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Abstract 'We construct an fpqgc gerbe £y, over a global function field F' such that for a connected reductive
group G over F' with finite central subgroup Z, the set of Gg‘./—torsors contains a subset H! &y Z —
G) which allows one to define a global notion of (Z-)rigid inner forms. There is a localization map
HY(&;,,Z — G) — H'(Ey,Z — G), where the latter parametrizes local rigid inner forms (cf. [8, 6]) which
allows us to organize local rigid inner forms across all places v into coherent families. Doing so enables
a construction of (conjectural) global L-packets and a conjectural formula for the multiplicity of an
automorphic representation 7 in the discrete spectrum of G in terms of these L-packets. We also show
that, for a connected reductive group G over a global function field F, the adelic transfer factor Ay for
the ring of adeles A of F' serving an endoscopic datum for G decomposes as the product of the normalized
local transfer factors from [6].
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1. Introduction

1.1. Motivation

The goal of this paper is to develop a notion of rigid inner forms over a global
function field F' in order to relate the local constructions in [6] to the global Langlands
correspondence for a connected reductive group G over F. This global construction allows
one to relate the adelic transfer factor A, serving an endoscopic datum for G to the
normalized transfer factors serving the localizations of this datum constructed in [6]
and formulate precise conjectures concerning the global L-packet II, for an admissible
tempered discrete homomorphism ¢: Ly — L@, where Ly is the conjectural Langlands
dual group of F. Previously, such descriptions were only possible in the case when G is
quasi-split.

We first summarize the local situation discussed in [6]: Let F, be the completion of F'
at a place v with absolute Galois group I', (I' denotes the absolute Galois group of F'),

and fix Z — G a finite central Fi-subgroup. Recall that, given an inner twist G KiNVe ,
a local Z-rigid inner twist enriching it is a pair (.7,h), where 7 is a(n) (fpqc) G-torsor
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on a canonically-defined local gerbe &, — Schemes/F, which descends to a torsor over
F,, after modding out by Z and h identifies this descent with the Guq-torsor canonically
associated to .

A (tempered) irreducible representation of (G',.7,h) is a 4-tuple (G',(7,h), ), where
7 is an (tempered) irreducible representation of G’(F,). The set of all equivalence classes
of (tempered) irreducible representations of rigid inner forms of G is denoted by II*&(G)
(HELiP(G)), where this equivalence relation is defined on set of the 4-tuples (G’,(.7,h), )

giving the data of such representations, not just on the representations 7. We then predict
the following picture:

Conjecture 1.1 ([6], Conjecture 7.14). Given a tempered L-parameter p,: Wi — La,
there is a finite subset 11, C II;9

temp(G) and a commutative diagram

Wy, —=== Irr(mo(S7,)

J Aj (1)

where G* is a quasi-split Z-rigid inner twist of G, H'(E,,Z — G*) denotes the set of
isomorphism classes of all the torsors .7 described above, w, is a choice of Whittaker
datum for G*, the bottom map a generalization of the local Kottwitz pairing (and

Tate-Nakayama duality), both horizontal maps are bijective, and S:; ., Z(G)T" are the

preimages of Zz(p,) and Z(G)' (respectively) in G := (5/\Z Note that one may have to
enlarge Z to find G* as above.

It should be possible to conjecturally describe the global L-packet 11, for an admissible
tempered discrete homomorphism ¢: Lp — @ using the L-packets for its localizations
¢, and then study it using (1) for each v. The key to this approach is organizing
families of representations of local rigid inner twists of G'r, into coherent families, which
is to say, finding a notion of a global rigid inner twist coming from a global gerbe &,
which localizes in an appropriate way to such a farEily. In order for the corresponding
family of homomorphisms {H1(&,,Z — G) — m(Z(G)™?)*}, to behave in a reasonable
manner (such as having a well-defined product over all places), one would like a
homomorphism

HY(Ey,Z > G) — [mo(2(G) )"

that equals the product of all of its local analogues (note that if Z(G)T is the preimage
of Z(G)T, then we have maps mo(Z(G)") — mo(Z(G) ") for all v).

The combination of the construction of the local gerbe in [6] and the global Galois
gerbe &y, for number fields in [9] gives a blueprint for the aforementioned global gerbe for
function fields (and thus for global rigid inner forms). As in the local case, the gerbe
&y will be banded by a canonically-defined profinite group Py, and we will extract
the gerbe by proving the existence of a canonical class in Hfzppf(F,PV); unlike in the
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local case, producing this class requires significant work — in particular, we must study
gerbes over Spec(A) and generalize the notion of complezes of tori, as in [13], to function
fields.

After producing the gerbe &, we define the cohomology set H1(€V7Z - G), a
global analogue of H(,,Z — G); as one would hope, there are morphisms &, — &y
which give us localization maps between these two sets and a global duality result for
HI(EV,Z — Cj) which, among other properties, gives the homomorphism Hl(EV,Z —
G) — [mo(Z(G)*)]* described above. This construction lets us call a family of rigid
inner twists {(Gr,,(Zo,hy))}o coherent if each torsor 7, is the localization of the same
global torsor .7, [7] € H' (€, Z — G*) (for G* the quasi-split inner form of G and some
appropriate choice of Z). Given such a family, we can then define the (conjectural) global
L-packet II,, for a fixed ¢ (picking a global Whittaker datum ro):

Iy i= {m = @y | (Gry(Fosh) o) € Mgt . (G, (Foyhn),ma)) = 1 for almost all v},

We show (Lemma 5.8) that II, consists of irreducible tempered admissible represen-
tations of G(A) using a torsor-theoretic analogue of [25, Prop. 6.1.1]. Moreover, given
m €11, we give a conjectural description of the multiplicity of 7 in the discrete spectrum
of G by defining a pairing

(—,—): S, x1l, = C,
where S, is a finite group closely related to the centralizer of ¢ in G ; the pairing is defined
as a product over all places of two factors involving both rows of (1). This product
formula is well defined because our representation 7 arises from a coherent family of

representations of local rigid inner twists. Given this pairing, we have for each 7 and
L-packet 1I, containing 7 an integer

m((p,ﬂ') = |8<P|71 Z <I77T>v

€S,

and, furthermore, we conjecture the following:

Conjecture 1.2 (Kottwitz, [11]). The multiplicity of m in the discrete spectrum of G is

given by the sum
> m(p,m),
©

where the sum is over all ¢ such that m € 1l,.

Recall that local rigid inner forms were used in [6, §7] to construct a normalized transfer
factor (depending on a quasi-split rigid inner twist (Z,,h,)) of Gp, with Whittaker
datum tv,)

Av - A[mvaévvzvvwv (‘z}v}_l’u)]

serving a fixed endoscopic datum e, for Gp,. As such, global rigid inner forms give us a
method of relating the global adelic transfer factor Ay defined in [16] (for number fields,
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but which is easily translated to a global function field) serving a global endoscopic datum
to the transfer factors A, serving the localizations of that datum. Using the relationship
between the local and global pairings, one obtains (Proposition 5.7) a product formula
(after fixing a coherent family of rigid inner twists and a global Whittaker datum w with
localizations tv,)

AA(’Yl,(S) = H <10Cv(%c)ay;> 'A[mvvévuﬁvad}y(%ahv)](’yl,wév)v

veV

which expresses the value of Ay at a pair of adelic elements (v1,0) as a product of each
A, at the localizations of these elements, along with some auxiliary factors (loc, (sc), 9. )
which are harmless and only necessary for technical reasons.

1.2. Overview

In §2, we prove some preliminary results that allow us to make computations using Cech
cohomology, both with respect to the covers Og, s/OF, s, where S is a finite subset of
places of F and E/F is a finite (not necessarily Galois) field extension, and the covers
Ag/A, where Ap = E®p A. We also review some basic result about projective systems
of abstract gerbes and their Cech cohomology (which comes from [6, §2]).

In §3, we prove an analogue of global Tate duality for the groups H?ppf(F ,Z), where
Z is a finite multiplicative F-group scheme. After that, we define a projective system of
multiplicative group schemes {PE7 én, .} whose limit gives the pro-algebraic group Py, that
will band our global gerbe. Once Py, is defined, we show that its first fppf cohomology
group over F' vanishes using local and global class field theory and that its second fppf
cohomology group contains a canonical class.

After the canonical class is constructed, we can define the global gerbe &;,, whose
cohomology is studied in §4, building towards proving a duality result for the cohomology
sets H'(E;,Z — G), where Z is a finite central subgroup of G. We also prove a result
concerning the localizations of torsor on &, which will be used in 85 to prove that global
L-packets consist of irreducible, tempered, admissible representations.

In §5, we develop endoscopy, defining the adelic transfer factor for function fields,
coherent families of rigid inner forms. We relate the local constructions of [6] to global
endoscopy, including the adelic transfer factor and the multiplicity formula. In Appendix
A, we establish complexes of tori in the setting of Cech cohomology and prove several
results analogous to those in the appendices of [13] (that used Galois cohomology) which
are used in the proof of the existence of a canonical class in §3.

1.3. Notation and terminology

We will always assume that F is a global field of characteristic p > 0. For an arbitrary
algebraic group G over F, G° denotes the identity component. For a connected reductive
group G over F, Z(G) denotes the center of G, and for H a subgroup of G, Ng(H),Zc(H)
denote the normalizer and centralizer group schemes of H in G, respectively. We will
denote by Z(QG) the derived subgroup of G, by G.q the quotient G/Z(G), and if G is
semisimple, we denote by Gy the simply-connected cover of G; if G is not semisimple,
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G denotes 2(G)ge. If T is a maximal torus of G, denote by Ty its preimage in Gg.. We
fix an algebraic closure F' of F, which contains a separable closure of F, denoted by F*.
For E/F a Galois extension, we denote the Galois group of E over F' by I'g/p, and we
set PFS/F =:T.

We denote by V the set of all places of F, and for E/F a finite extension and S C V', we
denote by Sg the preimage of S in Vg, the set of all places of E. We call a subset of V full if
it equals S for some subset S of places of F,,(¢) (after choosing an embedding F,(¢) — F).
For a finite subset S C V, we set Ag:=]], g Fy X Hu¢5 Op,, and set Ag s :=Ag g,.

We call an affine, commutative algebraic group over a ring R multiplicative if it is
Cartier dual to an étale R-group scheme. For Z a multiplicative group over F, we denote
by X*(Z2),X.«(Z)(= X«(Z°)) the character and co-character modules of Z, respectively,
viewed as I'-modules. For H an algebraic group over C, we will frequently denote H(C)
by H. For two F-schemes X,Y and F-algebra R, we set X Xgpee(r)Y =: X Xp Y, or by
X xY if F is understood, and set X X g Spec(R) =: Xr. We define X (Spec(R)) =: X(R),
the set of F-morphisms Spec(R) — X.

2. Preliminaries

2.1. Cech cohomology over Or,s

Fix a global function field F' of characteristic p > 0, a finite nonempty set S of places of
F, and an F-torus T which is unramified outside S. Let O g denote the elements of F
whose valuation is nonnegative at all places outside S, and for a finite Galois extension
K/F, denote by Ok g the elements of K whose valuation is nonnegative at all places
outside Sk, the set of all places of K lying above S. We set Og := @ K/F Ok, s, where

K/F ranges over all finite Galois extensions which are unramified outside of S. Denote
by Fs the maximal field extension of F which is unramified outside S, and denote its
Galois group over F by I's; note that Fs = Frac(Og). The torus T has a canonical model
defined over OF g, and we ease notation by denoting the corresponding O, gs-scheme also
by T.

For all ¢ > 0, it is a basic fact of fppf cohomology ([1, Lem. 2.1]) that for a commutative
group scheme ¢ on O g which is locally of finite presentation, we have prpf(OS,g )=
li_n>1 K/F prpf(O K,5,%), with the transition maps induced by pullback of fppf sheaves (the
same is true if we replace ‘fppf’ by ‘étale’). We begin with the following commutative-
algebraic lemma:

Lemma 2.1. For K/F a finite Galois extension unramified outside S and n > 2, the

n
5 = [Ipn-1 Ok,s is an isomorphism.
K/F

natural injection O?ZF :
Proof. By induction, it is enough to prove the result for n =2. First, note that O, 5/OF, s
is finite étale by assumption (since K/F' is unramified outside of §). In particular, Ok, g
is finitely-generated and torsion-free as an Op s-module, and both rings are Dedekind
domains integrally closed in their fields of fractions. By base-change, we get a finite
étale extension O, s ®o,. s Ok,s/OK,s, which is still finitely-generated, locally free, and
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torsion-free as an Ok, s-module (this last fact follows from using the injection O, s ®0 5
Ok s — HFK/F Ok, s, under which Ok s maps into the diagonally-embedded copy, which
clearly acts on the product without torsion).

We are thus in the setting of [2, Thm. 1.3], which says that the composition

OK,S ®OF,S OK,S — K®OF,S OK,S l> HK’L

3

maps Ok, s ®o, s Ok,s isomorphically onto the product of integral closures of Ok s in
each K;, where K is some finite separable extension of K and the last isomorphism comes
from the fact that K ®o,. s Ok, s is finite étale over K a field. It thus suffices to show
that each K is actually K.

The desired result follows from the series of elementary manipulations

K®OF,SOK7S:_>K®FF®OF)SOK,S:—>K®FK:—) H K.
I'x/F

We leave it to the reader to check that the isomorphism Ok, s ®0,. s Ok, s = HFK/F Ok, s
constructed above agrees with the map in the statement of the Lemma.

Recall from [6, §2.2] that if we fix a ring homomorphism R — S and abelian sheaf .#
on R (with the fpqc topology), then H*(S/R,.#) denotes the ith cohomology group of
the complex

F(8) = F(S@rS) = F(SRrS®RS)—...,

with differentials the alternating sums of the n + 1 natural maps .Z(S®r") —
F(8§®r(n+1)),

Corollary 2.2. We have a canonical isomorphism Hi(OK,S/OF,S,G) =
H Tk r,G(Ok,s)) for any commutative Op, g-group G. Taking the direct limit also
gives a canonical isomorphism H'(Og/Op 5,G) = H (T5,G(O5)).

Proof. All that one must check is that the isomorphism of Lemma 2.1 preserves cocycles
and coboundaries, which is straightforward. O

In order to compare the Cech cohomology groups ﬁi(OS/ORS,T) with Hfippf(OF,S,T),
we need to prove some cohomological vanishing results. The first result involves étale
cohomology:

Lemma 2.3. We have that H:,(Og,To.) =0 for all i > 0.

Proof. Since T splits over Og, it suffices to prove the result for T = G,,,. For i =1, we
have

H(0s,Tog) = lim  He(Ox,s,Gm) = lim Pic(Spec(Ox, s)) = lim C1(Ox, 5) =0,
FCKCFg finite Galois

where the second equality comes from [17, Prop. I1.2.1]) and the third from the proof of
[19, Prop. 8.3.6].
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For i = 2, identifying H2 (O, 5,G) = Br(Og.s) gives (by [20, 6.9.2]) an exact sequence

0— Br(Ox.s) = @ Br(K,) =25 /2,

VESK

where K, denotes the completion of K at v. Taking the direct limit of the first two terms
shows that we have an injective map Br(Og) — @UeSFS Br(Fs - F,). Note that the field
extension Fg - F, contains F,", the maximal unramified extension of F),, using the fact
that Fis/F contains all finite extensions of the constant field of F. Moreover, the valuation
ring Op,.r, of this field is Henselian, as it is the direct limit of the Henselian rings O, ([7,
p. 56]), and the previous sentence implies that it has algebraically closed residue field.
We may then deduce from the proof of [17, Prop. I.A.1] that Br(Fs - F,) =0, giving the
desired result.

Finally, for ¢ > 2, we have that for any K/F a finite Galois extension, we have
H: (Ok. s5,Gy) =0, by [17], Remark 11.2.2. Taking the direct limit gives the desired
result. O

By combining Lemma 2.3 with the spectral sequence from [20, Thm. 6.7.5] we obtain
the following:

Corollary 2.4. We have canonical isomorphisms H'(I's,T(Og)) = H',(OF. s,T) for all
1> 1.

Rop s

Lemma 2.5. We have pr 2f(Os ,T)=0 for all n,i > 1.

Proof. Since T is unramified outside S, it is enough to show that

) n . Ro
H¢ (OS ’ 7Gm) = hi)n prpf(OK SF s ,Gm) =0.
FCKCFs finite Galois

[029] n
By Lemma 2.1, we have a canonical identification Spec(OK’(;F’S )= HEEF?&; Spec(Oxk,s)

and isomorphism H{ (1], Spec(Ox 5),Gm) = 1, Hf,p1(Ox,5,Gm). Also, if K'/K is

. ® ®
finite and contained in Fg, then the map H{ (O gF’S ,Gm) = Hi, (O O; s 7(Gm)

corresponds via this isomorphism to diagonally embedding each factor of [] sery )t prpf
F

(Ok,s,G,y,) into some subset of the factors of H£€F27/1F prpf(OK/ﬁ,Gm) (by means of
the pullback map prpf(OKs,Gm) — Hfippf(OK/,s,(Gm)).
. n
Hence, for any a € H}ppf(OKgF’s ,Gp), to show that « vanishes in some

&® A
Hi, (O OSF " ,G) for large K, it is enough to show that ling, o Hi (O 5,Gm) =0

for all 4, thus reducing the result to the case n =1, which follows from Lemma 2.3. [

For any abelian fppf group scheme A over Op g with pro-fppf cover R/Op g, the
Grothendieck spectral sequence gives us a spectral sequence
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Byt = H'(R/Or,5,H(A)) = Hfy1{(Or,5,A),
where H7(A)) denotes the presheaf on Sch/Op, g sending U to H1(U, Ay ) (see [24, 03AV]).
Proposition 2.6 [24, 03AV]. If H}ppf(R(g)oF,Sn,A) =0 for all n,i > 1, then the above
spectral sequence induces a canonical isomorphism H'(R/Op, g,A) = H}ppf(OF’S,A) for
all 1.

Remark 2.7. Strictly speaking, [24, Lems. 03AZ, 03F7] are stated in the setting of an
tppf cover R/OF g, but taking the direct limit of spectral sequences gives us the result
for pro-fppf covers (rings R which are direct limits of fppf covers, such as Og).

Corollary 2.8. We have a canonical isomorphism Hi(OS/OF’S,T) = Hfippf(OF,s,T)
for all 4.

Proof. Combine Lemma 2.5 with Proposition 2.6. O

We now consider possibly non-étale extensions in order to handle the cohomology of

non-smooth finite F-groups. For R an [Fp-algebra, let Rpert .= HA’IR, where the direct

limit is over all powers of the Frobenius homomorphism. For R = Op g, the ring O%‘j‘rsf is

obtained by adjoining all p-power roots of elements of O, s (in a fixed algebraic closure
F/F). We begin by recalling an elementary lemma on the splitting of primes in rings of
integers of purely inseparable extensions:

Lemma 2.9. Let F'/F be a purely inseparable extension and p C O a prime ideal. Then
p-Op = (p)FF] for some prime p’ of Op:.

Proof. It is evidently enough to prove this in the case when [F’ : F| = p, which we now
assume. We claim that Op = Og’), the extension of Of obtained by adjoining all p-power
roots. There is an obvious inclusion of Op-algebras Op: — Og)) because F' = F(), The
morphism of smooth projective curves X’ — X corresponding to the inclusion F — F’
is purely inseparable of degree p, so by [24, 0CCV], we obtain an isomorphism of Op-
algebras Op = Og’), giving the claim. The claim implies that, at the level of local rings,
a uniformizer w € Op , has a pth root in Ops s for any prime p’ above p, giving the
desired result. O

Denote by F,, the field extension of F' obtained by adjoining all p"-power roots; this
is a finite, purely inseparable extension. We have the following characterization of the
perfect closure Ogerf:

Lemma 2.10. The canonical map lim Osg,, — 0% is an isomorphism, where S,,
denotes the preimage of S in Spec(OF,, ).

m

Proof. For the inclusion of the right-hand side into the left-hand side, note that if x € F
is such that zP" € Op,s for some finite (Galois) E C Fg, then x € E' := E - F,,,, which
is unramified over F),, outside of S,,, and so x € Opr g, C Og,,. For the other inclusion,
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consider a finite Galois extension K’ of the finite purely inseparable extension F’ := F,,, /F
with S":=S,,. We may factor K'/F as a tower K'/K/F, where K/F is the separable
(Galois) closure of F' in K’ and K’'/K is purely inseparable. Note that K - F' = K'; one
containment is clear, and the other follows from the fact that K and F’ are linearly
disjoint and [K': F'| = [K : F].

We want to show that K/F' is unramified outside S; this follows because for any prime
p of Op, we know from Lemma 2.9 that p splits as (p')[F*F] in Op, and if p’ is a prime
of Ops g/, then it factors in Ok as P ----- P, which means that p splits in O+ as
(B, - - POFFL Since [F': F] = [K’ : K], we know that p must not ramify in O,
or else the ramification degree would be too large. Now for any element x € Ok g/,
we have that 2?” € K and is integral over Or,s, and hence lies in Ok, g, showing that

Ok s C Ogi? C O™, giving the other inclusion. O

We are ready to prove that the cover Ogerf computes the cohomology of multiplicative
Op, s-groups.

Lemma 2.11. For A a multiplicative F-group split over QOg, the groups
H;ppf((Og”f)@OF»S " A) vanish for all i,n > 0.

Proof. It is enough to prove the result for A =G, and A = pu,,. We focus on the

former first: Since G, is smooth, we can use [22, Lem. 2.2.9] to replace (Ogerf)®oF~Sn

® pert 1
by [(Ogerf)@)oﬂsn]red = (0% °FS" and reduce the claim to showing that each

. Q) pertn
prpf((Ogerf) OFs ,G,) vanishes. By Lemma 2.10, we have
® erf 1 ® n
(Ogerf) ok h_r>nOsmoFm,sm )

m

and hence, it is enough to show that lim Hlfépf(O?;OF’”‘s”L n,Gm) =0 for all j,n >1,
which folllows from Lemma 2.5.

We now prove the p,-case. For ¢ > 1, we immediately deduce that
Hfippf((Ogerf)@)oFﬁn,um) vanishes from the long exact sequence in fppf coho-
mology (induced by the Kummer sequence) and the G,,-case. For i = 1, since

Hflplmc((Ogerf)®OF>s " G,,) =0, we have from the long exact sequence in fppf cohomology
that Hflppf((Og.“f)@’oF)S " lm) is the quotient
erf\ & Ty % erf\ & T\ x\m
((O5™) = oms )" J(((Og™) = 0ms 7)")™.
. R e e / . : ®OF Sn *
Since OF is n/-divisible for n’ coprime to p by [19, Prop. 8.3.4], so is (Og 77 )

(using Lemma 2.1). Now Ogerf’* is N-divisible since it is obtained from Og by adjoining

[629] n
all p-power roots, and once again, this implies that ((Ogerf)®onS ") =(0g ™S ypertx

is as well. O
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Corollary 2.12. For A as above, we have a canonical isomorphism
HY(0%™ | Op, 5,A) = H},, (O, 5,A)
for all i. Moreover, for an F-torus T unramified outside S, the natural map
H'(0s/Op 5,T) = H(OX™ /Op, 5,T)
induced by the inclusion Og — Ogerf is an isomorphism.

The ring Ogerf will have the role globally that F played in the local case; see [6]. We
conclude with a useful result concerning the finite-level Cech cohomology of an O F,s-torus
T split over Op, 5. We first recall the following result from [18]:

Proposition 2.13 [18, Thm. 3.2]. Let S/R/Op s be two fppf covers of Op g; set

2= [ JR®oms Ul Js®Bersul Js®n.

i A A

For & a sheaf on (Sch/OFp,g)ppps with H}ppf(A,ﬁ) =0 for all A€ X, there is an exact
sequence

0— HQ(R/ORS?(?‘\) — HZ(S/Opvs,ﬁ) — H%S/R,ﬁ\).

Corollary 2.14. Let E/F be a finite Galois extension, E'/E a finite purely inseparable
extension, and S CV a finite set of places such that CYOg,g) is trivial. Then if T is an
Op, s-torus split over O g, the natural map ﬁQ(OEs/OF,S,T) — HQ(OE@S/ORS,T) 18
an isomorphism.

Proof. We leave it to the reader to check that the X-condition of Proposition 2.13 is
satisfied (since everything in ¥ is an Op, g-algebra, we may replace T with G,, for this
condition and use the fact that Og s and Op/ g are principal ideal domains, along with
[22, Lem. 2.2.9]). It thus suffices to show that H?(Og s/Op,s,Gp) vanishes. For any

® n ® n ® n ®o,, "
n, Gm(OE,f)SE’S ) = Gm([OE,f;E’S Jred), and now [OE,f)SE’S Jred = OE,)OSE ' =O0pggs, so

our Cech cohomology computations on this cover reduce to that of the trivial cover
Og',5/Opg s, giving the desired vanishing. O

2.2. Cech cohomology over A

In this subsection, we prove some basic results that allow us to do Cech cohomology on
(covers of) the adele ring A of our global function field F. Let G be a multiplicative
F-group scheme with fixed Op 5, -model G for a finite subset of places ¥y C V. We begin
with some basic results about local fields:

Lemma 2.15. Let F' = F,,/F be a finite, purely inseparable extension. Then F' and
F, are linearly disjoint over F inside F, (recall that we have fived such an algebraic
closure).
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Proof. Suppose that we know the result for F/ = Fj. Then, proceeding by induction,
F,,_1 and F, are linearly disjoint, the valuation v extends uniquely to a valuation v’ on
F,,_1, and F,,_ - F, is the completion of F,,_; with respect to v’. Thus, F,,,/F,,_1 is
of degree p, and we may replace F, by (Fy,—1), and use the m =1 case to deduce that
(Fin—1)v = Fin—1+ F, and F,,, are linearly disjoint over F,,_1, which implies the desired
result.

Setting F’ = F, note that the extension F’- F,/F, is either degree 1 or degree p since
[F'-F,: F,]=[F': F,NF']|p, and F’ and F, are linearly disjoint if and only if this
degree equals p. Hence, it is enough to show that F'NF, = F. Thus, suppose that x € F,,
is such that «? € F. If F(z) # F, then F(x) = F’, so that F, contains all pth roots of
F; in particular, w'/? € F,, where w € Or,, (the localization of Op at v) is a v-adic
uniformizer, which is clearly false. O

Now let K/F be a finite (not necessarily separable) field extension with completion K,
for w | v. The following result is important for our adelic Cech cohomology:

®()F n Qg n . .. .
Lemma 2.16. For any n, the natural map Oy ™ — Ky is injective.

Proof. The ring Ok, is finite and torsion-free over the principal ideal domain Op, and
is thus free as an Op, -module. We may thus pick a basis (which is also an F),-basis for

®OF'U n

K,,) which allows us to view the map in question as the natural map (ngm) —

(FP™)®r, ™ which may be rewritten as the obvious inclusion O% ey EP™ oiving
the result. O

We can now prove our first adelic result. Note that if Ag := K ®p A, then A?An =
(K®p ") @r A. Let Ak, denote the F,-algebra K ®p F,, and let O, denote the Op, -
algebra O ®o,. OF, .

Proposition 2.17. For any finite extension K/F, we have a canonical identification
R n ~ I ® o T
At —— HveVAK,i )

(34) n
where the restriction is with respect to the image of the map OK,(;F“ — A?

the proof will imply that this map is an inclusion,).

n .
o (in fact,

Proof. It is enough to show that A?An = (K®r™)®p A is isomorphic to the restricted
product H/ (K®F”®F F,), where the restriction is with respect to the image of

veV
O?OF " ®o0,OF, = K ®r"@p F,; the claimed isomorphism is defined on simple tensors
by sending x ® (a, ), to (x®ay),. To prove that this map gives a well-defined isomorphism,
it suffices to show that we have an isomorphism

Ok ®0, Or, = [ [ Ok.,

wlv
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for any v € V. Letting K’ be the maximal separable subextension of K, we already know
that Og’ ®0o, OF, is isomorphic to Hw,‘v OKLM’ and so we are left with the ring Ox ®0,,
([0 Oxcr, ]

We claim that the natural map Ox ®o,, OK;“/ — Og,, (for w the unique extension of w’
to K) is an isomorphism. For surjectivity, note that by the proof of Lemma 2.9, we have
Ok = O%,/pm), where p™ is [K: K']. We know that Ok spans Ok, over Og,/pm) since
the ring OKL/ O}i/ P") s finitely-generated over the complete discrete valuation ring

Ok ,, using that Og,/ P") is finite over Og by the finiteness of the relative Frobenius
morphism (by [24], OCC6, using that Ok is of finite type over F,, being the coordinate
ring of an affine open subscheme of a smooth curve over F,), and hence is complete as a
topological ring, contains O, and thus must be the w-adic completion Of,, . Injectivity
follows from the linear disjointness given by Lemma 2.15. U

Corollary 2.18. For K/F a finite extension, we have the following canonical identifica-
tions, where all limits are over a cofinal system of finite subsets 3 of V:

n_q Qp,n Qop, ™
(1) AgA = h_IQE[HvezAK,i X Hv¢2 OK,’UF J;
®OF,U n

(2) GAR ") =ty MT,es GATD ") x [ GOk o™ )l

and (2) induces a canonical identification (where each restriction is with respect to
®o n
GO0k, )):

TOuny  ~ . Qp, n
GAT) ——= lm [y GALL )
K/F finite
Proof. (1) is immediate and (2) follows from (1) and [1, Lem. 2.4]. Note that it makes
& n n
sense to view Q(OKiF” ) as a subgroup of G(A?’Z’J ) by Proposition 2.17. O

We give one more result which will be useful for Cech-cohomological computations:

Proposition 2.19. For K/F a finite extension, the above restricted product decomposi-
tion of G(A%An) identifies the subgroup of Cech n-cocycles in G(A?An) with the kernel
of

n n+1
ey GAD™™) — [Ty GADE "

given by the Cech differentials with respect to the cover Ag .,/ F, on the G(A?Z’J ")-factors

n

y ®
and the Cech differentials with respect to the cover Ok ,/OFp, on the Q’(OK,iF“ )-factors
(note that these differentials land in the desired restricting subgroups, so this is well
defined).
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Proof. It is enough to check that the restricted product identifications are compatible

1
with the three inclusion maps p;: A?An — A%An+l7 Py A?i — A®F” " and
v.0 ®oF n ®OF n+l . S .
i Ok, " — Ok, for 1 <i <n+1, which is straightforward. O

We develop some cohomological results concerning covers of A, analogous to the results
of §2.1 for covers of Of g. Set A, := F'®p F,. For notational convenience, we use H' to
denote H}ppf.

Lemma 2.20. For M a multiplicative F-group, we have H"(K?F’J k,M) =0 for all
nk > 1.

Proof. For E'/F a finite algebraic extension with maximal separable and purely
inseparable subextensions FE,F’, respectively, note that by Lemma 2.15, we have a
sequence of isomorphisms

(E/®FFU)®F”]€1>[FI®F(E®FF O,k HE/ ®F1, = H ®

wlv wi,...,wilv  Fy

where E! , is the completion of E’ with respect to the unique extension w’ of the valuation
w on F to the purely inseparable extension E’, for all w | v in Vg, and in the third
term above, F, is embedded into the direct product diagonally. and so we obtain an
identification

Hn((E/®FFv)®F” kaM) = H Hn((E:u/.)®F'”kaM)'

Wi,..., Wk |[VE

Moreover, for K'/E’ two such extensions, the inductive map (E'®@p F,)®r.* - (K' @ p
Fv)®Fv * gets translated to the map on the corresponding products defined by the product

over all k-tuples (ws,...,wk) of the maps
=1, =1k
Q- I &
J J
F, Wi,... WeW,|w;Vi  Fy

given in the obvious way. The upshot is that it suffices to show that each
@K’/F H"(K! wK),/FU,M) vanishes, where {wg} is a coherent system of places lifting

v (equivalent to fixing a place v on F*P lifting v). But each direct limit of this form is
isomorphic to H"(F,, M), which we know vanishes. O

Fix an embedding F — F,, which is equivalent to picking a place © € Vpser lying
above v. Then v and a choice of section I'p/ I‘% 2 T'p induce a homomorphism of F,-
algebras h: F, — A, defined as follows: Let E’/F be a finite algebraic extension with
E'=E(z'/"") = F(z'/?")®p E for x € F and E/F a finite Galois subextension. There
is a homomorphism

E-F,~[[Ew = EerF,,

wlv
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where the first map is the ‘diagonal’ embedding induced by the fixed embedding E - F,, —
F, and the section s. Applying F(z'/?")®p — (and Lemma 2.15) extends this to a
homomorphism E’- F, — E' @ F,,, and taking the direct limit over all finite E’/F gives
the map h.

Corollary 2.21. For any k € N and multiplicative F-group M, the map h induces an
isomorphism, called the ‘Shapiro isomorphism’,

Sk. A*(F,/F,,M)— H"(A,/F,,M).

Proof. For any finite algebraic field extension E’/F, the extension of rings F,, — F, @ p E’
is fppf. Thus, we get a natural map

ﬁk(KU/FwM) ; 11%11"1 Hk((E/ ®F F’U)/EMM) — Hf];)pf(Fva) ; Hk(FwM)
E'/F
via the natural comparison homomorphism Iv{f’;pf(Fv,M) — H*(F,,M) (from [24, Lem.
03AX]). By taking the direct limit of the spectral sequence from [24, Lem. 03AZ], we
deduce that the above map H*(A,/F,, M) — H*(F,,M) is an isomorphism since the

cohomology groups H’ (K?F”m,M) vanish for all jym > 1 by Lemma 2.20. Now the
commutative diagram

k
S’U

H*(F,/F,,M) H"(A,/F,, M)
\ /

HE (F,,M)

fppf

implies that S* is an isomorphism. O

We conclude this subsection by discussing the independence of S2? on the section
'p/T% — T'r used to construct h.

Lemma 2.22. Let s, and s, be two choices of sections, M a multiplicative F-group, and

$2, 82 the corresponding Shapiro homomorphisms M(E®F’J 3) — M(K?F’” 3). Then the
induced maps on Cech cohomology from H?*(F,/F,,M) to H*(A,/F,,M) are the same.

Proof. Since the Shapiro homomorphisms are constructed via the direct limit over finite
algebraic extensions, it is enough to prove that for any fixed 2-cocycle z € M ((E} , V®r, 3y,

E'/F a finite extension of fields, there is a 1-cochain ¢ € M((E' @p F,)®# ?) such that
de=S2(z)-S,2(x)~', and that if we have a inductive system {2 g} g of such 2-cocycles,
as E'/F ranges over an exhaustive tower of finite extensions, then the system {cg'} g
is also inductive. We will construct each cgs explicitly using z (it will be useful later to
have an explicit cochain to work with).

Assume that E'/F is of the form on p.12, let E/F (resp. F'/F) denote a maximal
separable (resp. purely inseparable) subextension of E'/F, set F, := F;,, and denote
the extension of vg to E’' by v'. For w |v in Vg, denote by ry,7, the corresponding
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isomorphisms E!, = E!, (induced by applying F’ @ — to the isomorphisms E, = E,,
defined by our sections). We define

ce ] M(E,, ®F, E,, )
Wiy, Wiy VR
to be given on the (w;,,w;,)-factor by
(Twi1,1 'Fwil,a ®Tw12,2)(1‘) ’ (Fwil,fz ®Twi2,1 'T_wiz,s)(li)ilv

where 7y, x denotes that the source is the kth tensor factor of (E;,)®Fv P 1<k<3. Tt
is clear that such a system of 1-cochains {cg} is inductive if the system {z g} is. Recall
that 52, S,2 are group homomorphisms

M(EN®Y ] M(E, or E, er Ey).

Wi, Wig, Wig [vr

To show that de = S2(z)-S,2(z)~ !, we may focus on a fixed (w;,,w;,,w;, )-factor of the
right-hand side. In this factor, the differential of ¢ is given by the six-term product

(1 ®Tw12,1 'szz,a ®rwi3,2)(x) : (rwil,l 'Fwil,s ®1 ®rwi3,2)(m)71 : (wal,l 'lel,.x ® Twiy 2 ® 1)(37)

: (1 ®7_1w12,2 ®Twi3,1 'wag,s)(x)71 : (szl.z ®1 ®rwi3,1 '7_11”13,3)(33) : (qul,z ®Twi2,1 .wa2,3 ® 1)(37)71'
Since 7 is a 2-cocycle, we claim that the term (1®7w,, | *Tw,, s @ Tw,, ,)(¥) equals

—1

(2)

(Fwil,l ®Tw7‘,2,3 ®Tw13,2)(x) : (szlﬂ ®qu‘,2,1 .’F'wiz,S ® 1)(33) ’ (’Fwil,Q ®7:wi2,1 ®th3‘3)(l’)

To see this, note that

(1®id; ®ide ®ids)(z) - (id1 ® 1 ®id2 ®id3)(z) "t - (id1 ®id2 @ 1 ®id3) () - (id1 ®ide ®id3 ®1)(z) "1 =1
(inside the group M ((E!,)®r.*)), and now applying (idy ®id; -id4 ®ids) o (Tw;y ®Tw,;, ®
Tw,, ®77wi2) to the above expression gives the desired equality. We will leave the checking
of similar equalities to the reader throughout the proof. The second factor in (2) cancels

with the last factor in the main six-term equation. Next, we may rewrite the first term
of (2) as

(1 ®/Fwi2,2 ®Twi3,1 'fwzg,g)(x) : (’Fwil,l ®fwi2,2 ®’Fwi3,3)(x)_1 ! (’F'Ufil,l ®1 ®rwi3,2 'Fwis,s)(‘r)'
3)
e may also replace (7w, | Tw;, s @Tw, , & x) tfrom the main equation by the
W 1 1 i i i @1 f h i ion by th
expression
(Fwi1,2 ®rwi2,1 ®Twi3,3)(x) : (rwi1,1 "Fwil,Q ®1 ®rwi3,3)(x)_1 : (rwil,l ®Tw12,2 ®Tw13,3)(x)’
reducing us to showing the equality
(/Fwil,l ®1 ®rwi3,2 .fwi3,3)(x) : (rwil,l .fwi1,2 ®1 ®Twi3,3)(‘r)_1
: (Fwi,l,z ®1 ®Twi3,1 T_w133)(1') ’ (Twil,l 'T_qul,s ®1 ®Tﬂi13,2)(aj)71 =1

(4)
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Replacing the third factor of (4) by the expression
(P, 1 Twsy o @ L@ T, (@) (P, s @L®Tay o Fagy ) (@) (P, oy, @1 @ Ty, 5)(2)
reduces (4) to the equality

(Fwil,l ®1 ®T'wi3,2 '7:71)1'3,3)(:17) ’ (T'wil,l '7:71)@'1,2 ®1 ®T1Ui3,3)('r)71
) (Twil,l ®1 ®rwi3,2 .fwig,?))(x)_l : (rwi1,1 .,Fwil,Z ®1 ®’Fwi3,3)(x) = 17

which follows easily from the fact that z is a 2-cocycle. O

2.3. Cech cohomology and projective systems

We collect some results concerning the way that Cech cohomology behaves with respect
to projective systems of abelian group schemes. Let R,S be rings with a 7-homomorphism
S — R (where 7 = étale, fppf, fpqc, etc.) and let A be a commutative group scheme over
R. We begin by recalling some gerbe-theoretic constructions:

Definition 2.23 ([6], Definition 2.35). Fix a Cech 2-cocycle ¢ € A(S®r?3). We may
define an A-gerbe as follows: take the fibered category &£. — Sch/R whose fiber over
V is defined to be the category of pairs (T,1), where T is a (right) Ay« ,s-torsor on
V xS with A-action m (in the 7 topology), along with an isomorphism of Ay ,.(ss,9)-
torsors ¢: psT = piT, called a twisted gluing map, satisfying the following ‘twisted gluing
condition” on the Ay, g@ps-torsor ¢iT"

(Pio¥) o (p337) o (pi37/))_1 =M,

where m,. denotes the automorphism of the torsor ¢;7T" given by right-translation by c.
A morphism (T,¢1) — (S,1g) in & lifting an R-morphism V' Lviisa morphism of
Ay« g-torsors T LN f*S satisfying, on V xp (S®pg S), the relation f*igopsh = pihoir.
We will call such a pair (T,4¢) in E.(V) a c-twisted torsor over V when A is understood.
We call &, the gerbe corresponding to c.

Recall the following functoriality property of the above gerbes:

Construction 2.24 ([6], Construction 2.38). Let A 4 B be an F-morphism of
commutative group schemes and a,b € A(S®r3) B(S®r3) Cech 2-cocycles such that
[f(a)]=[b] in H?(S/R,B). Any x € B(S®r S) satisfying d(z)-b= f(a) defines a morphism
Ea M) &y of fibered categories over R as follows.

For any a-twisted torsor (T,1) over an R-scheme V, we define the b-twisted torsor
(T' ") =t Ppab,o(T,3) over V as follows. Define the By s torsor T' to be T xAvxs,f
By s, and take the gluing map to be ' := m, 101, where m, 101 denotes the

isomorphism of contracted products

p3(T x5 By s) =

(PZT) s Avx(segs)f BV><(S®RS) —>(pr) wAvx(sers)f BV><(S®RS) :p*{(T wAvxs: f BV><S)
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induced by (mg-10%) xidg (we are implicitly identifying z with its image in B(V x g
(S®rS))).

A morphism (Ty,91) & (Th,102) of a-twisted torsors induces a morphism of the
corresponding b-twisted torsors via the map on contracted products induced by ¢ x id,
giving the desired functor.

As in [6], we adopt the following convention and also assume that S/R is an fpqc cover:

Convention 2.25. When discussing an abelian R-group scheme A and cover S/R, we
will always assume that H}ppf(S®R"7A) =0 for all n > 0.

We now recall inverse limits of gerbes (cf. [6, §2.7]). Fix a system {A,}neny of
commutative affine groups over R with transition epimorphisms ppy1n: Apt1 — An.
Assume that we have systems {a, € A,(S®r%)} and {z,, € A, (S®rS)} such that a,
are Cech 2-cocycles and ay, - A%y, = Pry1,n(An+1), giving rise to a system of gerbes {&,, :=
Ea,, = (Sch/F)ipqc tnen (abbreviated as just {£,}) with R-morphisms 7, 41,5, Ent1 — Ens

where T, 11, 1= ¢an+1,amwn-
Lemma 2.26. The natural map H*(S/R,A) — im HY(S/R,A,) is surjective for all i.
Proof. This is an easy calculation using Convention 2.25. O

Definition 2.27. Define the inverse limit of the system {&,}, denoted by @n En —
(Sch/R)gpqe, as the category with fiber over U with objects given by systems of pairs
(Xnyin)nen of an object X,, € £,(U) and an isomorphism i, : Tp41,n(Xnt1) — X, in
&n(U), and morphisms (Xy,,in) — (Yn,jn) given by a system of morphisms { f,: X, =Y, }
such that j, o Tpi1,n(frt1) = fnoiyn for all n (we extend this definition to morphisms
between objects in different fibers in the obvious way). We call such a system of morphisms
coherent. We have a compatible system of canonical morphisms of Sch/R-categories
T, l&nn En — Emy for all m.

Recall from [6, Prop. 2.40] that the map from Cech 2-cocycles of S/R valued in A :=
@n A, to A-gerbes split over S induces a bijection between isomorphism classes of such

gerbes and H?(S/R, A). The proof of [6, Lemma 2.63] (with the cover F'/F replaced with
S/R) shows that if each A,, satisfies Convention 2.25, then so does A. We thus obtain
the following:

Proposition 2.28. (/6, Prop. 2.64]) With the setup as above, the category & := @n En—
(Sch/R)fpqec can be given the structure of an fpge A-gerbe, split over S. Moreover, the
natural map

H'(S/R,A) = lim H'(S/R, Ay)

sends the class in H?(S/R,A) corresponding to & to the element ([a,]) € lim H?*(S/R,A,).

We now give a result which characterizes when the surjection of Lemma 2.26 is an
isomorphism.

https://doi.org/10.1017/51474748025100972 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748025100972

Rigid inner forms over global function fields 2199

Proposition 2.29. Fiz i > 1; if Liﬂls)f{i_l(S/R,An) =0 and l&n( ) Bi= (n) =0,
where B'~1(n) € C*"Y(S/R,A,) is the subgroup of (i — 2)-coboundaries (the group
of (—1)-coboundaries is defined to be trivial), then the natural map H'(S/R,A) —
lim H'(S/R,A,,) is injective.

Proof. We denote the differential A (S®r?) — A, (S®r(+D) by d*). First, note that
since %iLnl(:) H"'(S/R,A};) =0, the natural map

lim[A(S®r")/B (k)] = Lim[(Ap(S®=7) /B (k) /(H'H(S/R, Av))]
k k

is 'surjective. Moreover, the natural map A(S®nr?) = lim, Ap(S®rt) — lim, [Ap(S®r?)/
Bi=1(k)] is surjective since we assume that 1im;1) Bi=1(n) =0.
Now by left-exactness of the inverse-limit functor, we have the exact sequence

(k) )
Ap(s®rY) /B~ (1) P2 i1 L A(S®ROHD)
1 b, = s/ R A A(S®nHD) b 40 (A (SBRT)”

AR (S®RETD)
k d) (Ap(S®RY))
(which is the hypothesis of the Proposition), then it lies in the image of d := L md® . But
now the diagram

In particular, if 2 € A(S®r(F1) is such that its image in lim, is zero

A(S®rt)
lim [Ak(S®R )/B1 (k)] —— A(S®r(H1)

| /

A(S®R /B (k)
W = A

commutes, and since the vertical composition is surjective and such an x lies in the image
of the lower-diagonal map, it lies in the image of the upper-diagonal map, giving the
desired result. O

3. The profinite group Py,

This section constructs and studies the pro-algebraic group P;,. As in the previous section,
we use H' as a short-hand for Hfippf. For a fixed a finite Galois extension E/F and S CV
a finite set of places of F, we have two common conditions that we want S to satisfy:

Conditions 3.1.

(1) S contains all of the places that ramify in F

(2) Every ideal class of E contains an ideal with support in Sg; that is, C1(Og g) is
trivial.
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3.1. Tate duality for finite multiplicative Z

The goal of this subsection is to construct an analogue of the global Tate duality
isomorphism from [26] for the cohomology group H{ (F,Z) = H*(F/F,Z), where Z is a
finite multiplicative group over F. Set A= X*(Z), and AV = Hom(A,Q/Z). Temporarily
fix a finite set of places S C V and a multiplicative group M over Op, g split over E;
denote X*(M) by X and X,.(M)(= X.(M°)) by Y.

For v € S a fixed place, we denote by Resg,, (M) the multiplicative O s-group split over
the finite étale extension Op, s determined by the I/ p-module X @z Z[{v} g| =: X [{v}g].
We set Respg,s(M) :=[],cgResg,»(M), a multiplicative Op, s-group split over Op, 5, with

character group X [Sg]. There is an embedding M — Resg,g(M) via the augmentation

map on characters X[Sg] — X, and %S(M)

of the augmentation map).
Global Tate duality for tori (as in [26]) shows that for M =T a torus, there exists a
class

has character group X[Sglo (the kernel

Resg, s(Gnm)

as(E,9) EHZ(FE/F» G

(Og,s))
such that cup product with this class induces for all ¢ € Z an isomorphism
H™(Tpp,Y[Sglo) = H' (U, T(Op,s)),

where to make sense of the relevant cup product pairing, we are making the identifications

Resg,s(Gm)

Y@ZZ[SE]O ZHOle(X,Z[SE]O) :HomoE:S_gp( G

). (5)
We no longer fix S as above. Our first goal is to construct a functorial isomorphism

©: lim H (T, AY[Splo) = HA(F,Z),
E’, S

where the limit is over all finite subsets S’ C V' and finite Galois extensions E’/F. Choose
a finite Galois extension E/F splitting Z and a finite full subset S C V' such that S
satisfies Conditions 3.1 with respect to F and the following additional condition:

Conditions 3.2. For each w € Vg, there exists w’ € Sg such that Stab(w,I'g,p) =
Stab(w’,I‘E/F).

It is straightforward to check that such a pair (E,S) always exists, and that if S C .S’
is finite and full, then it also satisfies Conditions 3.1 and 3.2 (with respect to E).
Note that for n a multiple of exp(Z), we have a functorial isomorphism

Resps(tn) 7y fome, (Re3E50n)
I S

(I)E,S,n5 AV[SE]O l)HOHloEYS( Lim i

), (6)
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which sends g € AV[SE]o to the homomorphism induced by the map A — (%Z/Z)[SE]O
given by

ar Y ng(w)(a)-w), (7)
weSE

where g(w) denotes the AV-coefficient of [w] in g.
Fix a cofinal sequence {n;} in N* and denote the associated cofinal prime-to-p sequence
by nj :=n;/p™. Identifying Resp /(G )(Os) with Maps(Sg,0g ), we may pick functions

k;: Maps(Sg,0% ) — Maps(Sg,0%)
such that k(z)" =z and k;H(x)"IiH/”; = ki(z). Using the bijection between Cech

cochains in ResE/S(Gm)(O?OF'Sn) and C"'(T's,Resg/s(Gm)(Os)) (via Lemma 2.1),
we get a map

® n X n
ki: Resp/s(Gm)(Og 7% ) = Resgs(Gpn)(Og 75 )
for all n, where we are using that OJ is n-divisible for n coprime to p (cf. [19, Prop.
8.3.4]).
As in [6], we extend this to p-power roots. The quotient map

®OF,S "

Resg,s(Grm) (O, o ) Resps(Cm) ((®or

Gl o)
m
. . . . 1 ®Op S n .. :
is surjective, since H (OE,S % G,,) =0, by combining Lemma 2.1 with the fact that

HY(Og,5,Gp) =0, since O, s is a PID. We lift a cocycle representing az(E,S) €

Rop 53

EQ(OE&/OF,&MSE@ii(GM) to cg,s € ReSE/S(Gm)(OES ). Note that

ki(ce,s) € Resps(Gm)(Os ®op s Op,s ®0p s Op,s) — H (Os®0p 5 Or,5 ®0p 5 OE,s)w-
wESE
The same argument in [6, §4.3] shows that for any = € Os ®o, 5 Op,s ®or s OF,s
and power p™i, we may find a p”th root z(1/?") ¢ Ogerf ®0p.s OB,5 @0, s Op,s with
(/P P o™ — (/™) for all 4. Applying this across all w € Sg, we may define
an analogous map

(—)(1/pM7) : Resp/s5(Gm)(0Os ®o,. s Or, s ®o, s OB, s) — ReSE/s(Gm)(Ogerf@oF,S OE,s ®op s OF,s)-

We then set a;(E,S) to be the image of (k/(cp.s))/?"") in [Resg s(Gm)/Gm)
((Ogerf)@)oﬂs 3) and obtain

doy(E,S) € Z372(ogerf/oF’S7oE’S’ReSE’7W)

Mg

3
(Z32(0%™ /O, 5,05, 5,M) denotes 3-cycles lying in M(O%™ o, O?gF’S )). Define

the map ’

Op.s: 1! (Tp/r AISEl0) = H*(0§™/Or.5.2), g > das(B.S) | U g,
E,S F,S
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where the unbalanced cup product is as defined in [6, §4.2] using the pairing

AV[Sglo x [ReSE,S(Um)]

Lo, Ogerf — Zopsuerf

given by (6), choosing n; divisible by exp(Z); this map is independent of the choice of n;.
As in [9], we have the following important lemma which connects the above map to the

global Tate duality pairing for tori discussed above (whose corresponding isomorphisms

for various tori and Tate cohomology groups will all be denoted by ‘TN’; for Tate-

Nakayama):

Lemma 3.3. Let T be a torus defined over F and split over E, and let Z — T be an
injection with cokernel T, all viewed as O, g groups in the usual way. We write Y = X,.(T)
andY = X, (T). Then the following diagram commutes, and its columns are exact.

ﬁil(FE/FaY[SE]O) N HY(Op,s/O0F,s,T) —— Hl(OéeTf/OF,s,T)

!

ﬁil(FE/FaY[SE]O) N HY(Op,s/O0F,,T) —— Hl(OéeTf/OF,s,T)

8

Op, s

ﬁfl(FE/F’AV [SElo) ﬁQ(Ogerf/OF,s,Z)

ﬁO(FE/FaY[SE]O) —, H*(Op,5/OF,5,T) — FI?(OZQT’C/OF,S,T)

!

ﬁO(FE/FaY[SE]O) —, H?*(Op.s/OF 5,T) — FI?(OZQT’C/OF,S,T)

Proof. The right-hand isomorphisms on the first two lines follow from the fact that
all T-torsors over Op g are trivial over O, g. The ‘connecting homomorphism’ ¢ is the
standard connecting homomorphism in Cech cohomology (see. for example, [6, §2.2]), and
the right-hand column is exact because, applying the isomorphisms H i(Ogerf /OF s, M) =
H'(Op s,M) for i =1,2 and M =T,T,Z, the resulting two-column diagram commutes,
by functoriality of the Cech-to-derived comparison maps ([22, Prop. E.2.1]). From here,
the identical argument as in [9] gives the result, using basic properties of the unbalanced
cup product in fppf cohomology discussed in [6, §4.2]. O

Corollary 3.4. The map Op, g is a functorial injection independent of the choices of
cp.s, ki and (—)/P70),

Proof. As in the proof of [9, Prop. 3.2.4], we may choose Y to be a free Z[l' g p]-module,
so that the connecting homomorphism of the left-hand column is injective, and O, g is

the restriction of ‘—TN’, which is an isomorphism independent of the choices of cg g, k;
or (—)1/P"), O
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Recall the local analogue of © g g which, if v € Sp, with restriction to F' (and to E, by

3
abuse of notation) denoted by v and ¢, € Gm(E:,g) ") represents the canonical class of

H*(Tg,/r,,E}), is defined (in [6, §4.3]) by
@E,,,ni: ﬁil(rEv/FwAv) 4>H2(E/FU7ZF,,)7 g'_)dav % ®n1(g),

where «, € ﬁ@pﬂ E@Fv E, is an n;th-root of ¢,, chosen in an analogous way to cg s
above. This is also a functorial injection, independent of the choices of i, ¢, and c,.

To compare these local and global constructions, first note that we have a homomor-
phism of I'g /5 -modules AY[Sglo — AY given by mapping onto the v-factor, as well
as an Op, g-algebra homomorphism (Ogerf)®oF=S 5 E®F +% determined by v, giving a
group homomorphism Z((Ogcrf)®oﬂs 3) — Z(E®F’J 3). Then [9, Lem. 3.2.6] shows that
the resulting square

H Y (TgrAY[SElo) — H*(O5™/OF 5,2)

! |

H Y (Tp,/p, AY) — s HX(F,/F)Zr,)

commutes, where to obtain the right-hand vertical map, we use that the map

Z((Ogerf)(g)oﬂs?’) — Z(E®F “3) preserves Cech cocycles and cochains, which is
straightforward to check.

Lemma 3.5. The natural map H*(O%™/0g,2) — H*(F/F,Z) is injective.

Proof. The proof of [9, Lem. 3.2.7] works verbatim here, replacing H*(I's, M (Og)) with
HY(O%™/Op,5,M) for M =T,T,Z and i =1,2. O

There are obvious transition maps between the groups AV[Sg]y for varying S and
E defined in [9, §3] inducing morphisms on H~! which are compatible with the
homomorphisms ©g g (cf. [9, Lem. 3.2.8]). We then get the main result of this subsection,
which characterizes the cohomology group H?(F,Z):

Proposition 3.6. The maps O, s splice to a functorial isomorphism

O: lim H' (g, AV[SF]0) — HA(F, 2),
E

where the limit is over all finite Galois extensions E/F splitting Z and S(E) denotes an
arbitrary choice of places of V satisfying Conditions 3.1 and 3.2 for E/F such that if
K/E/F, we have S¥) € S (as mentioned in the preceding discussion, the map in this
result does not depend on the choices of the S(F)’s by [9, Lem. 8.2.8]).

Proof. This proof closely follows the proof of [9, Corollary 3.2.9]. It is enough to prove the
result with H?(F,Z) replaced by H?(F/F,Z). By Corollary 3.4, Lemma 3.5 and [9, Lem.
3.2.8], we obtain a functorial injective homomorphism © as claimed, which is independent
of the choices of (appropriately chosen) S (B) 50 all that remains to prove is surjectivity.
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For any h € H*(F/F,Z), we may find E'/F finite such that h € H?(E'/F,Z); denote
the separable closure of F' in E’ by E, so that E' = E - F,, for some unique m € N.

OF,s(E) 3
E/, S(E)
S(E) ¢ V satisfying the required conditions with respect to E/F, there is some finite S(E)
satisfying the required conditions with respect to £/F such that we can find hp gz €

Moreover, since E'®r3 = hﬂ 5(B) O , where the direct limit is over all finite

® 3 .
Z(OE,ZF(};(E) ) with image in Z(E'®r3) — H%(E'/F,Z) equal to h. We may enlarge S(¥)

even further to assume that hp g € Z?(Opr s /O, s, Z) since the Cech differential

3
on Z(OE/?ST;ES)(E) ) is the same as that of Z(E'®r3), and we may use finitely many
elements of F' and E’ to encode the fact that dhy gm =1 in Z(E'®r*). Denote by
?LElys(E) the image of hp g in HQ(OE/75(E)/OF75(E),Z).

Once we have such an BE/,SUEM choose an Op, s-torus Z — T with T:= T/Z such that
Y = X,(T) is free over ', and denote the image of h g in H? (Opr 58 /Op s),T)
by hg/ g p. Note that we have a commutative diagram of isomorphisms from
Corollary 2.14:

HZ(OE)S(E) /OF,S(E)?T) L} HQ(OE/’S(E)/OF’S(E),T>

| |

H2(0E75(E) /ORS(E),T) = H2(OE/’S(E)/OF’S(E)7T)7

and so we may pick a (unique) preimage, denoted by }TLE75(E)7T, of }TLE/,S(E)7T in
g (Og,s/Or s,T), and by the commutativity of the diagram, the image of BE7S<E>7T in
HZ(OES(E) /Opys(E),T) is zero. We may thus lift —TN_l(ﬁEys(E)yT) S ﬁO(FE/F7Y[S§EE)]0>
to some g € ﬁ_l(FE/F,AV [SSEE)}O), and then the same argument as in [9, Corollary 3.2.9]
shows that O g (9) € H%Og‘?g/OF’S(m,Z) has image in H*(F/F,Z) equal to h, as
desired (even though we need to take the image of hy gm 7 in H?*(Op s/OF.s,T), the
argument of [9] uses that the image of their ©p gz (g) in H?*(F/F,T) is the same
as that of h, which is still true for our g obtained via the above adjustment for non-
separability). O

3.2. The groups Pg ¢,
Let E/F be a finite Galois extension, S C V a finite full set of places, and S C Sk a
set of lifts for the places in S. When dealing with a multiplicative Op, g-group M, we will
frequently work with H?2 (Ogcrf/OF,S,M) rather than HE (OF s,Z); these two groups

are canonically isomorphic by Corollary 2.12. We assume that the pair (S, S ) satisfies
the following;:

Conditions 3.7.

(1) S contains all places that ramify in E.
(2) Every ideal class of E contains an ideal with support in Sg (i.e., Cl(Og,s) =0).
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(3) For every w € Vg, there exists w’ € Sg with Stab(w,I'g,r) = Stab(w',I'g,/r).

(4) For every o € I'g/p, there exists v € Sp such that oo = 7.

Pairs (S,Sg) satisfying these conditions always exist, and if (S',5%,) contains (S,Sx)
(in the obvious sense) and the latter satisfies these conditions, then so does the former.
Resg, s(tn)

Ln

For notational ease, denote the group introduced in the previous subsection by

RpE, s[n]. For a fixed n € N, we first set Pg g, to be the multiplicative O g-group split
over O, g corresponding to the I'p/p-module Mg s, = %Z/Z[FE/F X Sglo.o consisting
of elements of 1Z/Z['p,r x Sg] killed by both augmentation maps. We define the
multiplicative group PE’ $pon 1O correspond to the I'g,p-submodule MESEn C Mg, s,n
of elements z such that z[(o,w)] =0 if w ¢ 0(Sg). We have the following linear-algebraic
result [9, Lem. 3.3.2]:

Lemma 3.8. Let A be a Z[I'g p|-module which is finite as an abelian group.
(1) If exp(A) divides n, then we may define a functorial (in A) isomorphism

Up st Hom(AMp,s.,)" = Z 7 (Cpyr AV [Splo). His hi= > hy
weESE

where A — (@/Z a — Hla )[( w)]  which restricts to an isomorphism
Hom(A, MESEn) = AV[SploNZ Y (Tp/p, AY [SEo).

(2) For n|m, the isomorphisms Vg s, and Vg g ., are compatible with the natural
inclusion MESEn — ME,SE,m~ Setting Mg, s = li_n>anE,57n, we thus obtain an
isomorphism

Wy s Hom(A,Mp,s)" — Z7 (Tg/r, A" [SEo).-
(3) We have an induced surjective map
AV[SEloNZ (T g/p, AV [SE)o) = H™ (Cr/r AV [SE]o).

Now for fixed n € N and A a Z[I' g/ r]-module which is finite as an abelian group with
corresponding O s-group Z such that exp(A) divides n, we obtain a map

@P

Op,so¥p sn -~ erf
o Hom(PE7SE7n,Z)F%H2(Og /OF.5,2); (8)

note that this map is functorial in the group Z. For A = B.$p.n WE have the canonical

element id of the left-hand side of (8), and we define fE’ 4pm € H? (Ogerf/OF7S,PE’SE7n)
as its image.

We will now see how the groups Py ¢, behave for varying £ /F. For (S’ 7S}<) satisfying
Conditions 3.7 with respect to the finite Galois extension K/F and m € N, we write
(E, SE, ) < (K,S%,m) when n | m, K contains E, S C S’, and SE C (S%)p. Given E,
(8,85), and K, one can always find (S’,8%.) with (E,Sg,n) < (K,S},m). For (E,Sg,n) <
(K,S’K, ), we define a map of I'g/p-modules from My ¢, to MKS;(’m (with inflated
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action on the former) given by

Yo awllew)]e Y asul(vu),

(o, w)€l g, rXSE (v,u)

where the right-hand sum is over all pairs (y,u) in I'g/p x Sj such that v lue S}( NSk,
and 7 denotes the image of v in I'/ p. It follows from [9, Lem. 3.3.4] that these transition
maps are compatible with the homomorphisms ©%. According to [9, Lems. 3.3.3, 3.3.5],
we get the hoped-for coherence between the canonical classes {5 ¢, ,, discussed above:

Lemma 3.9. The homomorphism HQ(ngrf/OFVS/,PK)S;Om) — H*(0%" /O s,
(PE,SE,'!’L)OF,S’) maps £K,S}(,m to the image of £ g, ,, under the inflation map

Hz(Of'ée’"f/O&PE,sE,n) - ﬁQ(ngrf/OS’a (PE,SE7TL)OF,S’ )-

Fix a system of quadruples (Ei,Si,S'i,ni)ieN such that (SZ,Sz) satisfies Conditions 3.7
with respect to the finite Galois extension F;/F, the E; form an exhaustive tower of finite
Galois extensions of F, the S; form an exhaustive tower of finite subsets of V, the n; form
a cofinal system in N*, and we have the containment S; C (Si+1)Ei for all 4, and n; | nj41
for all 4. Such a system evidently exists. Note that V := I&Ill S, is a subset of Vieer of lifts
of V, and the group

PV = @PEi,Si,ni
%

is a pro-algebraic group over F. For a finite multiplicative Z over F|, the maps {@g_ o b

induce
©f : Hom(P;,,Z)" — H*(F/F,Z)(= H*(F,Z)),

which factors through the homomorphisms

@PA S omg - - p—
Hom(Py, 4 . Z)" — (0% Op, 5, Z) — H*(F/F, Z) (9)

for all sufficiently large ¢ and hence is surjective since we may choose ¢ with exp(Z) | n;
and invoke Lemma 3.8 and Proposition 3.6 to deduce the surjectivity of (9) for all j > i.
From [9, Lem. 3.3.6], we have the following alternative characterization of Homp (P, Z):

Lemma 3.10. Let Z be a finite multiplicative F-group, A= X*(Z), and AY[V]y the

kernel of the augmentation map AY[V] — AY. Then we have a natural isomorphism
HomF(PV,Z) l) AY [V}O

We conclude this subsection by discussing some local-global compatibility regarding P,
and its local analogues u,, from [6, §3.1]. For a fixed place v € V, recall the multiplicative
F,-groups

_ Resg,/p, (1tn)

UB,/Fyn = W= lgl UE,/Fy,n-
Hn E,/Fy,n
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For Z a finite multiplicative F,-group with exp(Z) | n, there is an isomorphism (defined
similarly to the map Ug g ,, above; cf. [6, §3.1])

Vi, n

HOHIFU(’U/EU/FM",Z) 2_1<FE1,/FU7A\/)'

We now define a localization map loc’ t uy — (Py)r, for afixed v € V. Fix E/F a finite
Galois extension along with a triple (5,5g,n) such that (5,5g) satisfies Conditions 3.7
with respect to E/F. There is a morphism of I, /g, -modules

Mg s N 1
locy, “5": My ¢ = X*(ug,/r,n) = —Z/Z[CEg,/r,)o

n
given by
H= Z Co,w|(0,w)] — Z Cowlo] :=H,.
(o,w)eEl g,/ p xSk (0,v),0€T B, /P,
PE,S'E,n

loc,

Denote by ug,/p,n (Pg 4,.n)F, the corresponding morphism of group

schemes, which glues as we range over all 4-tuples (Ei,Si,Si,ni), inducing a homomor-
phism of profinite F,-groups loc’ : u, — (Py)F,, as desired.
There is a local analogue of the map @5 constructed above, which we denote by

Homp, (uy, Z) O, 12 (F,/F,,Z). These local maps agree with the global analogue after
localization:

Lemma 3.11 ([9, Lem. 3.3.7]. For E/F finite Galois splitting Z, (S,S5) satisfying
Conditions 3.7 with respect to E, n € N a multiple of exp(Z), and © € V' (with vp,0p =: v,
by abuse of notation), the following diagram commutes:

P

Homp(Py g, . 2) — 5" H2(F/F,Z)

P .
E S$E,
J{locv B l

u

HomFu (uEv/Fu,mZFu) ﬂ) Hz(E/FmZFu),
where the right vertical map is induced by the inclusion F — F, determined by v.

Recall from Lemma 3.9 that elements &; := &g g4, ,, form a coherent system in the
projective system of groups {Hz(ngrf/OR s::Pg, ¢.n,)}i- We also have (by Lemma 3.5),
for all 4, injective homomorphisms gQ(ngrf/OF,SNPEi,S'i,m) — HQ(F/vaEi,Si,ni)’ and
hence the element (¢;); may be viewed as an element of lim, HQ(F/F,PEi,S-i,m). Let

¢, € HX(F,/Fy,uy) 1)/\2 ([6, Thm. 3.4]) denote the canonical class obtained by taking
the preimage of —1 € Z. We may now deduce the final result of this subsection:

Corollary 3.12. For v €V, consider the maps
H*(FF,Py) = H*(F, [ Fo,(Py)r,) < H*(Fy [ Fouy),
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where the lgft map is induced by the inclusion F — F, determined by © and the right map
is loct . If € € H?*(F/F,Py) is any preimage of (&) (which exists by Lemma 2.26), then
the images of & and &, in the middle term are equal.

Proof. We claim first that the natural map H2(F,/F,,(Py)r,) — Jim, H?(F,/
Fy, Py g ,,) is an isomorphism. To simplify notation, set P := (Py g . )F, By
Proposition 2.29, it suffices to show that @El) H'(F,/F,,P;)=0 and @zd(ﬂ(ﬁ,)) =0;
the latter trivially follows because it is a system of finite groups. We now explain the
vanishing of @51) H'(F,/F,,P;) (all group schemes are of finite type so we replace the
notation ‘H*(F,/F,,—)" with ‘H'(F,,—)’ for notational convenience):

As in [9, §3.4], we may fit any M B4y O & sequence (where the middle 0-subscript
denotes the kernel of the I'/p-augmentation map)

1 1
0_>ME,SE,n_> EZ/Z[FE/FXS]()%EZ/Z[SE]()%O (10)

These identifications are compatible with the transition maps, which on the right-most
terms are

Yo anullow)e Y #kpenul(hw).

(o,w)e€lp/ FXSE (v,u)€l K, p XSk
We have the exact sequence
HY(F,,A;) — H'(F,,P) = C;,

where A; denotes the multiplicative group scheme Cartier dual to n%Z/ Z[lg,/r X Silo
and C; is the image of H'(F,,P;) in H*(F,,B;), where B; is the kernel of A; — P;.
Note that @1(1) C; = 0 since these are all finite groups (because H?(F,, B;) is, using local
Poitou-Tate duality), so it suffices to prove that Liil(l) HY(F,,A;)=0.

Denoting by A; the multiplicative group scheme Cartier dual to n%Z /LT g, p X Si], we
have an exact sequence

HY(F,,A;) = HY(F,,A;) — C,

where C; is the image of H(F,,A;) — H2(F,Bi) and B; is the kernel offli — A; (it is
Cartier dual to %Z/Z[I’Ei/p]). Since H?(F,,B;) is finite, we have @(1) C; =0, and we
thus reduce further to showing that @1(1) H(F,,A;) =0.

Note that A; = [Is,[Resg,/r(pn,)]F,. We first compute H'(F,,Resg, p(tin,)); the
Mackey formula and Shapiro’s lemma tell us that

H\Co 220 )= @ H' (T, 2/2), (1)

weVE, ,wlv
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and so by local Poitou-Tate duality, we have Hl(Fv,ReSEi/F(uni)) = @wevg.,wlv H!
(E; wston; ). It follows that

H'(F,A) =P B H'(Eiwpn),

Si weVg,,wlv

and we want to show that lim of this sequence of groups vanishes. From here, one can
use the verbatim argument in the proof of [6, Proposition 3.1] (which uses a computation
involving the explicit resolution computing I'&nm as in [31, §3.5]) to obtain the desired
result, finally proving the claimed vanishing. - o

The isomorphism we just proved implies that the map H?*(F/F,P;) — H*(F,/F,,
(P )r,) factors as the composition

ﬁ2(F/F’PV) - I(EIH%F/F’PEUSUM) - @HZ(E/FU’(PEi,Si,m)Fv)’
where the second map is the inverse limit of the localizations for each i. It is thus enough
Py e B

to show that, for each i, the map loc, "™ sends §(Ei)ums € H?*(F, [ Fo () Fyn;)
to the image of £ 5, under the map H*(F/F,Py ¢ ) — H*(F,/F,,(Pg g . )F,)-
Once we have reached this step, we get the result from the proof of [9, Corollary 3. 8. O

3.3. The vanishing of H'(F,P;) and H'(F,,(P;)F,)

In the local case, an instrumental property of the groups u, was that H'(F,u,) = 0; our
goal in this subsection is to prove the analogue for P, and its localizations.

Recall the equation (10) used in the proof of Corollary 3.12 above. Observe (cf. [9,
Lem. 3.4.3]) that for fixed (E,Sg,n ), the right-most transition maps in (10) vanish for all
sufficiently large (K,S},m) > (E,Sg,n).

We may now deduce some preliminary cohomological vanishing:

Lemma 3.13. The following colimits over (E,Sg,n) vanish:

(1) lim HY(D, LZ/ZI0 % S]o)
(2) hgﬂHl( wLZ)ZT g p x Slo) for anyvEV.
Proof. The first vanishing follows from the proof of [9, Lem. 3.4.4]. For the second vanish-

ing, we first use the identity (11); identifying each H'(T'g,,,1%/Z) with Hom(T'g, , L 7Z/Z),
the transition map

P Hom(Ig,,— Z/Z P Hom(Ik,,— Z/Z)

weVE,wlv uw€ Vi, ulv

w?n w?n

is given by the maps Hom(I'g,,1Z/Z) — EBuleom(FKu,mZ/Z) induced by the
inclusions ', < I'g, . For a fixed f,, € Hom(I'g,,+Z/Z), the kernel Hy, of f, is
an open normal subgroup of I'g,, and so if K/E is a large enough finite Galois
extension, we have ', C Hy, for all u | w places of K. Note that, given such a K,
this property also holds for any K’/K/F finite Galois and @ | w a place of K’'. Now for
any (fy) € ®w|v Hom(l"Ew,%Z/Z), we can apply the previous sentence to each w and
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take a compositum to find a finite Galois K/F such that for any w and u € Vi with
u|w, we have I'r, € Hy,,. Thus, the image of (fu)w in @, , Hom(I'k,, 17)7) is trivial,
proving (2). O

Proposition 3.14. For any v €V, we have H'(F,,(Py)r,) = 0.

Proof. Note that H'(F,,(Py)r,) = lim H'(F,,(Pg, g ,)r,) since lim'Y HO(F,

(Pg, 6,n,)F,) 1s trivial (the same argument works for F instead of Fy). Thus, local
Poitou-Tate duality gives

Hl(Fva(PV)Fu):@(Hl(rvaMEi,si,m) ):(I%mH( vy El,S‘i,m))*'

%

Now we have (using (10)) the exact sequence
1
0—C; —H Dy, My o, )— H' (T, —Z/Z[FEMF x Si]o),

where C; is a subquotient of - 7 Z]Z[(S;) o, and the colimits of the outer two terms are
zero, by Lemma 3.13 and the remark preceding it, giving the result. O
We need to recall a result from global class field theory. Let C := lim y »Cr, where

C is the profinite completion of the idéle class group Cx of the finite Galois extension
K/F, and the limit is over all such extensions. For fixed K/F finite Galois and n € N,
note that Cn]'x = Cx|[n)].

Lemma 3.15. The completed universal norm group N := I'&nK/F NK/F(@) is trivial.

Proof. For any finite Galois K/F, we have the exact sequence

0— Ng/r(Ck) — Cr Mﬂ‘ %r— 0.

Since the group Ng,r(Ck) is open of finite index in Cr, the inverse limit over all open
subgroups of Cp of finite index may be taken over all open subgroups of finite index
which lie in Ng,r(Ck), and for any such subgroup U, we get the exact sequence
N C C
0%7}(/2( K) %%%F r— 0,

which after applying the (left-exact) functor IAD(_) yields the exact sequence
0— NK/F(CK) —Cp— F wr—0;

note that surjectivity is preserved because the kernels are all finite groups. Now since C'x
is dense in Ck, we have that Ny, p(Ck) = Ng,p(Ck)" inside CF, by continuity of the
norm map. Applying the inverse limit over all finite Galois K/F then yields the exact
sequence

0— N —Cp— T2,

so it is enough to show that the completed universal residue map Cr — I'® is injective,
which is a basic fact of global class field theory (see, for example, [19, Prop. 8.1.26]). O

https://doi.org/10.1017/51474748025100972 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748025100972

Rigid inner forms over global function fields 2211

We move on to a slightly more involved vanishing result:

Lemma 3.16. The following colimit over (E,Sg,n) vanishes:
. 1
lng F2(, - 2/200 5 x S0) =0

Proof. As in the proof of Lemma 3.13, it is enough to show that the colimit
h_r)nHQ(FE,%Z/Z) vanishes, with the transition maps given by the restriction
homomorphism. For (E,n) fixed, by [19, Thm. 8.4.4] (with S = Vg), we have an
isomorphism

(5, 52/2) = (B0 5.Cln),

where H(T'p,C[n]) := LiLnK/EfIO(FK/E,é[n]FK), with transition maps given by the

projections

Cpl] ., Cel
Niyp(Ck/[n])  Ni/s(Ckn])’
recall that for M a locally-compact Hausdorff topological group, MY denotes
Hommes(M,R/Z).

We claim that the natural map Cg[n] — H°(I'5,C[n]) is an isomorphism, which follows
from the fact that both @K/E Nk ,/i(Ck[n]) and yLn(l)NK/E(@[n]) vanish. For the
former, there is an inclusion N, g(Ck[n]) = Ni/p(Ck)[n], and hence an inclusion

@NK/E(CK[n}) — (I-&HNK/E(CK)))M] =0,
where the last term equals zero by Lemma 3.15. Moreover, one checks using the explicit
resolution computing @1(1) along with Lemma 3.15 and the compactness of Cr that
@(1) Ng/5(Ck[n]) = 0. In conclusion, we obtain an isomorphism H?(T'g,17Z/Z) =
Cg[n]V.

It thus suffices to show that 11_n>1C’7E[n]v vanishes, where the transition maps are induced
by the maps Cx [m] — Cg[n] given by Ny, composed with the m/n-power map. Given
f € Cgln]Y, since it is continuous and 1Z/Z is finite, ker(f) is an open subgroup of Cg[n].
The norm groups N, ;(Ck) C Cg shrink to the identity, so there is some (K,m) > (E,n)
with Ng/p(Ck) C ker(f) (using the finite intersection property), and hence, the image
of f in Ck[m]Y is zero. O

The surjectivity of the maps P;;; — P; immediately implies (cf. [6, Corollary 3.3]):

Lemma 3.17. The spectral sequence comparing Cech and derived cohomology from [24,
03AV] gives an isomorphism HP(?/?,Py,) — H?(?,Py,) for 7= F,F, and all p > 0.

Proposition 3.18. We have H'(F,P;,) = lim, HY(F,Py ¢ ,)=0.

Proof. The first equality is from the proof of Proposition 3.14. Localization
HY(F/F,P;) — HY(F,/F,,P;) gives (via Lemma 3.17) a localization map H(F,P;) —
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HY(F,,P;) for all v € V. Setting kerl(F P; ) = ker[Hl(F Py) = [oey HY(F, Py, it
suffices by Lemma 3.13 to show ker' (F, Py) = L ker! ( Pp, Sn) =0.
For i fixed, [1, Lem. 4.4] tells us that we have a perfect palrlng of finite abelian groups

ker'(F, Py o ) xker”(F,Mp & ) —Q/Z,

where My, ¢ . is the étale F-group scheme associated to the I'-module My, ¢ -~ (and

is Cartier dual to the finite flat F-group scheme Pp, ¢ m) Thus, it is enough to show
that

@(kGIQ(F7ME“S'%ni)) (lg'ker ( E,,S,,n7))* = 07
which we will do by showing that the direct limit lim, ker? (', M B,.§,.n,) vanishes, which
follows from an easier version of the analogous argument in the proof of [9, Prop. 3.4.6]

that we leave to the reader (using our Lemmas 3.13, 3.16 in place of Lemma 3.4.4 loc.
cit.). O

3.4. The canonical class

We now show that there is a canonical element ¢ € H2(F/F,Py,) lifting the element
(&) € Jim, H?*(F/F,Py g ) constructed above. Set P:= Py, P; := Py, ¢, n, and M; =
M B Sin and denote the projection P — P; by p;. Whenever we work with an embedding

F — F, for v € V, we assume it is the one induced by © € V unless otherwise specified.
We begin by proving some results about Cech cohomology groups associated to Py, .

Lemma 3.19. The natural projective system maps ﬁk(KU/Fv,P) — @i ﬁk(Kv/Fv,Pi)
are isomorphisms for k=0,1,2 (recall that A, == FQp F,).

Proof. The case k =0 is trivial, so we only need to focus on k= 1,2. By Lemma 2.29,
it is enough to show that @El)ﬁk(KU/Fv,H) =0 for £ =0,1 and that Tglil)Bl(i) =0
(notation as in Lemma 2.29). The vanishing of @ngl)HO(KU/Fv,R—) follows from the
fact that H°(A,/F,,P;) = P;(F,), and the system {P;(F,)} consists of finite groups. The
vanishing of 1&11(,1)31(2') comes from the fact that the system {B!(i)} has surjective
transition maps: On Cech 0-cochains, the transition maps Pi+1(Kv) — PZ'(KU) are all
surjective by Lemma 2.20, and since the Cech differentials are compatible with F-
homomorphisms (in our case, the transition maps P11 — P;), this surjectivity carries
over to the group of 1-coboundaries.

The proof of Corollary 2.21 shows that the groups H'(A,/F,,P;) are (compat-
ibly) isomorphic to H!(F,,P;), and, as argued in the proof in Corollary 3.12,
lim™ HY(F,,P;) = 0. O

Combining Lemma 3.19 with the proof of Corollary 2.21 gives an isomorphism

H'(A,/F,,P) = @Hl(KU/FU,Pi) = @Hl(E/Fv,Pi) = H'(F,/F,,P),
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and so Lemma 3.17 lets us identify H'(A,/F,,P) with H'(F,,P) as well. The local
canonical class &, € H?(F,/F,,u,) = H?(F,u,) maps via S2oloc, to H*(A,/F,,P)
(notation as in §2.2).

We now construct a canonical 2 € H2(A/A,P) such that for each © € V, its image in
H?*(A,/F,,P) (via the ring homomorphism F ®p A O, T @p F,, where 1: F — F is
our fixed inclusion, and m, is projection onto the vwth-factor) equals S2(loc,(&,)) via a

Fy 3

Cech-theoretic analogue of the construction in [9, §3.5]. Fix & Euy (F, ) a 2-cocycle
representing &, and let I'; CT" denote the decomposition group of © € V'; choose a section
/)T, = ' — recall from §2.2 that this is equivalent to fixing a compatible system of

diagonal embeddings

E-F,— H E,

weVe,wlv

ranging over all finite Galois extensions E/F (which are the identity E-F, — E;, on
the op-factor), and thus (as explained in §2.2) an explicit realization of the Shapiro map

h: G(E®F v 3) — G(E®F v 3) at the level of 2-cochains for any multiplicative F-group
scheme G, which is functorial in G (with respect to F-homomorphisms) and compatible
with the Cech differentials on both sides.

The maps S7;: Pi(E®F v 3) - P (AU®F v 3) splice to give a homomorphism
52 P(E‘X’FU 3) — P(E®FU 3), and we set @, := $2(loc, (&,)) € Z2(A,/F,,P). Note that

for 4 fixed, p;(i,)=1¢€ Pi(AU®F”3) for all ¥ € V with v ¢ S;. Indeed, the functoriality

of the Shapiro maps implies that p; o S?) oloc, = Sii op;oloc, on Py , and

p;oloc,: uy, = Pp, — (P;)p, is trivial for v ¢ S; since it is induced by the direct limit
over j € N (with vg; € 5;) of I';-module homomorphisms

E@FU 3)

1 1 .
;Z/Z[FEI-/F X (Si) B Jo,0 = ;Z/Z[FEJ-/F x (85)E;Jo,0 = X (un, £, /F, ),
7 J

where the kernel of the second map contains all elements whose (o,7g, )-coefficients ¢, 5 5
are zero for all 0 € I'g, /, and the image of the first map lands in the subgroup of elements
whose coefficients ¢, ., are zero for all w € (S;)g; not lying above an element of (S;)g,,
which is the case for vg; since U, € (Si)E, would mean that v € S;; this gives our desired
triviality.

The above paragraph implies that the element (p;(#y))vev € [[ ey Pi (K? ) is
trivial in all but finitely-many v-coordinates, so we may view it as an element of
D.es, Z%(A,/F,,P;). We may further view it as an element of the restricted product

H;B(A?f” 3) with respect to the subgroups Pi(O,?UOF“ 3)7 (cf. §2.2) for some finite
extension L/F (because A, = ligAK,U over all finite extensions K/F and each P;/F
is of finite type). We thus obtain by Proposition 2.19 an element of Z?(A/A, P;), and as
we vary i, they splice to give & € lim, Z2(A/AP) = Z*(A/A,P).

The argument in [9, §3.5] (using Cech differentials) shows that [#] € H?(A/A,P) is
independent of the choice of local representatives &,. We now explain why it is also

Fy 3
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independent of the choice of section I'/T";, — I'. Denote by s,s’ two sections with Shapiro
maps Sy, S{) (cf. §2.2).

Lemma 2.22 implies that for any v € V, we may find ¢, € P(A, ®, A,) such that
de, = Sy (locy(£,)) - 8! (locy (€,))!; we claim that we may choose ¢, such that for any i
with v ¢ S;, we have p;(c,) =1 in P;(A, ®F, A,). Indeed, by the proof of Lemma 2.22,
we can set

Cy = (7“1 T3 ®T2)<IOCU(€.U>) : (F2 Q71 '773)(10(31)(511))_1’

E!, defined on the w-
coordinate by the isomorphism r,,: E(@ , — B!, determined by the section s, similarly
with 7, where as in the proof of Lemma 2.22, the subscript ¢ in 7; denotes that its source
is the ith tensor factor of (E;,)®Fv 3. Since the maps r,7 are F,-homomorphisms, they

commute with p; and hence,
piley) = (r1-73 @72) (pilocy (€,)) - (F2 @11 - T3) (pilocy (€,)) H = 1.

As a result, the element ¢:= (¢y)y € [[,ey P(Ay ®F, Ay) has projection p;(¢) with
all but finitely-many trivial coordinates and hence has well-defined image in P; (A ®a
A) (using Corollary 2.18). Setting ¢ := ylnipi(é) gives an element of P(A ®, A) which

where r: F, — A, is the direct limit of the maps EE@E)/ =11

wlv

satisfies S2(loc, (€,)) - S,2(locy(€,)) ™! = de, concluding the argument for why the class
[i] € H?(A/A, P) is canonical.

The final key step in constructing a canonical class in H? (F/F,P) is showing that there
is a unique element of H?(F/F,P) whose image in H?(A/A,P) is the class x := [i], and
whose image in lim, H?(F/F,P;) is (&). The argument will use the following projective
system of complexes of tori, following [9, §3.5]:

Lemma 3.20 [9, Lem. 3.5.1]. The projective system {P;} fits into a short exact sequence
of projective systems of tori {T;}, {U;}

1= {P} = {T;} - {U;} =1
such that each Tjy 1 — T; is surjective with kernel a torus (this also holds for each
U¢+1 — Uz)

For any i, consider the double complex of abelian groups K79 =

| | l

Note that the complex with jth term C79 := H°(K7*) (j > 0) is exactly the Cech complex
of P; with respect to the fpqc cover A/A, and so the low-degree exact sequence for the
spectral sequence associated to a double complex gives an injective map H LA/A,P;) —
Hl(K/A,TZ — U,)

Since the kernels of T;y; — T; and U;y; — U; are tori, combining Corollary 2.18
with Lemma 2.20 tells us that the maps TiH(K@“\n) — TZ-(K®’W) and Ui+1(K®A‘n) —
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U; (K®An) are surjective for all n (this also holds for A replaced by AP, by smoothness).
It follows that the induced map

Cj(K/A,/TiJrl — Ui+1) — C’](K/A,TZ — Ul)

(where C7(A/A,T — U) is the group of j-cochains for the corresponding total complex) is
surjective for any j, and so the system {C7(A/A,T; — U;)};>o satisfies the Mittag-Lefler
condition. Replacing A by A*°P in order to use group cohomology (Lemma A.7), it follows
from [19, Thm. 3.5.8] that we obtain the exact sequence

(1) _ _ _
1— 1'£1H1(A/A,Ti —U;) = H*(A/JAT - U) — @HZ(A/A,TZ- —U;) =1, (12)
where the middle term denotes the cohomology of the complex with jth term
CU(A/AT - U):=imC7(A/AT, — U;) = C7(A/AT) & C7H(A/AU),

where T = limi T; and U := limi U; are pro-tori over F (by construction, the kernel of
T — U is P). The low-degree exact sequence for double complexes again gives a map
H?(A/A,P) — H?*(A/A,T — U), which need not be injective, and we have the natural
map H?(F/F,P) — H?(A/A,P). We then have the following analogue of [9, Prop. 3.5.2]:

Proposition 3.21. There is a unique ¢ € H*(F/F,P) whose image in @FF(F/F,PZ-)
equals the system (&;), and whose image in H?(A/A,T — U) equals the image of x €
H?(A/A,P) there.

Proof. If £ € H?(F/F,P) is any preimage of (¢;) € @H%F/F,Pi) and £, denotes its
image in H2(A/A, P), the images of z and £s in @HQ (A/A,T; — U;) via the composition

H*(AJAP) = H*(A/AT - U) = lim H*(A/AT; — U;)

coincide by the argument in [9, Prop. 3.5.2], replacing the use of [13, Thm. C.1.B] loc.
cit. with Proposition A.9 and the use of Corollary 3.3.8 loc. cit. with Corollary 3.12.

The same argument as in [8, Lem. 3.5.3] (replacing the results from [13, §C] with their
analogues from §A.3, A.4) shows that the map @(1) HY(F/F,P;) — @1(1) HY(A/AT; —
U;) is an isomorphism which, along with (12), imply that we may modify € by an element
of @(1) H'(F/F,P;) so that the images of £, and z in H2(A/A, T — U) are equal, proving
existence. Uniqueness follows from the injectivity of the composition

o . o _
im A'(F/F,P;) — @Hl(A/A,Ti —U;) — H*(A/AT - U). O

Definition 3.22. The canonical class ¢ € H*(F/F,P) is the element whose existence and
uniqueness is asserted in Proposition 3.21. As explained in [9, p. 41], £ is independent of
the systems {7}, {U;} chosen above.
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4. Cohomology of the gerbe &,

4.1. Basic definitions

As in previous sections, we write H' for Hi .. Let £ € H?(F/F,P;) be the canonical class
of Definition 3.22. By [6, §2], £ corresponds to an isomorphism class of (fpqc) Py -gerbes
split over F. Let &y — (Sch/F)gpqc be such a gerbe; we can equip &, with the structure
of a site, (& )pqes by giving it the fpqc topology inherited from (Sch/F')gqc. For G an
affine algebraic group over F, we write H 1(€V,G5V) to denote all isomorphism classes of
Ge, -torsors on (&y)fpge. Any such torsor 7 carries an action ¢: (Py)e, X 7 — 7.

For Z C G a finite central F-subgroup, define H 1(8V,Z — @) as all isomorphism classes
[.7] such that ¢ is induced by a homomorphism of F-groups Py, 2y Z < G — we refer to
such a torsor 7 as Z-twisted. Note that such ¢ always factors through the projection
Py, — Pp, g, ,, for some i. For any other choice of Py -gerbe 5"-/ representing &, we have
an isomorphism of Py-gerbes h: &, — £, inducing an isomorphism H Y&y, Ge, ) —
H! (5V,Gg(_/) which, since H'(F/F,P;,) vanishes by Proposition 3.18, is independent of
the choice of h, by [6, Lem. 2.56].

Let A denote the category whose objects are pairs (Z,G) as above and whose morphisms
from (Z1,G1) to (Z2,G2) are F-morphisms from G; to G that map Z; to Z;. As shown
in [6, §2.6], we have the ‘inflation-restriction’ exact sequence (of pointed sets or abelian

groups)
1— HY(F,G) - H'(,y,Z — G) — Homp (Py, Z) — H*(F,G),

where the H?-term is to be ignored if G is non-abelian. The above map from Hompg (Py,, Z)
to H?(F,G) can be described as the composition of the map @]‘; : Homp(Py,Z) —
H?(F,Z) defined in §3.2 with the map H?(F,Z) — H?(F,G). We also have a commutative
diagram

HY(F,G) —— HY(&y,Z — G) 25 Homp(Py,Z) — H2(F,G)

| | b

HYF,G) — HY(F,G/Z) —— H*(F,Z) — H2*(F,G),

where the map t sends [7] to (the class of) the descent of the (G/Z)¢,  -torsor 7 x 9y
(G/Z)e,, to a G/Z-torsor T over F. It has such a descent (unique up to isomorphism)
because, by construction, its (Py)e -action is trivial. We have the following result(s)
from [9]:

Lemma 4.1 [9, Lems. 3.6.1, 3.6.2].

(1) If G is either abelian or connected and reductive, then the map 1 defined above is
surjective.

(2) If G is connected and reductive, then for each x € H'(E,,Z — G), there exists a
mazimal torus T C G such that © is in the image of H*(Ey,,Z — T).
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Proof. The identical proofs loc. cit. work here, using the five-lemma and our discussion
following Lemma 3.9 for abelian G and replacing the use of Lemma A.1 loc. cit. with [29,
Corollary 1.10] for connected reductive G. O

The next goal is to construct a localization map loc, : HY(&,,Z —G)— HY(E,,Z — G)
for any v € V', where &, denotes the local gerbe defined in [6, §3], such that the diagram

Hl(F,G) — Hl((‘:"/,Z—>G) E— HOHlF(PV Z)

| | 1 &

HY(F,,G) —— HY(&,,Z — G) —— Homp, (uy,2)

commutes, where (using Cech cohomology) the left vertical map is induced by the
inclusion ¥ — F, and the right vertical map is induced by the F-homomorphism
loct s w, — (Py)p, (cf. §3.2).

We have the stack (€ )k, := & Xgen/r (Sch/F,), which is an fpqc (Py)r,-gerbe split
over F,,. Fixing an isomorphism of Py,-gerbes (£;,)r, — &, , where z,, denotes a Cech 2-
cocycle representing the image of ¢ € H?(F/F,P;,) in H*(F,/F,,P;), and an isomorphism
of u,-gerbes &, — &, where €, is a Cech 2-cocycle representing the local canonical class
&, the fact that loc’ (€,) = [x,] (by Corollary 3.12) implies, by the functoriality of gerbes
given by Construction 2.24, that we have a (non-canonical) morphism of fibered categories
over F, from Eév to &, which is the morphism IOCUP on bands, and thus, we obtain a

loc . -
functor &, AT &y, via the composition
&, = 55'1) — 83% = (EV)FU — gv.

Although locf is highly non-canonical, the morphism 55-“ — &, is unique up to post-
composing by an automorphism of £, determined by a Cech 1-cocycle of Py, valued in
F, (see [6, §2.3]), and since, by Proposition 3.14, the group H*(F,/F,,P;,) is trivial, such
a l-cocycle is in fact a 1-coboundary. The same is true for the isomorphisms &, — Sf-v
and (£y,)r, = £z, (which we call ‘normalizing isomorphisms’), using Proposition 3.14 and
[6, Corollary 3.5]. We are now ready to define our main localization map.

We can use loct to pull back any Z-twisted Ge,-torsor to a Z,-twisted Ge,-torsor,
defining

locy,: HY(Ey,Z — G) — H (£, Z — G);

combining the previous paragraph with [6, Prop. 2.55] show that loc, is canonical. It is
straightforward to check that this localization map makes the diagram (13) commute.
This map is canonical up to finer equivalence classes of Gg, -torsors: We can replace
isomorphism classes with sets of torsors whose elements are related via isomorphisms
T = n* T of Gg,-torsors induced by translation by 2~! € Z(F,), where n: £, — &, is
the automorphism of gerbes induced by the 1-coboundary d(z) (cf. [6, Lemma 2.56]), and
different choices of loc, preserve these classes.
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4.2. Tate-Nakayama duality for tori

As in [9], we define T C A to be the full subcategory consisting of objects [Z — T for
which T is a torus, and for v € V, we define 7, analogously. Recall from [6, §4.1] that
associated to such a pair [Z — T] € T, we have the group

Y otorlZ = T) = (X(T/2Z) | [L,Xo(T)))or = (X T/ Z) ) [, X o (T)])) VoV P

where I, C Z[T',] denotes the augmentation ideal, E/F, denotes a finite Galois extension
splitting T, and the superscript Ng,p, denotes the kernel of the norm map. Moreover,
by [6, Thm. 4.10], we have a canonical functorial isomorphism

to: Yyl Z =T = HY(Ey, Z = T)

which commutes with the maps of both groups to Hompg, (1, 7).

Following [9], the first step is to construct the global analogue of the groups
Y utor|Z — T). For fixed [Z - T] €T, we set Y :=X.(T), Y :=X,(T/Z), and A" :=
Homyz(X*(Z),Q/7Z). We have a short exact sequence

0—-Y =Y =AY =0,
and for any 4, tensoring with the I'g, ,p-module Z[(S;)g,]o gives the exact sequence
0= Y[(Si)eJo = Y[(Si)EJo = AY[(Si)E:]o — 03 (14)

denote by Y[(Si) z,,5:]o € Y[(Si),]o the preimage of the subgroup AY[S;] under the above

surjection. Note that, by construction Y[(S;)g;,Si]o contains the image of Y[(Si)g,]o-
Choosing any section s: (S;)g, — (Si+1)E '

map

Y((S:)E:sSilo = Y(Siv1)BiyrsSivilo, st D cwlw]) = > ), [W]-

we(Si)p; w'e(Siy1) ;4 s(w)g;)=w’

.1 such that s(S;) C Si11, we may define a

Lemma 4.2 [9, Lem. 3.7.1]. The map f — sif induces a well-defined homomorphism

|- ?[(Sl)ENSl]O N ?[(Siﬁfl)Ei_Fle’H»l}O
Ig, ) pY(Si)elo I/ rY(Sit1)E. o

which is independent of the choice of s.

Definition 4.3. We define

TVt iy TS ELS 0 NIV 4 (COVAT.
Y[VF’V]O7+7t0r _I%IEZ/FY[(Sz)El]O[t ]’ Y[VF]O,F,tor _I%IEZ/FY[(SZ)EJO[JC ]

with transition maps given by !.
The above two groups fit into the short exact sequence
0= Y [VEortor = Y [VE Vo 4 tor = AY[V]o — 0.
For any v € V, we can define a localization morphism

ly: ?[Vfa V]O,+,t0r — ?—H},tor
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as follows. For a fixed index i, choose a representative 7 € I'g, ) for each right coset 7 €
FE/F\FE@'/F such that 7 =1 for the trivial coset; for f = ZwE(Si)Ei cw[w] €Y[(S) E,,Sio,
set

l;(f) = Z 7.—CT—l(i)) ey.

TEF%‘”F\FEUF

It is shown in [9, Lem. 3.7.2] that ! descends to a group homomorphism

, ?[(Si)E,-7Si]O Y
o ——r 0 15
U Ig rY[(Si)Elo LY (15)

that is independent of the choices of representatives 7 and is compatible with the
transition maps ! defined above. We may thus define the localization map [, as the direct
limit of the maps [?.

We can now give the statement of the global Tate-Nakayama isomorphism:

Theorem 4.4. There exists a unique isomorphism
vt Y[V Vie 4 tor — HY (Ey Z = T)
of functors T — AbGrp that fits into the commutative diagram

Y[VElor,tor — Y[V Vo tor ——— AY[V]o

I I |

Hl(F,T) — Hl(g"/,Z —)T) — HomF(PV,Z),
where TN denotes the colimit over i of the finite global Tate-Nakayama isomorphisms
H™ (Cp,yp.Y[(S)E]o) = H (U, p,T(Og,s,))

as in Lemma 3.3 (these splice to give a well-defined map, by Lemma 3.1.2 and Corollary
3.1.8 from [9]), and the right vertical arrow is the one from Lemma 3.10.
Moreover, for each v € V, the following diagram commutes:

— . l‘L) —
Y[VFaV]O,—&-,tor — Y+U,tor

2 |-

HY(Ep, Z —T) 25 HY(E,,Z —T).

As with its analogue [9, Thm. 3.7.3], this theorem takes some work to prove. Although

Y(Si)E,,S:]o is not I'g,  p-stable, it still makes sense to define the group 7[(5¢)Ei,5i]éin/F

as the intersection Y'[(S;)z,,Silo ﬂ?[(Si)Ei]éin/F. We have the linear-algebraic result:
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Lemma 4.5 [9, Lems. 3.7.6, 3.7.7].

YRR COE TP 4 (5 PP TR
Ig,/rY[(Si)E;Jo — I, /rY[(Si)Elo or-

(2) Every element of ?[(Si)E,,7S¢}0/1Ei/FY[(Si)E1]0 has a representative supported

on S;.

Following the outline of [9, §3.7], the first step is proving an analogous Tate-Nakayama
isomorphism for the groups Py ¢ = ]'&nneN P, ¢ > which is useful because P, =
hm, Py g, (cf. [9, §3.3]). Fix a triple (F,S,Sg) satisfying Conditions 3.7 and denote
by T the full subcategory of objects [Z — T of T such that T splits over E.

Note that H2(O5"/Os,Pyg,) = H*(Or,s,Pyg,) = lim H*(Ors, Py, ,); the
first equality follows from [24, 03AV] and the second one from the vanishing of
@(1) HI(OFaS’PE,SE,n) due to the following:

Lemma 4.6. The groups H'(Op,s, Py $p.m) are finite for all finite n.
Proof. Set P =Py ¢ _ .. By [1, Prop. 4.12] (and its proof), the natural map

H'(Op,s,P) = H'(Ap,5,P) = [[ H'(Fo.P) x [ H' (0w, P)
veS vgS

has closed, discrete image and finite kernel, so it suffices to show that the image is finite.
We claim that the right-hand side is compact — for this claim, it is enough by Tychonoff’s
theorem to prove that each H!(F,,P) and H'(O,,P) is compact. We showed this result
for the former groups in Corollary 3.12; for the latter, note that [1] (3.1.1) says that each
subset H*(O,,P) C H'(F,,P) may be canonically topologized so that this inclusion is
open, and since H*(F,, P) is profinite (and hence totally disconnected), it is also closed,
and therefore compact. Now the result follows, since closed, discrete subspaces of compact
spaces are finite. O

We thus have a canonical class £ ¢, € H2(0%" /05, Py g, ) = lim H2(0% /OF. 5,
Py g,.n) given by the limit of the classes { ¢ , as in Lemma 3.9. By [6, §2.3],
H 2(Ogerf/ Os, Py, ¢,) is in bijective correspondence with isomorphism classes of Py g -
gerbes (over Sch/Op g) split over Ogerf; fix such a gerbe €y ¢ . For any [Z — T] € Tg,
the group H' (€, 5,,Z — T) is defined identically as above. We have the usual inflation-
restriction exact sequence

1= H'(0g,T) = H' (£ 4,,Z = T) = Homo,. ;(Py,_¢,Z) = H*(Os,T),

where the last map is the composition of the direct limit of the maps @g Spin defined by
equation (8) with the natural map H*(Op s,2) — H*(Op,s,T).

3
Fix a 2-cochain cg g € [ResE/S(Gm)}(OEﬁgF’S ), a cofinal system {n;};en in N*, and

n;-root maps k; as in §3.1. Recall that if Ug g ,,(id) :=3; € Maps(S’E,Mg )o, we
showed in §3.1 that £ B.$p.n, 18 Tepresented by the eaplicit 2-cocycle

,SEn;
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5 gpm, = d(ki U B,
P I BT
where for x € [Resg,g(G,)](R), T is its image in [Resg/s(Gm)/Gin](R). Set €ESE =

Liilé-E,SE,ni' .
Using [9, Fact 3.2.3] and [6, Lems. 4.5, 4.6] for Cech cup product computations,
replacing the extension E/F loc. cit. with O s/OF s, we see that pi+1xi(€E,SE,ni+1) =

fESEn Giving an element of Zl(géE,SE,ni’Z — T) is equivalent to giving a {5 ¢, -

twisted Z -cocycle in T (cf. [6, §2.5]), which is a pair (z,¥), where Py, ¢ Yy Z and
z € T(0%¥™ @0, ; O%™) such that dz = ¥(€p g, ) This description makes it clear that
ligqul(é’éEyleM,Z —T)— H! (SSE.SE’Z — T) is bijective.

For a fixed [Z — T] in Tg, we set T :=T/Z and recall our notation with cocharacter
groups from earlier in this subsection. Note that for i large enough so that exp(Z) divides
ni, for g € Y[Sglo, we have n;-g € Y[Sg|o, the restriction of n;-g to the subgroup
Resg)g(tin;)/ 1in, factors through the subgroup Z, and equals the map

Resg/s(tin;) [g)x—
Hon

VA

induced by (6), where [g] denotes the image of g in AV[SEg]o via (14).

Define AY[Sp]Ve/F to be AY [SE]éVE/F N AV[Sglo, which is in bijection with
Hom(PE,SE,Z)F via the map ¥g g defined in Lemma 3.8. Following the linear algebraic
situation for the group Py, define Y [Sg,Sg]o as the preimage of AY[SE]o in Y[SE]o, and
set Y[Sg,S5]0 """ =Y[Sk.SElonY[Sk]y®'". We are now ready to give the first version
of the extended Tate-Nakayama isomorphism, which is the analogue of [9, Prop. 3.7.8]:

Proposition 4.7.

(1) Given A € Y[SE,S’E](])VE/F and i large enough so that exp(Z) divides n;, we may
define a & $p.n, “twisted 1-cocycle valued in T by the pair
za=(kilees) U mhUEl  ([A]),
Og,s/OF,s
where the unbalanced cup product is with respect to the pairing induced by (5).
(2) The pullback p},, ;(23,;) coincides with the f.E’SE’nH}-th’sted cocycle zg ;1. Thus,
pulling back any za; to ngs defines the same &g ¢ -twisted cocycle, denoted
S E ’
by z3.

(3) The assignment A +— z5 defines an isomorphism

Y[Sg,Se)y 5"

ip o —HY,;  Z—>T
E,Sgp IE/FY[SE]O ( : )

€m, 55
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which is functorial in [Z — T| € Ty and makes the following diagram commute:

— . Ne/F
5 Y[SEg,S . ~
1 — s B '(Tg)rY[SElo) BT, AVISEINEIP BT Y [Sklo)

. -1
\LTN lLE’SE l\I’EVS l— TN

11— H' (Op,s,T) —— Hl(SE-E o Z T) — Hom(PE’SE,Z)F —— H*(Op,s,T).
P B

Proof. Proving the first claim just means showing, for fixed large enough i, the equality

d(ki(CE,S) Op S|7‘OF S nzj\) - WE}Sv"l([A])(SE,SE,nL)

Viewing n;A as a —1-cochain, we see that d(n;A) = 0, since by construction, A is killed
by Ng,r. Hence, it follows from [6, Prop. 4.4] that

d(k; U N) =dk; U i/_\, 16
(kilem,s) , b, mb)=dkiless)], U, = n (16)
and now since d[k;(cg,s)] lies in the subgroup [ResE/s(Mni)/um]((Ogcrf)(g’OFLs 3) and we

know that the restriction of n;A to Resg/g(tin,)/tn, is equal to ®g g n,([A]), we can

rewrite the right-hand term of (16) as d[k;(cg,s)] o %O @ 5,0, ([A]). By functoriality,
E,S F,S

this term can be rewritten as

dlki(cE,s)] on S%F . O 5m, (Ug's (M) (8)),

which again by functoriality may be expressed as

AFRCemsN Yo Valsn, (R)o®msin (3) = Vils, o (NUREES) ) U, psin,(5),

where to obtain the above equality, we are using the fact \Ilglsn([/i]) is I' g/ p-fixed to
apply [6, Lem. 4.6]. By definition, this last term equals \I/EISn([/_\])(gE $pom; ) a8 desired.

We now move to the second claim of the proposition. The first step is noting that
Dit+1,i © \IJE}SMH ([A]) = \I'E}SM([/_\]), since, as discussed in Lemma 3.8, the maps ¥z g p,
are compatible with the projection maps for the system {PE’ sEn}z Moreover, we have
by the Z-bilinearity of the unbalanced cup product and coherence of the system of maps

- - N nz_l'_l — e
kii1(c U ni1 A=k 1(c U n;A] = k;(c U n; A
1+1( E,S) Op.5]0r.s i+1 H—l( E,S) Op.5]0r.s N )[ 7 ] 1( E,S) Op.5/Or.s 74y

concluding the proof of the second claim.

It is clear that the map A — z3 defines a functorial homomorphism from Y [Sg, S E]éVE/ r

to Hl(Sg-E . ,Z — T). Moreover, if A lies in the subgroup Y [Sglo, we first note that
R E

[A] vanishes in AV[Sg]o, so that the homomorphism associated to zj is trivial. By Z-
bilinearity and the fact that already A € Y[Sg]o, the associated twisted cocycle (which is,

by the previous line, an actual cocycle) is given by ¢g g % A, which, since ¢g g is
Og,s/OF,s

valued in the finite étale extension Og, s/OF, s, [6, Prop. 4.2] and [8, §4.3] tell us that (after
applying the appropriate comparison isomorphisms) this cup product may be computed
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as the usual Galois-cohomological cup product ¢g g UA, which sends all of I / rY[SEglo
to 1-coboundaries, showing that the above map induces a functorial homomorphism

Y[Sg,Slp /"
Ig/rY[SElo

as asserted. This argument also shows that the top square in the diagram of the
proposition commutes. The commutativity of the middle square is by construction, and
the final square commutes by the diagram in Lemma 3.3. Since all horizontal maps in
the diagram apart from (g ¢~ are isomorphisms, it is an isomorphism as well by the
five-lemma. U

— Hl(gSE,S‘E7Z — T),

The issue now is that, given our non-canonical explicit gerbe 55E o it is not clear that
P B

such an isomorphism will be canonical, or even that the groups H'(& B4 L = T) are
canonical. The following result addresses these concerns:

Proposition 4.8. The group H'(E, 42 — T) is independent of the choice of gerbe
&g $, Up to unique isomorphism and is equipped with a canonical functorial isomorphism

— . N
YISz, Srly "~ "

to =1 vT8alo

LB Sy that fits into the commutative diagram of Proposition 4.7.
Proof. The map ¢ B8y 18 obtained by composing an isomorphism (which the proposition
asserts is unique) H1(5E75E,Z —-T)— Hl(EéE S_E,Z — T') induced by any isomorphism
of Py ¢ -gerbes & ¢ = SSE,SE and then applying iy ¢, from Proposition 4.7.

This proposition requires work to show, but all the necessary arguments are done in
[9, §3.7]. The main ingredient is Lemma 3.7.10 loc. cit., which is purely group-theoretic
and carries over to our setting unchanged (in the statement of that lemma, eliminate the
use of S and replace Ng by N). Once this result is known, [9, Corollary 3.7.11] proves the
proposition. The proof of this corollary relies on Lemma 3.7.9 loc. cit., which holds in our
setting with Ng replaced by N, Proposition 3.7.8 loc. cit., which is our Proposition 4.7,
and the finiteness of H(Op s,T), which is true in our setting as well. O

Note that, in particular, the isomorphism ¢ E.8p does not depend on the choice of cochain
cg,s lifting a representative of the canonical Tate class in H?(Op g,Resg s(Gy)/Gm)
which was used to construct the explicit gerbes 85E,SE,n- and the isomorphism iy ¢ in
Proposition 4.7. '

In order to extend the isomorphism of Proposition 4.7 to &, we need to vary
the extension E/F. As such, let K/F be a finite Galois extension containing FE,
and (S'S%) be a pair satisfying Conditions 3.7. We may assume that S C S’ and
Sg C (S}()E Let €K75}< and 5E,SE be gerbes corresponding to the canonical classes
$k. € HZ(Og?rf/OF)S/,PKVS/ ) and &g o € HQ(Ogerf/OF,S,PEysE), respectively. The
first step is to construct an inflation map

Inf: H'(Ep g,.Z = T) = H' (i g, ,Z — T).
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We begin by taking the pullback (Py ¢ )o, s -gerbe (€ ¢, )0, o, which splits over
Orp.s-Os C ng’rf C F and represents the image of ; ¢ in Jig (Og?rf/OF’S/, (Pg.6,)0p o)
We have a projection map Py S v—> (PE7 §5)0, o given by the inverse limit of the finite-
level projection maps, which on H? sends Ex $1 to the image of {y ¢_, by Lemma 3.9.
Using this equality of cocycles, picking normalizations of £y ¢ and &y S and using
Construction 2.24 allows us to construct a (non-canonical) morphism of stacks over Op, g
from & g to (& B SE)OF, <+ By pulling back torsors via the composition of functors

Ex,5, = (8,000 s = €54
we get the desired inflation map.

The map we just constructed from H1(€E73E7Z —T) to Hl(SK,S;(,Z — T) is evidently
functorial in [Z — T € Tg, but it is not a priori clear that it is canonical.

Recall the system (FE;,S;,S;) constructed in §3.2. For any PEhSi—gerbe &; over Op,g,
split over ngrf representing the Cech 2-cocycle & 5,6, we first take the (Py, ¢ )r-gerbe
(&) p, which corresponds to the image of { ¢ in H? (F/F’(PE,S,)F) By construction
of the canonical class £, the image of ¢ in H?(F/F, (Pg, ¢,)F) equals this image of 5, 4 .
Thus, after normalizing the gerbes &;, and &; and choosing a coboundary, we get a functor
& — &, and thus by pullback a group homomorphism

Inf: HY(,Z - T) — H'(Ey,Z — T).
The following result describes how these inflation maps behave, and its proof is the

same as its number-field analogues ([9, Props. 3.7.12, 3.7.13)):

Proposition 4.9.

(1) The inflation map constructed above is independent of the choice of functor £, $1.
&g g, njective, functorial in [Z = T] € Tg, and it fits into the commutative
diagrams:

H'Ep g, 2> T) —5 H'\(E g, .7 —T)

'“E,S'ET LK,S}(T

— . N — . N
YISz, Srl, "~ " ! Y[, S5y "
Ig,rY[SE]o Ik rY[Sklo

1 —— HY(Op,s,T) — H'(Ep g,.Z —T) —— Hom(Py 5, 7Z)"

b b i

L —— HYOp,s,T) —— H'(E g, .2 —T) — Hom(Py g, ,Z)T.

(2) The above inflation maps splice together to give a canonical isomorphism of functors
T — AbGrp:

lim HY(E;,Z = T) = H' (6, Z = T).

2
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We are now in a position to prove Theorem 4.4. We obtain the functorial isomorphism
ty; by the composition of functorial isomorphisms

Lem. (4.5) YI(Si)E,»Sily B/ E ling v 8, h Prop. (4.9)
im im iy L — -
li ©2 Nim HY (8,2 T
P IE,,/FY[(S )Elo 7

Y Vg Vo, 4, tor HY(Ey,Z - T),
which is canonical and well defined by Proposition 4.9.

We conclude this subsection by collecting local-to-global consequences of Theorem 4.4,
whose proof is the same as [9, Corollaries 3.7.4, 3.7.5] (using our Lemma 4.1 for the second
part):

Corollary 4.10.

(1) We have the following commutative diagram with exact bottom row:

HY &y Z—T) L8 @ o HYE,Z—T)

LVT (Lv)vT

Eva ) lv)v v Y

Y[Vf; V]O,—i—,tor ( GBUEV Y—i—v,tor —>E %[tor].

(2) For G a connected reductive group and x € H'(Ey,Z — G), loc,(x) is the neutral
element in H'(E,,Z — G) for almost allv e V.

4.3. Extending to reductive groups

Let R denote the full subcategory of A consisting of objects [Z — G|, where G is a
connected reductive group over F. In [9, §3.8], it is necessary for duality to replace the
sets H'(Ey,,Z — G) with a quotient, denoted by H)\ (£,,Z — G). However, in our case,
H'(E,Z — G) suffices due to the vanishing of H'(F,G) for all simply-connected (semi-
simple) connected G (which is an immediate consequence of [27, Thm. 2.4]).

The first step in extending Theorem 4.4 to R is defining an analogue of the linear
algebraic data Y[V, V]o 4.tor([Z — T)) for [Z — T] € T. For a maximal F-torus T of G,
we let Ty, denote T'N Gy, a maximal torus of G.. We then can define the abelian group

X (T/2)/ X (T[S SEly
(E,fSE) I p([Xu(T)/ X (Tsc)][SE]0)

where the colimit is over any cofinal system of triples (E,Sg,S £), where E/F is a finite
Galois extension splitting 7" and the pair (S 5.5 ) satisfies Conditions 3.7; the tranbition
maps are given by the map ! as in §4.2, and we define [X,(T/Z)/X,(Ti)][SE:SE]o
be all 3 ey [w] € [X.(T/Z)) X, (Ty)][Se]o such that if w ¢ Sg, then ¢, € X, (T)/X.( SC)
(the superscript N, denotes the elements killed by the E/F-norm).

Now for two such tori 77,75, we can define a map

lim [X. (TI/Z)/X*(TI,SC)}[SE7SE](I)VE/F — lim X (T2/Z)/X*(T2}SC)}[SE7SE](I)VE/F (17)
= Ipp([Xu(T1)/ X (Trs)lISEl0) = Ip/p([Xa(T2)/ Xi(T2,5c)][SE0)
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as follows. By [8, Lem. 4.2], for any g € G(F®°P) such that Ad(g)(T1) = T», we get an
isomorphism X, (T1/2)/X.(T1,sc) = X«(T2/Z)/X.(T,sc) which is independent of the
choice of ¢ and is thus I'-equivariant. It follows that Ad(g) also induces the desired
homomorphism (17) on direct limits. We then define a functor R — AbGrp given by

[X.(T/2)) X (T:)][S, 5]y ™' *

?[VF,V]OHr,tor([Z — G]) = h%m[ hgl IE/F([X*(T)/X*(T:,C)][SE]O) ’

(E,SB,SE)

where the outer colimit is over all maximal F-tori T of G via the maps constructed above.
It is clear that this extends the functor ?[VF, V]07+7mr constructed in the previous section
for T C R, so our notation is justified. In what follows, we will always take our colimits
over the fixed cofinal system (Ei,Siﬂi) constructed above (such a system eventually splits
any F-torus T).

Theorem 4.11. The isomorphism of functors vy, from Theorem /. extends to a
gnique_isomorphism of functors (valued in pointed sets) on R, also denoted by vy, from
Y[VF,V}OH,_JOT to Hl(gv,—)

Proof. Fix [Z — G] in R with maximal F-torus T. We claim that the fibers of the
composition

Y Ve Ve sior([Z = T)) 5 HY(Ey, Z = T) — HY (£, Z — G)

are torsors under the image of Y [Vxlo 1 tor(Tsc). By twisting, it is enough to prove this
for the fiber over the trivial class in H!(Ey,,Z — G). If z is in this fiber, then vy (z) €
HY(F,T) [since H'(Ey,,Z — T) — Homp (Py,, Z) factors through H'(E,,Z — G)], so that
z € Y[V&]o,r,tor(T'). Moreover, i, (z) maps to the neutral class via the map H*(F,T) —
H(F,G). We have the commutative diagram of pointed sets with exact rows

(G/T)(F) —— HYF,T) —— HY(F,G)

I | I

(Gse/Tse)(F) —— HY(F,Ts.) —— HY(F,Gs),

and since the natural map Gs./Ts. — G/T is an isomorphism (of F-schemes, not groups),
we may lift the image of z in H(F,T) to an element xs. € H*(F,Ty.). Now the claim is
clear by the functoriality of Tate-Nakayama duality for tori.

The above claim immediately implies that we have an injective map

Y[V& Vi ttor([Z = T))

— HY &y, Z — Q).
T lY [VaJo. . tor (o) (v, 2= G)

Arguments involving cocharacter modules (see [9], proof of Theorem 3.8.1) show that the
image Im[Y [V&]o,r tor (Tsc)] is exactly the kernel of the natural map

?[Vf’ V]0,+,t0r([Z - T]) - ?[VF’ V]O,-&-,tor([z - G])v
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and so, putting the above two observations together, we have a natural inclusion
Im[Y [V Vo, +.tor([Z = T]) = Y[V Vie 40 ([Z = G))] = H (Ey, Z — G).  (18)

The next key observation is that any two elements of Y[V, V]o 1.tor([Z — G]) lie in
the image of the group Y[V, V]o 4 tor([Z — T1]) for some maximal F-torus T C G. The
analogous argument using elliptic maximal tori (over the local fields F,) in the proof of
[9, Thm. 3.8.1] works for us, once we replace [21, Corollary 7.3] with [28, Lem. 3.6.1], using
that H?(F,,T’.) vanishes for any F,-anisotropic maximal torus 77, (by Tate-Nakayama
duality), and the fact that the map H?(F,T..) = [],cy, H?(F,,T..) is injective whenever
there exists a place v € S such that (T,.)p, is an F,-anisotropic maximal torus in a
connected semisimple group G, (see [21, Prop. 6.12], the proof of which works for function
fields).

We now claim that if 2; € Y[V Vo, + tor([Z — T;]) for i = 1,2 map to the same element
in Y[V, V]o +.t0r([Z — G]), then their images ¢y, (2;) € H' (€, Z — T;) map to the same
element of H'(&,,Z — G). Choose j large enough so that E; splits T}, exp(Z) | n;, and
x; comes from A; € ?i[(Sj)Ej,Sj]éij/F. Denote by &; the explicit gerbe & . defined in
§4.2, similarly with Sj,nj (recall that these depend on choices, cf. §4.2). By construction,
iy (2;) is the inflation of a class in Hl((‘fj,nj,Z — T;) represented by the twisted 1-cocycle
23,,; (defined in Proposition 4.7). Since the functor &, — (c/.‘j7nj used to define inflation

factors through (&; )7, it is enough to show that the zjz, ;j are equivalent as twisted
cocycles in H 1((5.}’”]. )& Z — G), which follows from an identical argument as in [6, Lem.
5.9], replacing the tori loc. cit. with their global analogues defined above (as well as the
projective system of finite multiplicative groups).

To summarize, the maps (18) glue across all T to give the desired map ¢y, which is
surjective by Lemma 4.1 and injective because any two elements of Y[V, Vio.ttor([Z —
G)) both lie in the image of Y[V, V]o,+.tor([Z — T7]) for some T. By construction, these
isomorphisms extend the isomorphism of functors ¢, defined on the full subcategory 7
and are functorial with respect to morphisms [Z — T] — [Z — G| in R given by inclusions
of maximal tori defined over F. Since every z € HI(EV,Z — @) lies in the image of some
HY(E,,Z —T), it follows that the extension of ¢y, to R also defines an isomorphism of
functors on R. O

To conclude this subsection, we state some local-global compatibilities that arise from
Theorem 4.11. Note that, for a fixed v, the natural transformation (given by the direct
limit of (15))

— . lU —
Y[va V]0,+,tor — Y+'u,tor

may be extended to a morphism of functors on R induced by mapping f €
(X«(T/Z)] X (Tse)]|[SE,SE]o to an element of X, (T/Z)/X.(Ts) via the same formula as

n (15). We also define a new functor R — AbGrp, denoted by Y 4 (or, by

X.(T/Z)/ X (Tie) fbor]
I(X.(T)/X.(Te)) 7

[Z*)G]Hliﬂ
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where [ is the augmentation ideal of I', the colimit is taken over all maximal F-tori T of
G, and the transition maps are induced by Ad(g).

Corollary 4.12. We have a commutative diagram with exact bottom row:

HY (&, Z —G) — 20 || HY(E,Z > G)

8 ]

— . lv)w — —
VIV Vo 10r([Z = G) 2% @,y Vo t0r([Z = Gl) —2 Vi 1or([Z = G,

where the symbol | | denotes the subset of the direct product of pointed sets in which all
but finitely many coordinates equal the neutral element, and the map ¥ makes sense since
any mazimal F,-torus of Gp, is G(F,)-conjugate to the base-change Tk, of a mazimal
F-torus T in G.

Proof. The commutativity is an immediate consequence of Corollary 4.10, the func-
toriality of iy, and the fact that every x € H1(€V7Z — @) lies in the image of some
H'(&;,,Z —T). The exactness of the bottom row is a straightforward character-theoretic
argument. O

We also have the following analogue of [9, Corollary 3.8.2]:
Corollary 4.13. The image of

(locy)w

HY (g, Z — G) Ly % | | HY(€,Z2 = G)

veV

consists precisely of those elements which map trivially under the composition

| | H'(€0,Z2 = G) = Y 10.10r([Z = G)) = Y 4 10nl([Z = G)).

’UEV veV

Proof. Unlike in [9], where work is needed, this is a trivial consequence of Corollary 4.12.
O

4.4. Unramified localizations

For [Z — G] € R, we can pull any Z-twisted Gg -torsor 7 € Z'(&,,Z — G) back to
the Ge,,  ~torsor fF , and then via picking gerbe normahzatlons and a 1-coboundary to
get a functor ®: Ey = &y, we set locy (7)) := @ (F5), a Z-twisted Ge,-torsor. Note that
loc, () depends on our choice of ® up to replacing locv(ﬂ ) by the canonically-isomorphic
(via translation by a=') torsor n*(loc,(7)), where n: &, — &, is the automorphism
induced by a l-coboundary d(a), for a € u,(F,) (cf. the last paragraph of §4.1 and
[6, §2.5]).

Note that since Res[.7| € Homp (Py,, Z) factors through Pg, g, n, for some i, for allv ¢ S;
we have that Res[loc,(.7)] is trivial, and hence, loc, (.7) is the pullback of some G-torsor
over F, via the projection &, = Sch/F,. The canonical inclusion Z(Opn) — Z(F,) is an
equality for all but finitely many v (because Z is split over ™ for all but finitely many
v, and Opnr contains all roots of unity in F,). Choose an Op,s-model G of G for a some

finite subset S C V; note that, for almost all v, the subgroups G(Op»r) and G (OPT) inside
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G(F3°P) and G(F,) (respectively) do not depend on the choice of model G. Our goal in
this subsection is to prove the following function field analogue of [25, Prop. 6.1.1], which
will be needed for representation theory:

Proposition 4.14. Let 7 € Z'(E;,Z — G). For all but finitely many v € V, the torsor
locy(T) € ZY €y, Z — G)/d(Z) is inflated from a G-torsor T, over Op,. Here, we are using
ZYEy,Z — Q)/d(Z) to denote equivalence classes of Gg,-torsors with the equivalence
relation given by F ~n*T for n: E, — &, induced by d(a) for a € u,(F,) — z € Z(F,)
(we can always assume that z € Z(OF), by the above discussion,).

Moreover, choosing normalizations Eé and 5& of the gerbes &, and &£, to view T as

a torsor on 55' (the choice of normalization and class 5 does not affect the class of T
in Zl(Eg-,Z — G)/d(Z)), we may identify T with a &-twisted G-torsor (S',Res(.7),3)
(cf. [6, Def. 2.46]), where S’ is a G-torsor over F. Fiz a Z(F)-orbit of trivializations

O ={s LN G}; then we may choose the G-torsors T, over O, such that for all but
finitely many v, for any h € O, the trivializations h- on S are induced by the pullback

of a trivialization h,: T, — G over the ring Ofﬁf,.f.

Proof. This proof follows [25, §6.2] with some adjustments to accommodate the positive-
characteristic situation. Pick a tower of resolutions by tori (P — T — Uj)j, as in Lemma
3.20, and set T := Y&lka, U= 1'&11’c Uy, which are pro-tori. .

By construction of the global canonical class [¢], the image of [£] in H2(A/A,T — U)
coincides with the image of the adelic canonical class [x] € H?(A/A, P), which, unpacking
the construction of [z], is to say (by the definition of the differentials arising from the
double complex associated to T — U) that there is some a € T(A®, A) and b€ U(A)
such that

=[] $2(0c,(&.))] - d(a) (19)

veV

inside T(K®A3) and @ = db inside U(A®4 &), for a choice of Shapiro map $2. To make
. . 7®A3) =lim, Pi(K®A3), and for
a fixed i, all but finitely-many projections p;[SZ(loc,(£,))] are trivial, and hence, it makes
sense to take this product in each Pl-(K®’“3) = ligK/F [T, H(A?i” 3) (by Corollary 2.18)
and then take the inverse limit. B
Recall that © € Vpser determines a ring homomorphism pr,: A — F, defined by the
direct limit of the the projection maps Ax = HZDGVK Ky, — Ky, over all finite extensions
K/F, where by 0k we mean the unique extension of 0/, where K’ is the maximal Galois
subextension of K/F, to a valuation on K. Restricting this ring homomorphism to the
subring A, C A gives a homomorphism of F,-algebras. It is straightforward to check
that we may choose our section I'/T'; — I' (cf. the construction of the Shapiro maps in
§2.2) such that, on k-cochains, we have pri)‘K oSk = idz. We also have the projection

sense of the above product expression, we recall that P(A

map A P, A, defined the same way except using the direct limit of the project maps
!
HwGVK Koy — Hw\v Ky.
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Applying pri}|KU opr, to the equality (19), we see that, for a fixed v € V, the image
of € in T(E(X)F“ 3)7 denoted by res,(€) is given by loc,(&,) - d(a,), where a, :=pr;(a) €
T(F, ®F, F,). Although this equality is a priori taking place in T(E®F v 3), since the
image of £ and loc, (&,) both lie in the subgroup P(f®F’J 3) we see that in fact d(a,) €
P(ﬁ®” 3) and thus, this equality takes place in P. Set b, := pr,(b) € U(F),), and choose

a lift b, € T'( F,) of b,, which is possible because hm P (Fv) vanishes, since it consists

of surjective maps. Define a/, := a,/d(b,), which hes in P(FU®F“ 2) since its image under
T — U equals pry(a)/pr,(db) (using that the isogenies Ty — U, are defined over F, so
they commute with Cech differentials), which is trivial by construction. We may replace
a, by a,, and retain the equality

res, (§) = loc, (&,) - d(a).- (20)

For k>0 and v € V, we denote by a,  (resp. by g, vak, a;7k) the image of a, (resp.

by, by, a)) in Tk(E®F’“ 2) (resp. U (Fy), Ti(F,), Pk(ﬁ(g)“ 2)) We claim that there is a
finite set of places S" of F' such that for all v ¢ S, the element a;, , lies in the subgroup

([O%‘fﬁf]®oF ). Recall that

ar €ET(A®yA) = hg Th(Ap®aAg) = lig(ling(AE,s ®as AE s)),
E/F E/F S

where the outside limit is over all finite extensions F/F and the inside limit is over all
finite sets of places of F. It follows that we may find K/F finite containing Ej and finite
S’ C V containing Sy, such that the maximal Galois subextension K'/F of K is unramified
outside S, Ty, is split over K', aj € Ti(Ak,s' @ay, Ak,s), and by € Ux(Ak, s). Then for
v ¢ S, we have ay,, € Tx(Ok, ®oy, Ok,), and moreover, K;/F, is unramified, so that
g, € Tk(0p7§f®op O%if)-

The group Py is killed by the ng-power map, and so there is a unique morphism
Uy — Ty, such that Uy — Ty, — Uy, is the ng-power map. Since by, € Uy(Ok,) for all

v¢ S and T} and Uy are split over K, any preimage of by, lies in Tk([OE?g“)](l/pmk)),
where [Oggfc)](l/ P"*) denotes the fppf extension of Ok, given by the composition of two
extensions defined as follows: For (n},p) =1 and nj = nj - p™*, we first take the extension
05;‘;)/ Og, obtained by adjoining all nj-roots of elements of Oy , which is finite étale,
followed by the extension [OE?U;“)} (1/™*) defined by adjoining all p™*-power roots to Og?jc),
which is finite flat. ,

We claim that the extension [O("’“)} 1/P™) |Op, lies in O%'ffrf Indeed, since O%e,frf = O%’fﬂf
it is enough to check that [O(n’“)](l/ P"*) lies in O%e,frf , which is clear since it factors as
a finite étale extension of Ok, followed by the extension obtained by adjoining all p™*-
power roots. Thus, for any v ¢ 5", we have a;, ; € Pk([O%f)](l/pmk) ®0rp, [Oggf)](l/pmk)),
and since the image of loc,(&,) is trivial in Py for all v ¢ Sy C 5’, we get the
equality
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. e
res, (&) = d(a) ;) € Py(F, 2™ %),

where &, denotes the image of £ in P, (E®F" d).

Let 7 € ZY(€,,Z — G), and choose normalizations of &, and &, identifying them with
&, and &, respectively. Recall that, after passing from & to & .. ¢ = (&), choosing
different (global) normalizations has the effect of twisting locv(ﬂ ) by d(z) for z € Z(Opnr)
with 2z = Res([.7])(x) for some x € u,(F,), and thus does not affect the statement of the
proposition. Changing the representatives § and fv for the canonical classes has the same
effect.

These normalizations let us canonically identify Gg,-torsors on the gerbes & with
?-twisted G-torsors, for 7 = resv(f),év,é, by [6, Prop. 2.50]; write .7 = (S',Res(7),¢’)
under this identification. Choose k sufficiently large so that Res(.7) € Homp (P, Z) factors
through Py, via ¢, € Homp (P, Z), 8’ equals j*S” for a G-torsor 8" over Ogirf for
Spec(F) L Spec(Ogirf), h equals j*hg, for an Ogirf—trivialization hs, of 8", and the
‘twisted gluing isomorphism’ ¢': piS’ — piS’ is given by j*1 for an isomorphism of
G-torsors p3S” i>p”1‘8”.

Take S’ D Sy corresponding to k as in the above paragraphs. Construction 2.24 and the
equality (20) gives a morphism 5£~v = E s, @ which via pullback sends the res, (5 )-twisted
G-torsor (S}T,Res(ﬂ),w’) to the &,-twisted G-torsor (S}T,Res(ﬂ) olocy,mq; 09'). By
construction, for any v ¢ S’, the homomorphism Res(.7 ) oloc, is trivial on u,, and hence,
(S;T“,ma;} ot)’) gives a descent datum for a G-torsor S, over F,; we claim that the pair of
S, and the F,-trivialization induced by hz- descends further to a G-torsor 7, over Op,

with an O%irr -trivialization.
We define T, via the descent datum (Sgpcrf,mRes(g)(a, o1)) with respect to the fpqc

rf £
cover O /OF,. The torsor S7.... is well defined because v ¢ S’ and O%’ir is an Og™"-

algebra, and mges(7)(ar,) 0¥ makes sense, since Res(7)(a;) = ¢k(aj, ), the morphism ¢y,
is defined over O, g/, and % % € P (O%?ff@o - O%?,rf) this finishes the construction of 7T, —
by design, h, := (hg,) opt trivializes 7T, over O%‘i’f The pullback of 7, is evidently equal to

S, since the descent datum giving 7, pulls back via the morphisms Spec(F;,) — Spec(OF,)
and Spec(F,) — Spec(O%‘fﬁf) to the descent datum giving S,; similarly, h, pulls back to
hz—. This proves the result. O

5. Applications to endoscopy

In this section, we use the above constructions to analyze an adelic transfer factor for a
global function field F. In what follows, G will be a connected reductive group over F.

5.1. Adelic transfer factors for function fields

We follow [16, §6.3] to construct adelic transfer factors for connected reductive groups
over a global function field F. Let ¢: G, — G}, be a quasi-split inner form of G, with

Langlands dual group G* and Weil-form “G* := G* x Wp.
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Definition 5.1. A global endoscopic datum for G is a tuple (H,H,s,£) where H is a quasi-
split connected reductive group over F, H is a split extension of Wr by H sez (H ) is
any element, and ¢: H — “G* is an L-embedding such that

(1) The homomorphism Wp — Out(H) = Out(H) determined by 7 is the same as the
homomorphism Wg — I' — Out(H) induced by the usual I'-action on H.

(2) The map € restricts to an isomorphism of algebraic groups over C from Hto Z-. (t)°,
where t := £(s).

(3) The first two conditions imply that we have a [I'-equivariant embedding
Z(é*) — Z(fI) We require that the image of s in Z(ﬁ)/Z(é*), denoted
by §, is fixed by Wpr and maps under the connecting homomorphism
HY(Wp,Z(H)/Z(G*)) = H (Wg,Z(G*)) to an element which is killed by the
homomorphism H!(Wg, Z(G*)) — H*(Wg,,Z(G*)) for all v € Vp (such an an
element is called locally trivial).

Such a datum e induces, for any v € V, a local endoscopic datum e, := (Hp,, Ho,S,60),
where #, is the fibered product of H - Wr and Wg, — Wg, &,: H, — L(G*Fv) is
induced by ¢ and the natural map H, — H, and s, = s € Z(ﬁ) Fix such an ¢; we
will temporarily assume that H = LH. Up to equivalence, ¢ only depends on the image of
s in mo([Z(H)/Z(G)]F). Recall that a strongly-regular semisimple element vz € H(F)
with centralizer Ty (a maximal torus of H defined over F') is called G-regular if it is
the preimage of a strongly-regular semisimple element 7o € G(F') under an admissible
isomorphism Ty — T := Za (7). First, we need the following:

Lemma 5.2. There is an admissible embedding of T into G*.
Proof. This follows from [6, Corollary 6.3] (the proof loc. cit. works for our field F). [

It follows that for any G-regular strongly-regular semisimple vg € H(F'), we have an
admissible embedding of Ty in G* (which is not unique). We say that vy is a related to
va € G(A) if for all v € V, the image vg o, of yg in H(F),) is an image (under an admissible
embedding (Ty)r, — GF,) of the element v¢ , € G(F),). If we fix an admissible embedding
of Ty in G*, with image a maximal F-torus denoted by T and image of vy denoted by
v € G*(F), then the above condition means requiring that there exist x,, € G*(F3°P) such
that Ad(z,) ot maps the maximal torus Tg , in G, containing vg , to Tk, (over F)
and sends g, to (the restriction of)

Proposition 5.3 [16, Thm. 6.4.A].

(1) For almost all v, the wvalues A;(VH v,Yaw) (from [6, §6.3]) equal 1 for i =
LILIIL,,IV.

(2) II, Ai(ve,0vG,0) =1 fori=I1I11,1115,IV.
Proof. We closely follow the analogous proof in [16]. As in [6, §6.2.1], we may define,
for the quasi-split simply-connected reductive group G, with maximal torus Ti., a
global splitting invariant .} (Tsc) € H'(F,Ty) which depends on an F-pinning of

GZ. and a choice of a-data {an} for T (see [6, §6.2.1]). By the construction of the
local splitting invariant, it is clear that Ag, 3(Ti) maps to the local splitting invariant
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AMao}(TF,,sc) (Where we are viewing the a-data {a.} as an a-data for TFr,) under the
canonical map H(F,Ts.) — H'(F,,TF, s). Since for all but finitely many v, the image of
Mao} (Tse) lands in the subgroup H'(OF,, T, sc) =0, it follows that (A, } (Tr, sc),ST,0) =
Aq(resy(vm),Ya,0) = 1 for all but finitely many wv.

Our above observation and the exact sequence
HY(F,T..) = H*(ATy) = H (AJAT.) — H*(A/ATy.)

(see [13, §D.1]) imply that the image /:\ of the element ((A(a,}(TF, sc):ST,0))0 €
HY(ATy) =B, H (F,,TF,,sc) is trivial in H'(A/A,Ty.), and so it follows by local-global
compatibility of the Tate-Nakayama pairing that

[ ea1 (T sc)s7,0) = Asr) = 1,
as desired for the case i = I. The arguments for the remaining cases of i = II, 1], and
IV may be taken verbatim from the proof of [16, Thm. 6.4.A]. O

Note that if v € H(F) is a strongly G-regular semisimple element which is related
to v¢ € G(A), then for all v € V, its image in H(F,), is strongly G, -regular and is
related to the element ¢, , € G(F,). We can now define the adelic transfer factor. Call an
element v € H(A) semisimple if ~, € H(F,) is semisimple for all v, and strongly G-regular
ifvye Ho_g (Af), where Hg_s C H is the F-scheme characterized by the Zariski open
subset of strongly G-regular semisimple elements of the variety H(F). Similarly, we call
a semisimple element § € G(A) strongly regular if it lies in G (Ag), where G C G is
the Zariski open subscheme characterized by the strongly regular elements of G(F).

Definition 5.4. For v € Hg_«(A) and 6 € G (A), we set Ay(7,8) =0 if there is no
strongly G-regular element of H(F') which is related to an element of G(F'), and otherwise
fix such a pair g,7¢ and define (using [6, (16)] with the local endoscopic datum e, for
each v)

AA(%(S) 5:HA(71)7507’7H,%:YG,11)~ (21)

This product is well defined due to the following result:

Lemma 5.5. In the notation of the above definition, the local transfer factor
A (Yo, 00, VH vy VG 0) equals one for all but finitely many v.

Proof. For all but finitely many v, the group G, is quasi-split, in which case we may
write
A(Yy,0y)
A ot 76 7’$/H 7’7G = — 7_ .
( o " ’v) A('YH,U»’YGJ))

For a quasi-split connected reductive group over a local field, the (absolute) local transfer
factor may be defined purely using Galois cohomology (cf. [6, §6.3, §6.2.1]), where the
claim of the Lemma follows from its characteristic-zero analogue, which is stated in
[13, §7.3, p. 109] (cf. also Proposition 5.3 above). O

The independence of Ay of our choice of 7g,7g will follow from Proposition 5.7.
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Remark 5.6. In the case that H # LH in our global endoscopic datum, the formula for
Ay is slightly more complicated. To begin, we fix a z-pair (H1,€q,) for the endoscopic
datum e = (H,H,s,£), which always exist over fields of arbitrary characteristic. For any
place v of F, this z-pair gives rise to a z-pair (Hi,+,&H,,») for the local endoscopic datum
¢,. We may then define the adelic transfer factor for pairs of elements y1 € Hy g_sr(A)
and 0, € G4 (A), where 71 € Hy g—s(A) means that its image in H(A) is G-strongly
regular, using the relative local transfer factors for z-pairs as in [6, §6.4]: Ap(71,9) :=
HUA(’YI,1)35U7;}/H,117:YG,U)'

5.2. Endoscopic setup

This subsection is an analogue of [9, §4.2, §4.3], which explain how to pass from global
to local refined endoscopic data and discuss coherent families of local rigid inner twists;
recall the notion of a refined endoscopic datum (Hpg,,H,,$4,&) over local F,, defined in
[6, §7.2]. A fixed global endoscopic datum ¢ = (H,H,s,£) induces a canonical embedding
Z(G) — Z(H), and we set H := H/Zger, where Zder = Z(2(GY)), Zs. := Z(GE,) and
G* :=G* | Zger- Note that G* = G x Z(G*) [ Zaer, G* = é\*sc X Z(@)O; we set Z:=Z(G).

The L-embedding ¢ induces an embedding H — G* with image equal to Z & (t)°, where

recall that ¢t := £(s) (this is well defined because G maps to G*, which contains t).
Then for sy € é\*sc a fixed preimage of the image s,q of s in é\*ad and a place v € V,
by definition of a global endoscopic datum, we may find an element y, € Z (@) such
that Sqer - Yo € Z(ﬁ)rv7 where Sqer € @(é\*) denotes the image of sq.. We can write y, =
yo - yu for yl € Z(@(é\*))/,\y;’ € Z(@)O7 and we choose a lift 3, € Zs. of y/,. The clement
(Ssc - Uh,yl) =: &, lies in G* = G o % Z(é\*)o, which, via the above L-embedding, belongs
to the group Z(I?)*”, and ¢, := (Hp,,Hy,$4,&) defines a local refined endoscopic datum.

We now discuss coherent families of local rigid inner twists. For an equivalence class
U of inner twists Guep — Gpser, the class U gives an element of H'(F,G?,) which by
Lemma 4.1 has a preimage in the set H' (Eys Zse = G.). It follows that for every 1 € ¥, we
can find a Zy.-twisted G;‘C, 5V—torsor s along with an isomorphism of (G;d)gv—torsors
h: (Zee) 7w — (( 2d)€y ), where Tee = Tac x ey (Gra)e, and (Gjy)e,, denotes the
trivial (G4)e, -torsor, such that pjhopsh™! is translation by Z € Gy(F ®p F) which
satisfies Ad(Z) = pjy~Lop3h.

For each v € V, we set .7, to be the Z-twisted G -torsor given by loc,(.7), where
T = T ngC’SV G;V, and loc, is as in §4.4; the F-trivialization h evidently induces a
F,-trivialization of .7, (noting that ;. = .7), denoted by h,. Note that, by construction,
the triple (¢, Z4,hy) (P := Yz) is a rigid inner twist over F), ([6, Def. 7.1]); we thus get

a collection (1, ,,hy), of local rigid inner twists which depends on the choice of loc,,
but only up to twisting torsors by d(z) for an element z € Z.(F,), which does not affect
any associated cohomology sets. However, this family will in general depend on the choice
of torsor ;.. We observe that, since 7 is induced by the Z.-twisted GZ.-torsor J., we

have 7, € ZH(Ey, Zaer — G*) C ZV(E4,Z — G*).
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5.3. Product decomposition of the adelic transfer factor

We continue with the notation of §5.2. We now show that Ay from Definition 5.4 admits
a decomposition in terms of the normalized local transfer factors constructed in [6, §7.2],
following [9, §4.4]. Fix an equivalence class ¥ of inner twists Ghsep — G psep, endoscopic
datum ¢ = (H,H,s,§) for G*, and a z-pair 3 = (H1,&;) for e. We assume that there exist
strongly G-regular 1o € H1(F') and dp € G(F) such that 71, is related to dg (so that, in
particular, the image of v1,0 in H(F'), denoted by o, is related to dp). We can associate
to e the collection of refined local endoscopic data (¢&,),ecy and to ¥ a coherent family
of local rigid inner twists (1., %, hy)vey as explained in §5.2, to the global z-pair 3 a
collection of local z-pairs (3,)vev, and to a fixed global Whittaker datum to for G*, a
collection of local Whittaker data (w,)ycv -

For any v, we can use the local Whittaker datum and z-pair to obtain from [6, §7.2]
the tv,-normalized local transfer factor

A[mwévvévawva(%aﬁv)} s Hygose(Fy) X G (Fy) — C.
Proposition 5.7. For any y1 € Hi,g—s(A) and 6 € G4(A), we have
Ap(71,0) = H <locv(<?s6)vyi;> ’ A[mvaévvﬁvvwva(%aﬁv)}('ﬁ,mav)'
veV
In the above formula, i, € Zye as in §5.2 and the pairing (—, —): H'(Ey, Zse — G%,) X
+

Zyo — C is from [6, Corollary 7.11], which is well defined since g, € Zyo = Z(Gt. [ Zse) -
For almost all v € V, the corresponding factor in the product equals 1. For all v, the
corresponding factor is independent of the choices of ¥, and y.! made in §5.2.

Proof. The argument closely follows [9, Prop. 4.4.1]; as in the proof of the result loc.
cit., [16, Corollary 6.4.B] gives the above product identity if we can show that the
normalized factors (loc,(Zac),¥h) * ANy, 0,305 %0, (T b )] (V1,0,0,) satisfy the following
properties: first, that they are absolute transfer factors, and second, that their values at
the F-rational pair (71,0,4,00,5) equal 1 for all but finitely many v and have a product
over all v that equals 1. The first property automatically holds for the above factors by
[6, Prop. 7.12] (the extra (loc,(Zac), ¥, )-factor cancels out and thus makes no difference
for this verification).

Proposition 5.3 and the argument in the proof of [9, Prop. 4.4.1] regarding local and
global e-factors (which works the same in our situation) reduces the second property
above to proving its analogue for the terms

<IOC’U('%C)7:[/;>_1<inv((GFv7w’U7 (%»Bv)»(so,v)75(>)k,v)»év,%,65 >7 (22)

where 65 € G*(F) is the image of 7y under a choice of admissible embedding of Ty g
into G*, the map inv(—,d5,,): Cz,..(85.,) = H (Ev, Zaer = To) with T := Zg-(65) is from
—+,v =

[6, §7.1], the element 3, ., s: € mo(To ) is the image of 5, € mo(Z(H)™") under the

~

composition ¢: Z(H) — To g — ﬁ (as in §5.2, the bar indicates that we are quotienting
out by Zger) induced by our choice of admissible embedding of Ty i into G*, and the
right-hand pairing is from [6, Cor. 7.11].
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In order to work explicitly with inv(—,—) at each v, we fix explicit Cech 2-cocycles év
representing each &, € H?(F,/F,,u,) and replace the notion of Zg.,-twisted torsors on &,
with €, -twisted Zge,-cocycles; we know by §7.2 loc. cit. that inv(—,—) and corresponding
local transfer factor do not depend on such a choice, and hence, we may do so without
loss of generality.

By construction, the elements J; and Jp are stably conjugate, so that there exists
g € G*(F) such that v(gdsg~!) = dp, and then iHV((GFl,ﬂ/Jv,(%,Bv),(;o,v)ﬁav) €
HY(Ey, Zaer — Tp) = Hl(é'éu,Zder — Tp) is represented by the év—twisted cocycle
Zy = (p1(9) " 2up2(9),¢0), Where (zy,¢,) is a choice of &,-twisted cocycle corresponding
to the Zge,-twisted Gg -torsor 7, (cf. [6, Prop. 7.3]). We may choose g so that it is the
image of some gs. € G, (F), and then we may lift the twisted cocycle z, to the &,-twisted
cocycle Ty, sc := (P1(gse) ™" 2sc,0P2(sc )s Pse,v)y Where (2se,vsPsc,v) € 21 (€, Zse — Gl) s a
choice of twisted cocycle corr/e\sponding to the Zg-twisted G -torsor loc,(Zi) on &,.

Using the decomposition Tj = (?O)sc X Z(C/}’\*)O, we may use the notation of §5.2 to
write $y,0,60 = (U5P(8sc)yy ). The functoriality of the pairing from [6, Corollary 7.11]
with respect to the morphism [Zsc — Tp,sc] = [Zaer — To] then implies that

<iHV((GFv,1/J, (%7IjLU)J(SO,ﬂ)7687U)J‘év,WQ,6§> = <‘rv,scay;¢(ssc)>~

4 —
By construction, the restriction of the character (z, s, —) on Wo(m+ ) to Z(Gz,)tY
equals the character ((2sc.v,®Psc,v),—) by the functoriality of the pairing with respect to
the morphism [Zs. — Tp, sc] = [Zsc = G]. It then follows by bilinearity that the expression
(22) reduces to

(To,50,P(Ssc))- (23)

We have already fixed normalizations Séu of the gerbes &, for all v — we now also

fix a normalization 55 of the gerbe &£;,, which identifies 7. with a {-twisted Zg.-cocycle

(25, sc), Where zg. € G¥.(F @p F), which by construction has image in Z* (ESU’ZSC —G%,)
equal t0 (Zsc, v, Psc,v). We may thus define a global twisted cocycle by the formula

Tge = (Pl (gsc)ilzsCPQ(gsc)vd)SC) S ZI(EE"ZSC — TO,SC)?

which satisfies loc, (Zsc) = @4,sc, Where loc, on twisted cocycles is induced by the maps
u, = (Py)r, and Gi(F®@p F) = G (F, ®p, F,) for a fixed v. It then follows from
Corollary 4.10 that the class [ry] € H' (Eé,ZSC — Tp,sc) 1s such that [loc,(zsc)] = [Tv,sc] €
H 1(5§'vaZsc — T,sc) is trivial for all but finitely-many v, which shows that the expression
(23), and thus also the expression (22), is 1 for all but finitely many v, as desired.

To finish proving the product identity, we first recall the functor Y, to,: R — AbGrp.
It follows from the proof of [8, Prop. 5.3] (the proof of which is purely character-theoretic)
that we have a functorial embedding,

Y iior([Z = Q) = mo([2(@) 1), (24)

and it is straightforward to check that for any [Z — G] € R, the following diagram
commutes:
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@1)?“1”07t0r([2 - G]) A Y+,tor([z - G])

l |

B, (2@ ) — mo([Z2(G)H])",

where the left map is the sum of the local embeddings Y 1 1o ([Z — G]) < WO([Z(a)] v)*
and the bottom map is induced by restricting characters from mo([Z(G)]) to
mo([Z(G)]F).

If for each v we restrict the character (loc,([zsc]),—) on mo([To,sc]?) to mo([To,sc|T)

and then take the product over all v (these characters are trivial for all but finitely-many
v due to the above discussion and Corollary 4.12), we obtain the trivial character on

— —

70([To,sc] ) via combining the above dlscussmn with Corollary 4. 13 By construction, we

have that the image of $(ssc) € To in Ty, bC/([TO bc]‘*" ) lies in ﬂo([TO’SC] ), which combines
with the first part of this paragraph to give the equality (zs,$(ssc)) = 1, where the pairing
is induced by the embedding (24) and Theorem 4.11, proving that the above product over
all places equals 1, as desired. Finally, as in the number field case, the absence of ¢, and
92 in the expression (22) implies that the product does not depend on the choice of such
elements. Moreover, since (2, sc,?(Ssc)) only depends on the cohomology class of Zgc v,
the product also does not depend on the choices used to define the torsors loc, (). O

5.4. The multiplicity formula for discrete automorphic representations

We use the same notation as in §5.3. As in [9, §4.5], fix an L-homomorphism ¢: Lr — Lax
with bounded image, where L is the hypothetical Langlands group of F. For each v € V,
the parameter ¢ has a localization, which is a parameter ¢,: Ly, — LG*. The local
conjecture ensures that there exists an L-packet 11, of tempered representations of rigid
inner twists of G* together with a bijection

bpg,voy - Mo, =+ Irr(S;fv),

v

where II,, consists of equivalence classes of tuples (G’,v! (7! h.),7)) with (!, h.)

v v Y ’U v

a rigid inner twist of G, and 7, an irreducible tempered representation of G ( F,) and
53 + = ZG* (¢v)-

Recall that we have fixed a coherent family of rigid inner twists (¢, Z,hy),. Consider
the subset I, (G) C II,, of (classes of) tuples (G, ,¥u,(Zh,hy),my). We define the L-

packet
H<P = {7T = ®2}7T’U | (GFww:%:vaﬂ-U) € HAPu(G)WLPmmu((Gme7(%7}_,”U)77TU)) =1 for a.a. ’U}.

Lemma 5.8. The set 11, consists of irreducible admissible tempered representations of
G(A).

Proof. We may assume without loss of generality that £, = &; for some representative E
of the canonical class. As in the proof of [9, Lem. 4.5.1], everything is clear except for the
fact that the representation m, is unramified for almost all v. As explained loc. cit., we
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may find a finite set S C V such that G* and G have Op g-models G*, G (respectively),
the inner twist isomorphism v is defined over Og C F®°P, the Whittaker datum t,, is
unramified for every v ¢ S, and each local parameter ¢, is unramified. We have the G;}V—

torsor .7 with fixed F-trivialization h of .7; via [6, Prop. 7.3], we can identify 7,7 with
twisted torsors (S,Res(.7),1s), (S xE G%,,0,0s) (the latter descends to a genuine G,
torsor S) and find a F-trivialization h of S such that the trivialization of S induced by
h equals the one induced by h.

We know from Proposition 4.14 that we may enlarge S to ensure that, for all v ¢ S, the
pair of each localization .7, and F)-trivialization h, (induced by h) is the pullback of a
G5, -torsor T, over O, with trivialization ho,, over O%i,f. Note that a priori each .7,
is a torsor on &y, not on Sch/F,, but we may enlarge S to ensure that .7, is the pullback
of a unique G*-torsor over F),, which we identify with 7, (see §4.4), so that this latter
statement makes sense.

The cohomology set H! (O%f,rf/ Or,,G*) classifies isomorphism classes of G*-torsors over

OF, which have a trivialization over the fpqc extension ng,rf. We have a natural injective

map
( I;"c“rrf/Ong ) — Hflppf(OFmg*)7

where the latter set classifies isomorphism classes of G*-torsors over OF, . Moreover, the set

H}ppf(opv,g*) is trivial, by [1, Corollary 2.9] (and Lang’s theorem), giving the triviality

of Hl(O%e;,r,f/OFv,g*). It follows that we may find an element g € G* (OpFir,rf) = g*(O%gﬂf)

whose Cech differential coincides with the element of G*(O%ay ®0,, Ohar) whose left-

translation gives piho,, opshgl on G7 pert port-
v Fy Fnr ®OF OFnr

fpqc descent that the morphism [ := woperf o Ad(g~?') descends to an Op, -morphism
T
f1 0" >0 B
The element g € G*(F,) defines an F,-trivialization of .7, via the descent of the
composition

As a consequence, we get by

Vi=/lg0h,: (%)ﬁ - (%>ﬁ’

where ¢, denotes left-translation by g. As a consequence, (f,¥) defines an isomorphism of
rigid inner twists from (1, Z,,h, ) to the trivial rigid inner twist (idg~ ,G¢ ,id). Choosing S
large enough, the construction of 11, then implies that ¢, w, ((G*,idg*,ﬁzv,id,ﬂ'v of))=1,
which means that the representation m, o f of G*(F,) is ro,-generic. This latter fact
implies, by [5], that the representation , o f is unramified with respect to the hyperspecial
subgroup G*(Op,) of G*(F,). The fact that the isomorphism f is defined over O, then
implies that 7, is unramified with respect to the subgroup G(Op,), as desired. O

As conjectured in the number field case, we expect that every tempered discrete
automorphic representation of G(A) belongs to IL, for some discrete parameter .
Moreover, for any such representation 7, our framework allows for a conjectural
description of its multiplicity in the discrete spectrum of G, which we turn to now. There
is an exact sequence of Lp-modules (acting via ad o)

https://doi.org/10.1017/51474748025100972 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748025100972

Rigid inner forms over global function fields 2239

1—>Z(@)—>@—>(é\*)ad—>1
with connecting homomorphism Z &) (p) = HY(Lp,Z(G*)). We then set

st i=ker(Z g, () > H'(Lp, 2(G*)) = [ H'(Lr,, 2(G¥))]

and set S, 1= WO(Sgd) (a finite group, cf. [11, §10.2]). We will construct a pairing
(——): Sy xII, - C
which yields an integer
m(p,m) == |S<P|_1 Z (z,m).
€S,

We then expect (from [11]) the multiplicity of 7 in the discrete spectrum of G to be

given by
> mlpm),
©

where the sum is over all equivalence classes (as in [11, §10.4]) of ¢ such that 7 € II,,.
The construction of the above pairing is identical to its number field in analogue, but

we record it here for completeness. For some s.q4 € S;d, we choose a lift sg. € Sfpc (the
preimage of S;d in (@)SC) Then, as explained in [9, §4.5], we obtain from sy, an element
4, € S} foreachve V, which we write as (ssc -7,y ) for ¢/, € Z((é\*)der) and y, € Z(é\*)O

via the decomposition G = (G*)se X Z(@)O. Following [9], we define
(85 90sy): (G, ¥, (T ko) o)) =2t w, (G, 1, (T, ho) )] (50) € C
Proposition 5.9 [9, Prop. 4.5.2]. The value
(loco(Tse) 90) ™ A(sse Uy s (G, ¥, (T, b))
equals 1 for all but finitely many v, and the product
(saa,m) = [ [ (locu(Fae) i) ™"+ (50 90:90)s (Gt (s h) o)
veV

is independent of the choices of Ssc,¥h,ys, the torsor s and the global Whittaker
datum w. Moreover, the function Sqq > (Saq,™) is the character of a finite-dimensional
representation of S.

Proof. This proof is identical to the proof of the analogous result in [9], replacing the
use of Corollary 3.7.5 loc. cit. with our Corollary 4.10 and the (conjectural) endoscopic
character identities from [8, §3.4], with the analogous identities from [6, §7.3]. O

Appendix A. Complexes of tori and Cech cohomology

This appendix gives an extension of the theory of complexes of tori developed in the
appendices of [13] to the setting of local and global function fields.
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A.1. Complexes of tori over local function fields — basic results
Suppose that we have a complex of commutative R-groups, which is concentrated in

degrees 0 and 1, denoted by G ENy) (or, when both groups are R-tori, by T ENG ). For
any fpqc ring homomorphism R — S, we obtain a double complex K**® by taking the
Cech complexes for G and H — that is, the double complex

G(S) —— G(S®RS) —— G(S@rS®RS) — ...

I l &

H(S)  — H(S@RS) R — H(S@RS®R5) —_— .

We can associate to this double complex a new complex L®, whose degree-r term is given
by

L™(T*) = EB K™ =G(S®r™) @ H(S®rT1),

m-+n=r

with differentials defined by (dg @ f —dp). Following [13], we call the elements of L"
(Cech) r-hypercochains, and the elements of the kernel of the rth differential (Cech)

r-hypercocycles. Denote by H"(S/R,G ENy) ) the rth cohomology group of the complex
L*. Note that, by fpqc descent, H°(S/R,G EN H)=ker(G(R) — H(R)) =ker(f)(R), which
will be useful when ker(f) is a finite-type F-group scheme whose cohomology we want to
investigate.

The spectral sequences associated to a double complex give us the long exact sequence

- H"(S/R,G L H) - H"(S/R,G) — H"(S/R,H) — H™ ' (S/R.G L H) — ...,
(26)

where the first map sends [(x,y)] to [z], the last map sends [z] to [(0,z)], and the middle
map is induced by f. They also give the long exact sequence

oo H"(S/Rker(f)) — H'(S/R,G L5 H) — H" ™ (cok(f®*)) — H" T (S/Rker(f)) — ...,
(27)

where cok( f®’) denotes the complex with degree-r term given by %.

In the long exact sequence (27), the first map is given by [z] — [(z,0)], the middle map

by [(x,y)] ~ [7], and the last map by the composition of the map H"~*(cok(f®*)) —

H' (im(f®*)) defined by picking a preimage = € H(S®=r") of an r-cocycle Z € %

and then applying the Cech differential, and the map H” (im(f®*)) — H"*(S/R,ker(f))
given by picking a preimage in G(S®r(+1) of z € f(G(S®r("+1)) and then differenti-
ating.

We now make the situation more concrete by setting R = F' a field; the following result
is an immediate extension of the fact that, for a smooth finite type commutative F-group
scheme G, the comparison map H'(F*?/F,G) — H'(F/F,G) is always an isomorphism:
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Lemma A.1. For all i > 1, the natural map H'(F*®?/F,T ER U)— H(F/F,T ERN U) is
an tsomorphism.

Proof. This follows immediately from the five-lemma, applied to the commutative
diagram with exact rows induced by (26)

Hi=L(FsP JF,T) — H=L(F5? /F,U) — Hi(F*?/F,T L U) — Hi(F*»/P,T) — Hi(F*P/FT)
H~YF/F,T) — H~YF/F,U) — H(F/F,T 5 U) —— 0(F/F,T) — H*(F/FT),

where all vertical maps other than the one in consideration are isomorphisms, since T
and U are tori (in particular, are smooth). O

We have an identification of Cech hypercohomology for FseP /F and Galois cohomology:

Lemma A.2. For all i, we have a canonical isomorphism
Hi(Fsr/F,T L U) & HI(D T(FP) — U(F*?)),
where the latter group is as defined in [13], Appendiz A.

Proof. This is immediate from applying the comparison isomorphisms discussed
in §2.1. O

Lemmas A.1 and A.2 show that one can perform computations for H'(F/F,T ER U)
using group cohomology as in [13]. Take R = F to be a local function field, S = F a fixed
algebraic closure, G L Hisa complex of F-tori, denoted by T® :=T ENGS Using the
aforementioned comparison with group cohomology, one can then define a local Tate-
Nakayama pairing

0 (F/F,T L Uy u3~"(F/F,X*(U) L X" (1) = Q/z

identically as in [13, §A.2]. Note that for any F-torus S, we have H¢(F,S) =0 for all i > 3,
since H'(F,S) = HY(I',S(F*°P)), and the cohomological dimension of F' is 2. This same
reasoning also implies that H*(I', X*(S)) = 0 for all i > 3. Using the long exact sequence
(26), we deduce that both of the groups in the above pairing are zero for r > 4 and

negative . We have the analogue of [13, Lem. A.2.A], whose proof is unchanged (using
Lemmas A.1, A.2):

Lemma A.3. The above pairing induces an isomorphism
H'(F/F,T L U) = B3 (F/F,X*(U) L X" (1)

for r=23. For r =23, the group H"(F/F,T ER U) is finitely-generated and is free for
r=3.

A.2. A local pairing

Recall that the hypercohorgology\ groups H T(Wij' ER f) are defined as follows: For any

-~

F-torus S, we set C°(Wp,S) = S(C) (with inflated Wg-action), C*(W,S) the group of
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continuous 1-cocycles of Wg in f((C)7 and all other cochain groups to be zero. We then

define r-hypercochains with respect to the complex U i> T to be elements of
Cr (Wi, U L T) = 0" (We,0) @ 0™ (Wp,T),

with the usual differentials for total complexes, and cohomology groups H” (Wp,ﬁ ER f)
The exponential sequence for the dual tori over C gives a pairing (cf. [13, §A.3])

HY (0,0 L Ty H27(0, x*(U) L5 X*(T)) — ©*
which is generalized loc. cit. for r =1 to a pairing

Lemma (A.1)

H'(F** /P, T L U)| H'F/F,T LU <« H\We,U L T) 50 (28)

which carries over to our situation unchanged.
We have the following two exact sequences

= HOFU) Hl(Fsep/F rLuys HY(FT) >
D W T) 5 H(We, O L T) & H (Wi, ) -

from which we derive two compatibilities of pairings. First, we have (j(u),2) = (u,(2)) !,
where the left-hand pairing is (28) and the right-hand pairing U(F) x Hl(Wp,U) —C*
is given by Langlands duality for tori. Second, we have (z,j(f)) = (i(= ,t), where the left-
hand pairing is from (28) and the right-hand pairing H'(F,T) x T'r — C* comes from
Tate-Nakayama duality.

The first goal is to endow H!(F/F,T ENGS ) with a natural locally-profinite topology.
We first claim that the image f(T'(F)) C U(F) is closed: The scheme-theoretic image
f(T) is a closed subscheme of U by the closed orbit lemma, so that f(T)(F) is closed
in U(F), which means that we can replace U by f(T') to reduce to the case where f is
(scheme- theoretically) surjective. We then choose an F-torus 7" such that f factors as a

composition T’ —> U’ — U where the kernel of f’ is a torus and f” is an isogeny. Note
that f” is finite, and hence proper, which implies that the continuous map U'(F) — U(F)
is proper (as a map of topological spaces), and hence closed (since U (F) is locally compact
and Hausdorff), and so we can reduce further to the case where the kernel of T — U is a
torus.

In this final case, the morphism T ER U is smooth — indeed, quotient maps are always
flat and surjective, and the smoothness of the kernel implies that we get a short-exact
sequence at the level of tangent spaces at the identity. It then follows from the inverse
function theorem for analytic manifolds ([23, Thm. IT1.9.2] (which is proved for all analytic
manifolds over complete nonarchimedean fields) that f is open, and thus sends closed full
preimages to closed subsets.

The closedness of f(T(F)) in U(F) implies that the quotient U(F)/f(T(F)) has the

canonical structure of a topological group. We then give H'(F/F,T ER U) the unique
locally-profinite topology such that the map U(F)/[f(T(F))] — H'(F/F,T ER U) is an
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open immersion (note that H!'(F,T) is finite). Duality of (28) passes to our setting
verbatim (as in [13, Lem. A.3.B]):

Proposition A.4. Using the above topology, the pairing (28) induces a surjective
homomorphism

H'\Wp,U L T) = Homew(HYF/F,T L U),C%)

with kernel equal to the image of (fFF)O under the natural map j: T'r — HY
(W, T L 7).

We set H(Wg,U ER T)req to be the quotient H*(Wp,U ER T)/3[(TT7)°]. Note that the
group H' (Wp,ﬁ EN f) is redundant when f is an isogeny, by the following result:

~ -~

Proposition A.5. When f is an isogeny, the inflation map HY(T,U ER T) —

HY(Wg,U ER T) is an isomorphism.

Proof. For any finite extension K/F splitting U and T, we have an ‘inflation-restriction
sequence

0= H' (T U L T) = H (Wi p,U 5 T) » HY (KU L T),

where in the last term, we are viewing K* as a topological group. Indeed, suppose that
we have a 1-hypercocycle (u,t) € Cl(Wp,ﬁ) EBf((C) such that its restriction to K* is a 1-
coboundary; that is, we have z € U(C) such that (u,t) = (dz, f(2)~!). This means that for
all z € F*, we have u(z) =*z-x~! =1, so that u is trivial on K* and is therefore inflated
from any 1-cocycle @ of I'k/p determined by picking a set-theoretic section I'g/p —
Wi p. Since the W p-action is inflated from I' ;) , the element (,t) is a 1-hypercocycle
of I' i/ mapping to (u,t), as desired.

For K/F as above, fix x € Hl(WK/F,ﬁ ER f), to show that, for large enough L/F
containing K, it lies in the image of the inflation map, it is enough to show that for large

enough L, its image in H!(L*,U ER T) = Homgys (L* ker(f)) is zero. This follows from

the fact that any continuous homomorphism y: K* — ker(f) has finite-index open kernel
and the norm groups Ny x (L*) shrink to the identity as L/K varies over all finite Galois
extensions of F' containing K. O

A.3. Complexes of tori over global function fields — basic results
The last two subsections extend [13, Appendix C] to a global function field F. We fix
a complex of F-tori T ER U, let AP := [P @ A and define H'(A/A,T ER U) as the
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hypercohomology of the double complex

T(§) T@@A@ T@®A§®A®
T(F) T(F®FF) T(F®FF®FF)
U(A) U(A®aA) UA®sAR4A)
U(F) U(FQrF) U(FQrFQrF) Y

giving us a long exact sequence
s H(F/FTLU) HA/AT L U) B G/ATLU) - HYNEFE/FTLHU) >
(29)

Let S be a finite set of places of F' containing all places at which 7" and U are ramified.
For every place v of F, we fix an algebraic closure F, as well as an embedding F < F,,.
The following two results let us work in the group-cohomological setting:

Lemma A.6. For all i >0, the natural map H'(AS? /AT ER U)— H{(A/AT ER U) is
an isomorphism, and the same is true with A replaced by F.

Proof. Combining the proof of Lemma 2.20 with our results on adelic tensor products
in §2.2 shows that H7((AP)®x" M) vanishes for any F-torus M, j,n > 1, and so the
natural map H*(AP/A M) — H*(A,M) is an isomorphism. Since this is also true with
A®°P replaced by A, the same argument in the proof of Lemma A.1 gives the result. The
proof for F' is the same. O

Corollary A.7. For allt>0:
(1) The natural map H'(A%P /AT ER U)— H(A/A,T ER U) is an isomorphism.
(2) We have a canonical isomorphism
H(A*7 /AT L U) = B (R, T(a%7) L U(as)).
(3) We have a canonical isomorphism
H (AP AT L U) —» B (Dp, T(AP)/T(F*7) L Uasr) U (F5eP)).

Proof. The first statement is an immediate consequence of combining Lemma A.6 with
the long exact sequence (29) and the five-lemma. The second two statements follow
immediately. O

We now give an analogue of [13, Lem. C.1.A], which we need to in order to work with

restricted products. Note that the complex T I, U is defined over O r,s. Let O, denote the

completion of O at v, and O)" the ring of integers of the maximal unramified extension
EM/F,.

Lemma A.8. For any place v ¢ S, the group H (O™ /O,,T EN U) is equal to the kernel
of T(Oy) ER U(0,) ifi=0, to the cokernel of the same map if i =1, and is trivial if i > 2.
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Moreover, for all i, we have natural injections
H(0"/0,,T L U) = H(F,/F,, T L U).

Proof. To prove the first statement, using the long exact sequence (26), it is enough
to show that H*(O"/O,,M) =0 for any F-torus M which is unramified at v for i > 1
(applying this result to T and U). We first claim that these groups may be identified
with H*(O,, M) under the natural Cech-to-fppf comparison map. As usual, it is enough
to show that the fppf cohomology groups Hj((OL“)®Ov ™ M) vanish for all j,n > 1. Since
O, is the ring of integers in a nonarchimedean local field, for a fixed finite unramified
extension E,,/F,, we have the chain of identifications

Ow ®OU Ow :—> Ow ®Ov Ov [w] :—> Ow ®OU OU [l’]/(f) :—> H OUM

Ppy /Py

where w € O,, and f € O,[z]. As in §2.1, it is enough to prove the n =1 case (i.e., showing
that the groups H*(OR*, M) vanish for all i > 1). This follows immediately from the fact
that they are the direct limit of the groups H*(Og,,,M), where E,, is as above, which all
vanish by [1, Corollary 2.9], using that O, is a Henselian local ring with finite residue
field k., and Mj,, is connected, being a k,,-torus. With the claim in hand, the result is
immediate from the same Corollary, since O,, is a Henselian local ring with finite residue
field k, such that My, is connected.

We now move on to the second statement. Using the first statement, we only need to
show this for ¢ = 1. As in the proof of [13, Lem. C.1.A], it is enough to show that any
element u € U(O,) N f(T(F,)) lies in f(T(O,)). To this end, we may assume that f is

surjective, and we may again factor f as the composition T BN RN} , where f’ has a
torus as its kernel and f” is an isogeny. The argument of the proof of [13, Lem. C.1.A]
proves the result for f’; so that U'(O,) N f(T(F,)) = f'(T(Oy)).

Note that f” is proper as a morphism of F,-schemes, so the map U'(F,) — U(F,)
is proper as a morphism of topological spaces; this implies that the preimage of the
compact subgroup U(O,) under f” is a compact subgroup of U’(F,), and so lies in
U'(O,), the maximal compact subgroup. Thus, if ¢ € T(F,) is such that f(t) € U(O,),
then f'(t) € U'(Oy), so that f'(t) = f'(z) for some x € T(O,), and now f(t) = f(z), as
desired. O

We now give a restricted product structure to the groups H'(A/A, T ENGs ):
Proposition A.9. We have a canonical isomorphism
!/
v @&/AT LU [[ B (E/ T LU),
veVE

where the product is restricted with respect to the subgroups H (O™ /O, T ER U) forvg S
(which are indeed subgroups by Lemma A.8). When i > 2, this restricted product is a
direct sum.
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Proof. The first step is to use Lemma A.6 to replace H'(A/F,T EN U) by HY (AP /AT ER

U), and Lemma A.1 to replace H(F,/F, T L U) by Hi(F:*/F, T L U). Consider a
finite Galois extension K/F, and let S(x) denote a large finite set of places containing S
such that K is unramified outside S(x. For any place w € Vi lying over v ¢ Sk, the

natural map H(0,,/O,,T ER U)— H{(O/0,,T ERN U) is an isomorphism (replace O)"
by O,, in the proof of Lemma A.8). From here, we may work with group cohomology and
use the identical argument of [13, Lem. C.1.B] to deduce the result. O

Continuing to follow [13, §C], we topologize our adelic cohomology groups (the
versions over F®°P). We give H'(F*P/F.T Lu ) the discrete topology for all i, we
give HO(ASP /AT ER U) the topology it inherits as a closed subgroup of T'(A), and
HY (A% /AT L5 U) the topology making U(A)/f[T(A)] — H (A /AT L5 U) an open
immersion; note that f[T(A)] is closed in U(A) since f(T'(F,))NU(O,) = f(T(0,)) for
v¢ S and [[,¢5f(T(Oy)) is compact, and f(T'(Fy)) is closed in U(Fy) for v € S (by an
argument that we made earlier in this subsection). In the above discussion, we are using
[1, Thm. 2.20] to decompose T'(A) and U(A) as restricted products. We give the groups

Hi(As? /AT ER U) the discrete topology for i > 2.

We now turn to topologizing the groups H*(A%P /AT ER U), which is more involved.
For any F-torus S, the group S(ASP) carries a natural topology given by the direct
limit topology of the topological groups S(Ag), where K/F ranges over all finite Galois
extensions, and this topology coincides with the one induced by giving AP the structure
of a topological ring via the direct limit topology. Note that the ring A%°P is Hausdorff; to
see, this, note that each Ak is a metrizable topological space (by [12, Prop. 1.1]) and is
thus normal; now the direct limit of normal spaces with transition maps that are closed
immersions (as is the case with Ax — Ap) is a normal topological space, and hence a
fortiori Hausdorff.

It follows that S(A%P) is Hausdorff (by [4, Prop. 2.1]). Since S(K) is closed in
S(Ag) for all K, it follows that S(F®°P) is a closed subgroup of S(A®P) (using
that S(F*P)NS(Ak) = S(K)), so the topological group S(A%P)/S(FP) makes sense.
Moreover, the subgroup [S(A%P)/S(F3°P)|!' is closed since it is the intersection over all
o €T of the subsets [S(A%P)/S(F°P)]?, which are the preimages of the (closed) diagonal
A(S(A®eP)/S(F*P)) under the continuous map id x (—)?. Using these topologies, the
natural map

[T (A>P) /T (F*P)]" — [U(A™P) /U (F*P)]" (30)
is continuous, and hence, the closed kernel (our group H°(A3°P /AT Lu )) has the natural

structure of a topological group, settling the ¢ =0 case.
Recall that there is a group homomorphism

H: [T(A™P)/T(F*P)]" — (X (T) ®¢")" (31)
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determined by, for all A € X*(T)¥, the equality

AH (@) = M@, (32)

where we are using the fact that [(ASP)* /(FsP)X]I' = AX /FX | ¢ is the size of the constant
field of F, and || -|| denotes the adelic norm; we will show in Lemma A.14 that ker(H)
is always compact. The map and all of the above properties work just as well for F®°P
replaced with finite Galois K/F splitting 7.

We claim that the image of (30) is a closed subgroup; this image is the direct limit of the
images of the maps of topological groups [T'(Ag)/T(K)|'«/r — [U(Ag)/U(K)|'</F over
all finite Galois K/F, and so it’s enough to show that all of these images are closed—the
following argument was suggested to us by Brian Conrad:

Lemma A.10. For K/F finite Galois splitting T, the image of the map
[T(Ag)/T(K)'x/F — [U(Ag)/U(K)|'5/F is closed.

Proof. We may assume that f is scheme-theoretically surjective. Letting S be the
maximal F-split subtorus in ker(f) and setting 77 :=T'/S, we have short exact sequences

1— S(Ak) > T(Ak) = T'(Ak) — 1,

where Ax = K or Ag and deduce the surjectivity of [T(Ag)/T(K)]Fx/r —
[T"(Ak)/T'(K)]'x/F using Hilbert 90 for idele class groups. This allows us to assume
that T and U have the same F-split rank.

The map Hr sends [T(Ax)/T(K)]'%/F to a finite-index subgroup of (X, (T)® ¢%)x/r,
as does Hy with the analogous groups. Since X*(U)'x/r — X*(T)F'x/F is a finite-index
inclusion (by our F-split rank assumptions), the continuous map

[T(Aw)/TE) e [U(Ax)/UK)]
ker(Hr) ker(Hyr)

is also a finite-index inclusion.
Now consider the commutative diagram

1 — ker(Hy) —— [T(Ag)/T(K)]"*/F —— Im(Hy) —— 1

| ! |

1 —— ker(Hy) —— [U(Ag)/U(K)]" /" —— Im(Hy) — 1,

where the right-most vertical map is injective and the left-most vertical map is proper,
since both groups are Hausdorff and compact (cf. Lemma A.14). The middle term
[U(Ak)/U(K)]'%/F has ker(Hy) as an open subgroup, and so any compact subset
C of [U(Ak)/U(K)'x/F is contained in finitely many ker(Hy )-cosets. Moreover, the
injectivity of the right-most map implies that the f-preimage of ker(Hy) is ker(Hr), and
thus the f-preimage of each ker(Hy )-coset is either empty or a ker(Hr)-coset, proving
the properness of the middle vertical map over each ker(Hy )-coset, and therefore the
properness of the middle vertical map itself, giving the result. O
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Remark A.11. In our applications in the main body of the paper, the map T ER U is
an isogeny, in which case the proof of the above Lemma follows immediately from the
properness of f.

We give H' (AP /AT ENG, ) the topology determined by declaring that the map

cok([T(AP)/T(F*P)|" — [U(4*P)/U(F*)]") - H (4" /AT 5 1)

is an open immersion (where the left-hand side has the natural quotient topology). For
any i > 2, we give H' (AP /AT ER U) the discrete topology.

A.4. Complexes of tori over global function fields — duality

One has duality for H*(A/A,T ER U)= H (AP /AT ER U). As in the local case, we have
a Tate-Nakayama pairing

ar(a~r/F,T L ) < B X 0) DS x(T) Q)2 (33)
where the Q/Z comes from identifying H?(G,,[(A%P)Ru(FV]/G,,[(FeP)Rr(e+1)])

with H2(T,C) (where C = lim /FCK is the universal idéle class group) and

then taking the global invariant map. For an F-torus 7T, set H!(A%P/AT) :=
HI(T[(A%P)Ru(e+ D] /T[(F5eP)®r(*+1)]) (we can define an analogue for A, but we will
not use that here).

According to [13, Lem. D.2.A] (which relies on [17, §4], which are stated for arbitrary
nonarchimedean local fields), the groups H" (AP /A, T) vanish for r > 3, and for r = 1,2,
we having a pairing

H" (AP /A T) x H* "(I,X*(T)) — Q/Z

which induces isomorphisms H" (AP /A T) = Homg(H?~"(T,X*(T)),Q/Z), and the
group H'(A%P /A T) is finite. We now extend this to our complexes:

Lemma A.12. Forr >4, the groups H" (AP /AT ER U) vanish. For r =2,3, the pairing
(33) induces an isomorphism

araser /AT L Uy 2 Homy (53 (0,X*(U) L5 X*(T)),Q/2).
For r = 2,3, the group H" (AP /AT ER U) is finitely-generated, and for r =3, it is free.
Proof. See the explanation following [13, Lem. C.2.A]. O

We now give a duality theorem for » = 1, which will use the absolute Weil group Wg
of F (given by the inverse limit of extensions of Ay /K> by T K/ corresponding to the
canonical H2-class, as K/F ranges over all finite Galois extensions) as in the local case.

We define the groups Cm(WF,f), Hm(WF,f), C’m(W/'F,U ER f) and H™(Wg,U ER ji) in
the same way as in the local case. Note that H™(Wp,T') vanishes for m > 2, H*(Wpg,T) is
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i&m
=
I
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canonically isomorphic to Homes(HO (AP /A, T),C*), by [15], and H™ (W,
for m > 3. We have the following global analogue of Proposition A.5:

Proposition A.13. When T ER U is an isogeny, the inflation map HI(F,ﬁ ER f) —

Hl(Wp,fj ER f) is an isomorphism.

Proof. As in the proof of Proposition A.5, the inflation-restriction sequence shows that

it is enough to show that the image of any element in Homes (A 5 /K™ ker(f)) is zero in
some large finite Galois extension L/F containing K, which follows from the fact that the
kernel of any such homomorphism is open and finite-index and the universal norm group
of (the idele class groups of) a global function field is trivial (see [19, Prop. 8.1.26]). O

There is a pairing

Y (AP /AT L U) < HY(Wp,U L T) — C* (34)

defined exactly as in the local case, and, as in that case, it induces a surjective
homomorphism

HY(Wp,U L T) = Homey (A (A%P /AT L U),C*)

with kernel the image of (T7)° C HO(Wp,T) in H*(Wp,U ER T), the quotient by which
we will denote by Hl(Wp,U EN f)red.

We now define a compact subgroup H(ASP/A T ER U)y of HY(ASP/AT ERN U) for
i=0,1. We first set H°(A%P /A T); to be the kernel of the group homomorphism H from
(31). For expository purposes, we use a slightly different but equivalent version of H from
(31) (it obviously has the same kernel)

H: [T(A*P)/T(F*P)]" — X.(T)"
determined by, for all A € X*(T)¥, the equality
(A H(t)) = deg(A(2)), (35)
where we are using the fact that [(ASP)* /(F5P)*]F = AX/F*, and deg: AX/F* — Zis

the homomorphism defined by deg(a) =), .y v(ay)[ky: k], where k denotes the constant
field of F.

Lemma A.14. The kernel of H is a compact subgroup of [T (AeP)/T(F*¢P)]' (topologized
in §A.3).

Proof. There is isogeny 1" — T, x T, where T, is the maximal F-anisotropic subtorus of
T and T is the maximal F-split subtorus of T, giving the bottom injective map in the
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commutative diagram

(T(A%P) /T (F5P))T —— ((Ta x To)(A%P) /(To x Ty) (F°P))"

| |

X.(T)" X (Ty x To)' = X (Ty);

it follows that the kernel of the left-hand map (the group we are analyzing) equals the
preimage of the kernel of the right-hand map. Since the top map is induced by the
isogeny T'— T, x Ty (which is proper), if we can show that the kernel of the right-hand
map is compact, then its preimage in [T(A%P)/T(F*P)]' is also compact (the map of
topological groups T(A%P) — (T x T, )(A%P) is proper, by [4, Prop. 5.8]). Rewriting the
group [(T, x Ts)(A%P) /(T x Ts)(F*°P)]! as

[T (A%P) ) To (F>*P)]7 x [T (A%P) /Ty (FP)]T,

it is clear that the kernel in question equals [T}, (A%P) /T, (F*°P)|' x K, where K, denotes

the kernel of the map [T (ASP) /T, (FsP)]! ey X, (Ts). The group [T, (A%P) /T, (Fs°P))"
is compact because it contains T, (A)/T,(F) as a finite-index closed subgroup, and this
latter group is compact (by [3, Thm. 8.1.3], since T, is F-anisotropic), reducing to the
case where T =Ty is F-split.

Pick a Z-basis A1,... A, of X*(T) = X*(T)". Then ¢ lies in the kernel of H if and only if

deg[\;(t)] =0 for all i. The basis gives an F-isomorphism T’ o), G”,, and the kernel of H is

the preimage under the above isomorphism of the kernel of the map (A* /F>*)™ deg”, 7",
which is the n-fold product of the compact subgroups C% of AX/F>* (by [19, Prop.
8.1.25)). O

Define H°(ASP/A, T ER U); as the intersection of H?(AP/AT ER U) C [T(A%P)/
T(F*P)]" with ker(H); one checks that when f is an isogeny, this intersection is all

of HO(ASP /AT ER U). It remains to define H(AP /AT EN U);. For any A € X*(U)T,
we have a map of complexes from [T’ Lu Jto[l=Gyp]viaT —1,U 2, Gy, which induces
a map 'A% /AT L5 U) = A (AP /A1 — Gp) = AO(AP/A,G,p) = A% /FX, which
we may then map to Z via deg, as above, giving a map H!(ASP/A T ER U) — X, (U)F.
We define H! (AP /AT Ly )1 as the kernel of the composition
X.(O)F

% 71—‘-

fo(Xu(T)F)

Note that we have a commutative diagram with exact rows

HY: g1 A~ /AT L U) - X, (U)F

1 — B3O /AT L U) — AOA%/AT) L BO(A™P/AU) =5 A (AP/AT L U)

| b b

!

0 —— Ker(f. ) —— X (D) —— X, (U) —— X.(O)"/f (X (D)),

X (T)T
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We claim that the map Hrp: H°(A*P/AT) — X,.(T)' (and hence also Hy, by
symmetry) is split; indeed, the isogeny T, X Ty — T gives the commutative diagram

(T x Ty) (ASP) /(T x T,) (F5P))T —— (T/(A5eP) /T (FseP))T

J/HTQ X Ty J{HT

X.(T}) ~ X, (T)T.

As in the proof of the Lemma A.14, to split Hr, x7., it is enough to split Hr,, and

we have \; € X*(Ts) such that Ty Q) G}, is an isomorphism, and so it is enough

to split the map (A*/F*)" deg”, Z"™, which is easy. This splitting of Hrp, 7, gives
a splitting of Hr by applying the inverse isomorphism X, (T)" — X.(T), giving the
claim. The compatibility of f with the these splittings gives an induced splitting

X (U)o (X (T)F) — B (AP /AT L5 U) of HO.

Lemma A.15. The closed subgroup H'(A®?/AT ER U), C HY (AP /AT ER U) is
compact.

Proof. We have a natural injection H?(ASP/AU)1/f(HO(ASP/AT),) — H(AsP/
AT ER U);, which, by the definition of our topologies, is a closed immersion. We claim

that, in fact, this is a subgroup of a finite index in the target. By the commutative diagram
(36), we have

STUAM (AP AT L U)] = AO(ASP /AUy - F{HC (AP /A, T)] C HO(A™P/AU),

and hence, the image of the above natural injection is S[H°(A%P /A, U)| N H' (A% /A, T L
U)1, which is of finite index since 6[H°(A%P /A, U)] is of finite index in H'(AP/A,T ER
U), by the finiteness of H'(A%°P/A,T). Since HO(AP /A, U);/f(HO(A%P/AT),) is itself
compact (by Lemma A.14), the result follows. O

Corollary A.16. When f is an isogeny, the group H'(A*P /AT ER U) is compact.

Proof. This follows immediately from the above lemma and the fact that X, (U)"'/ X, (T)"
is finite, due to the fact that X,(7) C X.(U) is finite-index and X, (U)'' N X.(T) =
X.(T)F. O

We conclude this section by giving new global duality results that involve the above
cohomology groups. We have a natural map H*(F*°?/F,T EN U) — H' (AP /AT ER U),
and we will denote its kernel by ker’(F**P /F, T Lu ) and its cokernel by cok’(F*¢P /F,T ER
U); our primary case of interest in this paper is when ¢ = 1. Moroever, Proposition A.9
induces an identification

ker' (F*? /P, T L U) % ker[ ' (> /R, T L U) = [ B (F3e2/F,,T 5 U).
veV
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We have, from the long exact sequence (29), the short exact sequences
1 — cok!(F*? /F, T L U) » B (AP /AT L U) - ket P (PP /T L U) 5 1. (37)
The following is an analogue of [13, Lem. C.3.A]:

Lemma A.17. For all i, the image of H (F*¢ /F,T ER U) is discrete in H (AP /A, T ER
U). Moreover, the map

cok(F*e? /P, T Ly U) — Hi(A*? /AT L5 U)

induces an isomorphism of topological groups from coki(Fsep/F,T ER U) to an open
subgroup of H'(A*P /AT EN U) fori=0,1.

Proof. The first statement is clear for i # 1 (cf. the analogous argument in [13]), so we
only need to prove both statements for ¢ = 1. For the first statement, it is enough to show
that the intersection of f[H!(FS®/F, T ER U)] with the open subgroup U(A)/f(T(A))
is discrete. Since the image of U(F)/f(T(F)) is of finite index in [U(A)/f(T(A))]N
FIHY(F>?/F,T L U)] (because the kernel of H'(F,T) — [[, H(F,,T) is finite), it is
enough to show that the image of U(F)/f(T(F)) is discrete in U(A)/f(T(A)).

Using (35), we have a split surjective homomorphism T'(A) — X, (T)" with closed (not
necessarily compact) kernel T'(A)q, similarly for U, and the induced product structures
are compatible with the homomorphism f, allowing us to rewrite f as

T(A); x X.(T)" L5 Ua), < X, (U)F,
leading to a decomposition
U(A)/f(T(A)) = U(A)1/f(T(A)1) x X (U)"/ fu(Xu(T)T),

and the image of U(F)/f(T(F)) in U(A)/f(T(A)) lands in the factor U(A)1/f(T(A)1).
The subgroup f(T(F)) is evidently discrete in U(A); since the subgroup U(F)
is discrete in U(A) (by [4], Example 2.2, using that F is discrete in A). Thus,
U(A)1/f(T(F)) contains the discrete subgroup U(F)/f(T(F')) and the compact subgroup
F(T(A)1)/f(T(F)) (the compactness follows from Lemma A.14). The desired discreteness
then follows by the analogous argument in the proof of [13, Lem. C.3.A].
As in [13], to prove the second statement for ¢ =1, it suffices to show that the map

U(A) — [U(AYP) /U (F*P)| ) f[T(A*P) )T (F>P)]"

is open. The image U(A)/U(F) — [U(A%P)/U(F*?)]' is closed (a straightforward
exercise in the topology of adelic points) and is also finite index (by the finiteness of
the kernel of H'(F,U) — H*(A,U)), and is thus an open immersion. Since quotient maps
are open, the composition

U(8) = U(8)/U(F) — [U(A%P) /U (F<P)]F — [0(A%P) /U (D) f[T(A%P) /T ()]

is open, as desired.
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It remains to show that the injection cok’(F*eP/F,T ER U) — HO(A%P /AT ER U)
has open image. As in [13], it is enough to show that the map HY(AsP/AT ER U)—
ker[T'(A)/T(F) — U(A)/U(F)] is open (because, as in [13], T(A)/T(F) is open in
[T(AsP) /T (F*P)]"). Define the closed subgroup B := {t € T(A)| f(t) € U(F)} of T(A).
Note that HO(AsP /AT Lu ) is a closed subgroup of B, and we thus have a closed

immersion B/[HY(ASP /AT Lu )] = U(F) < U(A), where the last closed immersion

has discrete image. It follows that, since HY(ASP /AT Lu ) is a closed subgroup of
B with discrete quotient, it is open, and then the result follows from the fact that
B/T(F)=ker[T(A)/T(F)—U(A)/T(F)]. O

Corollary A.18. The group
cok (F*°?/F,T L5 U), := cok" (F** /F, T L U)n B (A% /AT L U),
is compact. Moreover, when f is an isogeny, the group cok' (Fs?/F,T ER U) is compact.

Set ker! (Wi, U L T)req 1= ker[H (Wp, U L Tred = Loy H (Wr,, U L T)redl.

veV

Proposition A.19. We have a duality isomorphism
Homers(cok' (F*? /P, T 5 1),C%) & B (Wi, U L T)ea/ker* (We, U L T) s
Moreover, the group ker' (F*¢?/F,T ER U) is finite.

Proof. Using that cok'(F*?/F,T EN U) is an open subgroup of H!(ASP/AT EN U),
applying the functor Hom.s(—,C*) to the short exact sequence (37) with ¢ =1 gives that
the group Hom,s(cok' (F3P/F. T ER U),C*) is canonically isomorphic to the quotient

Homeys (A1 (AP /AT L U),C*) /Homegs (ker? (5P /F, T L5 U),C).

Moreover, the same short exact sequence tells us that Hom, (ker? (F5eP /F, T Lu ),C*)
is canonically isomorphic to the subgroup

ker[Homegs (1 (AP /A, T L5 U),C%) — Home (H (AP /AT L5 U),C7))].

But now we know that Homeys(H'(ASP/AT EN U),C*) is canonically isomorphic
to the group Hl(Wp,U TN f)red via the pairing (34), that H!(ASP/AT ER U) is
canonically isomorphic to [, H!(F5®°/F,,T ER U) (by Proposition A.9), and that each

HY(F3®/F,, T ER U) has continuous dual canonically isomorphic to H 1(WF,U,[7 ER f)red,
which gives the result.
For the finiteness of ker! (F5P /F,T L ), one checks that the map

E[O(ASEP/A7T i} U) — KEI‘(f* |X*(T)F)
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from (36) remains surjective when restricted to cok®(F*¢P /F,T ER U), so HO(As°P /AT ER
U), surjects onto ker!'(FsP/F.T ER U) with open kernel (by Lemma A.17). Since
HO(ASeP /AT ENG, )1 is compact, its quotient by an open subgroup is finite. O

We have the following analogue of [13, Lem. C.3.B|, whose adaptation we leave here
(for completeness) as an exercise (Proposition A.19 is the only part of this result used in
this paper):

Proposition A.20. The groups keri(Fsep/F,T ER U) are finite for all i and vanish unless
1=1,2,3. Fori=1,2,3, we have dual finite abelian groups

Hom(ker' (F**?/F,T L U),C*) = ke (Wp,U L T), Hom(ker' (F*<?/F, T L5 U),C*) =
ker' (W, U L5 T)yeq, Hom(ker®(F5? )P, T L3 U),Q/Z) = ker* (0, X*(U) L X*(T).

The groups cok'(F*?/F.T ER U) wvanish for i > 4, and for i <3, we have duality
isomorphisms

Homess(cok(F* /F,T L5 U),C%) = H2 (Wi, T L5 T) Jker?(Wa, 0 L T),
Homers(cok' (F*? [ F,T L5 10),C7) = H (Wi, T L T o/ ker' (Wi, 0 L Ty,
cok2(F*? /P, T L5 U) = Hom(H (D, X*(U) L X*(T)) /ker (T, X*(U) L5 X*(T)),0/2),
col(Fs<? /P, T L5 U) = B3 (A% /AT L5 U) = Hom(HO (T, X*(U) L5 X*(T)),0/2),

where all groups not already defined above are defined as in [13, Appendiz C|.

We conclude with a few results involving H(I',U EN ). First, define H(I,U ER T)red
to be the quotient of HY(I',U ER T) by the image of (TT)° C HO(I',T). For any v € V, we

define the quotient H 1(Fv,ﬁ ER f)red of H 1(Fv,(7 ER f) analogously, with T' replaced by
I',. Finally, set

ker' (0,0 5 T)eq = ket [H (0,0 5 T)rea — [ H (T0sT L5 Treal.

Lemma A.21 [13, Lem. C.3.C|. The map Hl(Rﬁ ER f)md — Hl(Wp,U EN f)red

f)md, and we have natural

)
\J/&

maps kerl(l",fj ER f)red isomorphically onto kerl(WF,
isomorphisms

H 0,0 L 1) = BT, X (U) L5 X5(T)), ker (0,0 L5 T)yed = ker® (0, X (U) 2 X*(T)).
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Proof. These second two maps are induced by the boundary map coming from the
commutative diagram of short exact sequences of I'-modules

0 — X*(U) — Lie(U) — U —— 1
| | s
0 — X*(T) — Lie(T) —— T — 1,

viewed as a short exact sequence of length-2 complexes. The proof is the same as in loc.
cit. O
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