly an extension
operator.

Let X and Y be Banach spaces. Then there is a natural linear surjection from X∗ ⊗̂ Y

onto N (X, Y ). It assigns to any u ∈ X∗ ⊗̂ Y , having a representation

u =
∞∑

n=1

x∗
n ⊗ yn with

∞∑
n=1

‖x∗
n‖ ‖yn‖ < ∞,

the nuclear operator
∞∑

n=1

x∗
n ⊗ yn : x �→

∞∑
n=1

x∗
n(x)yn.

If now X∗ or Y has the approximation property, then using the description of (X∗ ⊗̂ Y )∗

as L(Y, X∗∗) or, respectively, L(X∗, Y ∗) together with the Hahn–Banach theorem, and
relying on condition (AP), it is rather straightforward to verify that the natural surjection
above is also injective (cf. [7, Chapter I, p. 167]). In fact, it is a linear isometry between
X∗ ⊗̂ Y and N (X, Y ) (this is obvious from the definitions of the norms ‖ ·‖π and ‖ ·‖N ).
Therefore, one writes

X∗ ⊗̂ Y = N (X, Y )

whenever X∗ or Y has the approximation property, identifying X∗ ⊗̂ Y and N (X, Y ) as
Banach spaces.

For the proof of our main Theorem 1.1, we shall need the following corollary of Propo-
sition 2.1 and Theorem 3.1 (a).

Proposition 3.6. Let X be a Banach space. Let Y be a closed subspace of a Banach
space Z and let j : Y → Z denote the identity embedding. Assume that there is an
extension operator Φ ∈ L(Y ∗, Z∗). If X∗ or Z has the approximation property, then, for
every nuclear operator T ∈ N (X, Y ), the following inequalities hold:

1
‖Φ‖‖T‖N � ‖jT‖N � ‖T‖N .

Proof. First of all, notice that Y also has the approximation property (see Proposi-
tion 2.1). Let a nuclear representation of T be given by

u ∈ X∗ ⊗̂ Y, u =
∞∑

n=1

x∗
n ⊗ yn,

∞∑
n=1

‖x∗
n‖ ‖yn‖ < ∞.

Then a nuclear representation of jT is given by (IX∗ ⊗ j)u =
∑∞

n=1 x∗
n ⊗ jyn ∈ X∗ ⊗̂ Z.

Since X∗ or Y has the approximation property, ‖T‖N = ‖u‖π. Since X∗ or Z has
the approximation property, ‖jT‖N = ‖(IX∗ ⊗ j)u‖π. And the required inequalities are
obvious from Theorem 3.1 (a). �
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4. Proof of Theorem 1.1

First of all, notice that Z also has the approximation property if Z∗ does (this is a well-
known result due to Grothendieck [7] which is obvious from condition (AP)). Therefore,
relying on Proposition 3.6, one need only prove that T ∈ N (X, Y ) whenever T ∈ L(X, Y )
and jT ∈ N (X, Z). In other words, one need prove that jT belongs to the subspace
{jS : S ∈ N (X, Y )} of N (X, Z). This subspace, being isomorphic to N (X, Y ) (by
Proposition 3.6), is a closed subspace of N (X, Z). Therefore, it suffices to show that
every continuous linear functional on N (X, Z) that vanishes on {jS : S = x∗ ⊗ y : x∗ ∈
X∗, y ∈ Y }, also vanishes on jT . Let jT =

∑∞
n=1 x∗

n ⊗ zn with x∗
n ∈ X∗, zn ∈ Z, and∑∞

n=1 ‖x∗
n‖ ‖zn‖ < ∞.

(1) Assume that X∗ has the approximation property and use the canonical identifica-
tions

N (X, Z)∗ = (X∗ ⊗̂ Z)∗ = L(Z, X∗∗).

Suppose that A ∈ L(Z, X∗∗) satisfies

〈A, j(x∗ ⊗ y)〉 = 0 ∀x∗ ∈ X∗, ∀y ∈ Y.

This means that (Ajy)(x∗) = 0 for all x∗ ∈ X∗ and all y ∈ Y , or Aj = 0 as an operator
from Y to X∗∗.

The desired equality

〈A, jT 〉 =
∞∑

n=1

(Azn)(x∗
n) = 0

follows from condition (AP) for X∗, because, for all x∗ ∈ X∗ and x ∈ X,

( ∞∑
n=1

(Azn)(x∗)x∗
n

)
(x) =

( ∞∑
n=1

x∗
n(x)Azn

)
(x∗) = ((AjT )x)(x∗)

= ((0T )x)(x∗) = 0.

(2) Assume that Z∗ has the approximation property and use the canonical identifica-
tions

N (X, Z)∗ = (X∗ ⊗̂ Z)∗ = L(X∗, Z∗).

Suppose that A ∈ L(X∗, Z∗) satisfies

〈A, j(x∗ ⊗ y)〉 = 0 ∀x∗ ∈ X∗, ∀y ∈ Y.

This means that (Ax∗)(jy) = (j∗Ax∗)(y) = 0 for all x∗ ∈ X∗ and y ∈ Y , or j∗A = 0 as
an operator from X∗ to Y ∗.

To establish the desired equality

〈A, jT 〉 =
∞∑

n=1

(Ax∗
n)(zn) = 0,
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let us observe that, for all n,

(j∗∗Φ∗zn)(Ax∗
n) = (Φ∗zn)(j∗Ax∗

n) = (Φ∗zn)(0) = 0.

Consequently,

〈A, jT 〉 =
∞∑

n=1

(zn − j∗∗Φ∗zn)(Ax∗
n).

Therefore, the equality 〈A, jT 〉 = 0 follows from condition (AP) for Z∗, because, for all
z∗ ∈ Z∗, we have

∞∑
n=1

(zn − j∗∗Φ∗zn)(z∗)Ax∗
n = A

( ∞∑
n=1

zn(z∗)x∗
n −

∞∑
n=1

zn(Φj∗z∗)x∗
n

)

= A((jT )∗(z∗ − Φj∗z∗)) = (AT ∗)(j∗z∗ − j∗Φj∗z∗)

= (AT ∗)(j∗z∗ − j∗z∗) = 0.

�

Remark 4.1. If one carried out the proof of Theorem 1.1 in the well-known particular
case (due to Grothendieck [7]) when Z = Y ∗∗ with Φ = jY ∗ , and X∗ has the approxi-
mation property, then one would observe that our argument is simpler and shorter than
the traditional ones (cf. [7, Chapter I, pp. 85, 86], [2, p. 243] or [30, p. 77]). If one car-
ried out our proof in the other known particular case (see [24] or [25]) when Z = Y ∗∗

with Φ = jY ∗ , and Y ∗∗∗ has the approximation property, then one would observe that
it is much simpler and shorter than the proof in [25]. The main difference is that the
above-mentioned proofs rely on derivations of condition (AP), whereas our proof makes
a direct use of this condition. We have also been trying to reduce to a minimum the use
of tensor products machinery.

5. Comments and applications

The notation will be as above. In particular, X is a Banach space, Y is a closed subspace
of a Banach space Z, and j : Y → Z denotes the identity embedding.

Theorem 1.1 shows that if Y is sufficiently well placed in Z—more precisely, if there
exists an extension operator Φ ∈ L(Y ∗, Z∗)—and if X∗ or Z∗ has the approximation
property, then

T ∈ L(X, Y ) and jT ∈ N (X, Z) ⇒ T ∈ N (X, Y ). (2′)

5.1.

As was already mentioned in § 1, Theorem 1.1 contains the Grothendieck–Oja–Reinov
result as an immediate particular case with Z = Y ∗∗ and Φ = jY ∗ . In this case, and
therefore also in Theorem 1.1, the assumptions about the approximation properties of
X∗ and Z∗ are essential and cannot be weakened to the approximation properties of X

or/and Z (or even to the existence of bases). In fact, as it was shown by Oja and Reinov
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(using the famous James–Lindenstrauss construction [17]) (see [24,25]), there exists a
Banach space Y such that Y ∗∗ has a boundedly complete basis, Y ∗∗∗ is separable but it
does not have the approximation property, and there exists an operator T ∈ L(Y ∗∗, Y )
so that jY T ∈ N (Y ∗∗, Y ∗∗) but T 	∈ N (Y ∗∗, Y ). In this example, X = Z = Y ∗∗. Let
us notice that the need for the approximation property of X∗ is already clear from the
important paper by Figiel and Johnson [4] from 1973.

5.2.

Let us now show that if (2′) holds for X = Y such that X∗ = Y ∗ has the approximation
property, then necessarily an extension operator Φ ∈ L(Y ∗, Z∗) must exist.

First of all observe that

W := {jT : T ∈ L(X, Y ) and jT ∈ N (X, Z)}

is a closed subspace of N (X, Z) containing

V := {jS : S ∈ N (X, Y )}.

The natural embedding J : N (X, Y ) → N (X, Z), given by J(S) = jS, S ∈ N (X, Y ), is
clearly injective and ranJ = V . Observe also that (2′) holds if and only if V = W .

Therefore, if (2′) holds, then J is an into isomorphism, and we may use the following
immediate corollary of Theorem 3.3.

Proposition 5.1. If Y ∗ has the approximation property, then the following assertions
are equivalent.

(a) The natural embedding J : N (Y, Y ) → N (Y, Z) is an into isomorphism.

(b) There exists an extension operator Φ ∈ L(Y ∗, Z∗).

Moreover, in this case, i(J) = max{1/‖Φ‖ : Φ ∈ L(Y ∗, Z∗) is an extension operator}.

5.3.

Implication (2′) holds for arbitrary Banach spaces X whenever Y is a complemented
subspace of Z. Indeed, let P ∈ L(Z, Y ) be a projection onto Y . If T ∈ L(X, Y ) and
jT ∈ N (X, Z), then T = PjT ∈ N (X, Y ) (and, moreover, ‖T‖N � ‖P‖ ‖jT‖N ).

On the other hand, Y is complemented in Z whenever Y is complemented in its bidual
Y ∗∗, Y ∗ has the approximation property, and J : N (Y, Y ) → N (Y, Z) is an into isomor-
phism. (This result, which is due to Grothendieck, easily follows from Proposition 5.1
(see Remark 3.5).)

Therefore, considering uncomplemented subspaces Y of Z, one can give numerous
examples of situations when (2′) does not hold despite the fact that X, Y , Z and all their
higher duals have the approximation property. For instance, (2′) does not hold for X = Y

being an isomorphic copy of �2 in Z = �∞. Similar examples may be obtained using, for
example, uncomplemented subspaces isomorphic to �1 in C[0, 1] (classical Banach–Mazur
example) or to �2 in L4/3[0, 1] (example due to Rosenthal [29, p. 52]).
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Stegall and Retherford [33, p. 475] essentially showed that (2′) fails for Rosenthal’s
example, and also if X = �2 and Y is a sufficiently Euclidean subspace, with a basis,
of Z = �1. In the last case, they used results established in [33] and a simple well-
known fact (see, for example, [35, p. 126]) (that can also be used for the examples of the
latter paragraph): if X∗ has the approximation property, then the natural embedding
J : N (X, Y ) → N (X, Z) is an into isomorphism if and only if the restriction mapping
from L(Z, X∗∗) to L(Y, X∗∗) given by A �→ A|Y (which actually coincides with J∗) is
surjective.

5.4.

In contract with 5.3 above, let us observe the following result, which is essentially due
to Stegall and Retherford [33]. For the definition and basic properties of L∞-spaces (or,
more generally, Lp-spaces), we refer to [18] and [19].

Theorem 5.2. Implication (2′) holds for arbitrary Banach spaces Z and their closed
subspaces Y if and only if X is an L∞-space.

Proof. By [33, Theorem III.3], X is an L∞-space if and only if for any Banach space
Z and for any T ∈ N (X, Z), the astriction Ta : X → ranT is a nuclear operator. From
this, our claim is straightforward. �

5.5.

There are many important situations that are different, in general, from the classical
one considered in 5.1, when an extension operator Φ ∈ L(Y ∗, Z∗) exists and Theorem 1.1
applies.

5.5.1.

Recall that a Banach space is said to be a Pλ-space, for some λ � 1, if it is comple-
mented, by a projection whose norm does not exceed λ, in any Banach space containing
it (as an isometrically isomorphic subspace). Recall also that, for every set Γ , the space
�∞(Γ ) is a P1-space (see, for example, [20, p. 105]).

The next result is due to Fakhoury [3, Corollary 3.3]. Fakhoury’s proof relies on Lin-
denstrauss’s memoir [16] and his own results established in [3]. We present a simple
direct proof.

Proposition 5.3. Let Y be a closed subspace of a Banach space Z. If Y ∗∗ is a Pλ-
space, then there exists an extension operator Φ ∈ L(Y ∗, Z∗) with ‖Φ‖ � λ.

Proof. Since j∗∗ : Y ∗∗ → Z∗∗ is an into isometry, there exists an operator P ∈
L(Z∗∗, Y ∗∗) with ‖P‖ � λ such that Pj∗∗y∗∗ = y∗∗ for all y∗∗ ∈ Y ∗∗. Put Φ = j∗

ZP ∗jY ∗ .
Since, for all y∗ ∈ Y ∗ and y ∈ Y ,

(Φy∗)(jy) = (jY ∗y∗)(PjZjy) = (jY ∗y∗)(Pj∗∗jY y) = (jY ∗y∗)(jY y) = y∗(y),

Φ is an extension operator. �
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Proposition 5.3 gives access to an immediate application of Theorem 1.1. However, in
this case, it is possible to avoid the approximation conditions imposed on X∗ or Z∗.

Corollary 5.4. Let Y ∗∗ be a Pλ-space. If T ∈ L(X, Y ) and jT ∈ N (X, Z), then
T ∈ N (X, Y ) and

1
λ

‖T‖N � ‖jT‖N � ‖T‖N .

Proof. Let Γ be a set such that there exists an into isometry i : Z → �∞(Γ ).
Since jT is nuclear, we have that ijT ∈ N (X, �∞(Γ )). Because of Proposition 5.3, and
since �∞(Γ )∗ has the (metric) approximation property, Theorem 1.1 applies. Hence,
T ∈ N (X, Y ) and

1
λ

‖T‖N � ‖ijT‖N � ‖jT‖N � ‖T‖N .

�

Recall that the Banach–Mazur distance of two isomorphic Banach spaces X and Y is
defined as d(X, Y ) = inf{‖ϕ‖ ‖ϕ−1‖ : ϕ is an isomorphism from X onto Y }.

Corollary 5.5. Let a subspace Y of a Banach space Z be isomorphic to c0(Γ ), for
some set Γ . If T ∈ L(X, Y ) and jT ∈ N (X, Z), then T ∈ N (X, Y ) and

1
d(Y, c0(Γ ))

‖T‖N � ‖jT‖N � ‖T‖N .

Proof. Using that c0(Γ )∗∗ = �∞(Γ ) is a P1-space, it is straightforward to verify that
Y ∗∗ is a Pd(Y,c0(Γ ))-space. And Corollary 5.4 applies. �

Concerning Corollary 5.5, let us mention that d(Y, c0) = 1 implies that Y is isometri-
cally isomorphic to c0 (this is proved in [9, p. 120], using M -ideal arguments).

It is well known that if Y is an L∞-space, then Y ∗∗ is a Pλ-space for some λ � 1. (This
clearly follows from Lindenstrauss’s memoir [16]. (In fact, if Y is an L∞-space, then, by
definition, Y is an L∞,λ-space for some λ � 1, easily implying that Y is an Nλ-space
(defined in [16]). It is proved in [16] that Y ∗∗ is a Pλ-space whenever Y is an Nλ-space.)
Alternatively, this is also proved in [19, p. 335], relying on [18].) Therefore, Corollary 5.4
immediately yields the following.

Corollary 5.6. If Y is an L∞-space, then (2′) holds for arbitrary Banach spaces X

and Z whenever Z contains Y .

The special case of Corollary 5.6 with Z = �∞(Γ ) may be restated in terms of quasi-
nuclear operators [26] as follows. All quasi-nuclear operators from any Banach space X

to any L∞-space Y are nuclear. This result is due to Stegall and Retherford (see the
theorem on p. 480 of [33]).
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5.5.2.

Let E and F be Banach spaces and let K(E, F ) denote the subspace of compact
operators of L(E, F ). Assume that E∗ or F has the λ-bounded approximation property
for some λ � 1. (Recall that this means that the finite-rank operators in the definition of
the approximation property can be chosen so that their norms do not exceed λ. Recall also
that most of the common Banach spaces have the 1-bounded (or metric) approximation
property.) In this case, an extension operator Φ ∈ L(K(E, F )∗,L(E, F )∗) with ‖Φ‖ � λ

can be constructed more or less explicitly (as it was by Johnson in the proof of Lemma 1
in [10]). And the following is immediate from Theorem 1.1.

Corollary 5.7. Let X∗ have the approximation property and let E∗ or F have the
λ-bounded approximation property. If T ∈ L(X, K(E, F )) and jT ∈ N (X, L(E, F )),
then T ∈ N (X, K(E, F )) and

1
λ

‖T‖N � ‖jT‖N � ‖T‖N .

We did not dare spell out the version of Corollary 5.7 under the hypothesis that
L(E, F )∗ had the approximation property since, for instance, by a well-known result of
Szankowski [34], L(�2, �2) already fails to have the approximation property.

5.5.3.

Sims and Yost [32] have proved that every separable subspace of a (non-separable)
Banach space Z is contained in a separable closed subspace Y which admits a norm-
preserving extension operator Φ ∈ L(Y ∗, Z∗). From this and Theorem 1.1, the following
is immediate.

Corollary 5.8. Let X∗ or Z∗ have the approximation property. Then every separable
subspace of Z is contained in a closed separable subspace Y of Z with the following
property: if T ∈ L(X, Y ) and jT ∈ N (X, Z), then T ∈ N (X, Y ) and ‖T‖N = ‖jT‖N .

5.5.4.

It is well known and easy to verify that an extension operator Φ ∈ L(Y ∗, Z∗) exists if
and only if the annihilator Y ⊥ coincides with the kernel of a bounded linear projection P

on Z∗. In this case, ‖Φ‖ = ‖P‖. If, moreover, ‖Pz∗‖+‖z∗ −Pz∗‖ = ‖z∗‖ for all z∗ ∈ Z∗,
then Y is called an M -ideal. There is an extensive literature dealing with M -ideals. In
particular, M -ideals have been described in many important classes of Banach spaces
(e.g. in the space A(K) of real-valued affine continuous functions on a compact convex
set; in the space C0(S) of continuous functions on a locally compact Hausdorff space S

vanishing at infinity; in the disc algebra; in function algebras on a compact space K; in
unital commutative Banach algebras; in C∗-algebras; in injective tensor products) (see
the monograph [9] for results and references). Theorem 1.1 applies in all those situations.
Let us conclude the paper with a couple of such applications.
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Corollary 5.9. Let C(K) denote the space of continuous functions on a compact
space K. Let D be a closed subset of K and let Y = {x ∈ C(K) : x(t) = 0 for all t ∈ D}.
If T ∈ L(X, Y ) and jT ∈ N (X, C(K)), then T ∈ N (X, Y ) and ‖T‖N = ‖jT‖N .

In Corollary 5.9, we used the well-known fact that C(K)∗ (actually any higher dual of
C(K)) has the (metric) approximation property.

Corollary 5.10. Let Z be a C∗-algebra and let Y be a closed two-sided ideal of Z.
Assume that X∗ or Z∗ has the approximation property. If T ∈ L(X, Y ) and jT ∈
N (X, Z), then T ∈ N (X, Y ) and ‖T‖N = ‖jT‖N .
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