
J. Fluid Mech. (2024), vol. 978, A11, doi:10.1017/jfm.2023.991

Analysis of low-speed blade coating flows
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From industrial-scale production to small-scale fabrication of functional films, the
blade coating method is used widely to apply a uniform thin liquid film on a
moving substrate. However, conventional hydrodynamic models are inadequate for
laboratory-scale low-speed blade coating, where capillary forces dominate. In this study,
the low-speed blade coating of non-evaporative Newtonian fluids was investigated in
experimental, computational and analytical approaches. The transient free boundary
problem was solved utilizing a two-dimensional finite element method, and a simple
viscocapillary model was developed to describe the viscous stress and capillary forces
within the puddle, and predict the thickness of the wet film as a function of the speed of
the substrate. Comparing the predicted film thickness with the computational results, and
a flow visualization experiment of blade coating with silicone oil, respectively, confirmed
the model’s validity. The study indicates that the proposed model may be a useful tool
for optimizing laboratory coating processes, as it provides a greater understanding of the
low-speed blade coating system on a laboratory scale.

Key words: thin films, contact lines, capillary flows

1. Introduction

Blade coating is one of the simplest methods to apply a uniform thin liquid film on a
moving substrate. This method is designed to control the thickness of the deposited layer
by metering an excess of the coating liquid through a narrow channel formed between
the blade and substrate, which is called the coating gap. Although the method has a
relatively simple configuration, it is well-known for versatility in various applications,
from industrial-scale productions to laboratory-scale testings.

Commercially, the method is used to produce thin films at high speeds, such as
papers and adhesive tapes. The viscous force dominates other forces in such high-speed
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operations. As a result, a simple hydrodynamic model can be proposed to describe the
system and predict the wet film thickness. Hwang (1979) used lubrication approximation
to model a commercial blade coater, and Sullivan & Middleman (1986) performed
asymptotic analysis with Reynolds number and aspect ratio as perturbation parameters.
They developed the model for both Newtonian and power-law fluids. Kim et al. (2006)
examined a bevelled blade configuration modelled as a one-dimensional flow.

The method, also known as solution shearing or meniscus-assisted solution printing, is
used primarily in laboratories to test coating materials. In this case, the substrate moves
slowly in order to control chemical or physical phenomena relevant to microstructure
formation, such as solute crystallization, to impose various functionalities on deposited
films (Giri et al. 2011; Diao et al. 2013; He et al. 2017; Lee et al. 2020). The slow
withdrawal speed results in low viscous stress, allowing the capillary force to take over.
This condition is characterized by a significantly low value of the capillary number, where
Ca � 1. However, the classical hydrodynamic model fails to explain the low-speed blade
coating system on a laboratory scale. Theoretical studies by Le Berre, Chen & Baigl
(2009) reveal two distinct operating regimes based on substrate speed, with the deposited
film thickness being inversely proportional to the substrate speed in the evaporation
regime, which operates at relatively low speed, and proportional to the 2/3 power of the
substrate withdrawal speed in a relatively high-speed, Landau–Levich regime seen in slow
dip-coating (Landau & Levich 1942), which is dominated by capillarity. However, their
model does not account for the viscous stress near the coating gap, which is significant in
a tilted blade configuration.

This research revisited a classic system with low-speed non-evaporative Newtonian fluid
blade coating flows. A liquid puddle forms between the blade and the substrate, and
shrinks in size as the coating process continues. Despite the fact that the configuration
is simple, the deposited film thickness evolves nonlinearly. This complication arises from
the change in force balance caused by shrinking the puddle size, which reduces the
gravitational contribution compared to the capillary force. In order to get a comprehensive
understanding of the system, we conducted experimental, computational and analytical
approaches. Flow visualization experiments were used to examine the shape and size of
the puddle as well as the thickness of a deposited film. In addition, the complete solution of
two-dimensional finite element computation was obtained to reproduce the well-controlled
coating system. We also propose an improved simple viscocapillary model that includes
viscous stress inside the puddle, which Le Berre et al. (2009) did not consider. The film
thickness predicted by the proposed model is in reasonable agreement with the results of
the finite element computation.

2. Dimensional analysis

A cross-sectional view of the low-speed blade coating system is depicted in figure 1.
The flow is bounded by the blade, the moving substrate and two menisci, namely the
upstream meniscus between the blade and the moving substrate, and the downstream
meniscus between the blade edge and the applied film surface. The coating liquid is
metered by tilting the blade at angle α. The liquid flows through a coating gap h0 between
the blade and the substrate. The gap controls the amount of liquid deposited on the moving
substrate, thereby serving a metering function. Meanwhile, the remainder forms a puddle
between the blade and the substrate, where three three-phase contact lines are located. The
advancing contact line on the substrate and the receding line under the blade are located
upstream and are dynamic. The final one is downstream and is hoped to be pinned at
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hw
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Figure 1. The cross-sectional view of non-evaporative low-speed blade coating system. Here, ρ and μ are the
density and viscosity of the fluid underneath the blade, respectively, σ is the surface tension on the gas/liquid
interface, hp, h0 and hw are the height of the puddle, the coating gap, and the wet film thickness, respectively,
g is the gravitational acceleration, φr and φa are the receding and advancing contact angles, respectively, and
α is the tilting angle of the blade.

the tip, i.e. static. As the film is deposited, the coating liquid in the puddle is exhausted
continuously, causing it to shrink in size.

The coating liquid was assumed to be a non-evaporative Newtonian fluid. The force
balance near the coating gap determines the wet film thickness hw. Material properties
(ρ, μ and σ ) and system parameters (g, us, hp, h0 and α) determine the balance. In
addition to these properties and parameters, the dynamic contact angles φr and φa play
a significant role in determining the size and shape of a puddle by indirectly influencing
the force balance, which is a function of material properties and system parameters. The
symbols’ meanings can be found in the caption of figure 1. Following the Buckingham π
theorem, five dimensionless parameters are introduced: the dimensionless thickness T , the
dimensionless puddle height Hp, the dimensionless edge gap H0, the capillary number Ca,
and the material number m (Kim & Nam 2017):

T ≡ hw

h0
, Hp ≡ hp√

σ/ρg
, H0 ≡ h0√

σ/ρg
,

Ca ≡ μus

σ
, m ≡

√
ρσ 3

gμ4 . (2.1a–e)

As a result, the low-speed blade coating flow of non-evaporative Newtonian fluids is
determined uniquely by a total of eight parameters: five dimensionless ones and three
angles, α, φr and φa. It is worth noting that the above parameters can be used to calculate
the Reynolds number, which represents the competition between inertial and viscous
forces:

Re ≡ ρush0

μ
= mH0 Ca. (2.2)

In this study, we will consider the system with m = O(101), H0 = O(10−1) and
Ca = O(10−3) that can be commonly encountered in a coating condition in a laboratory.
As a result, Re = O(10−3), and the flow is described appropriately as a Stokes flow.
During the coating operations, a substrate moves at a constant velocity us, which reduces
the puddle height hp and, in turn, the coating thickness hw, while all other parameters
remain constant. Therefore, we concentrate primarily on the dependence of T on Hp for
non-evaporative, low-Reynolds-number, capillary-dominant flows.
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Displacement

sensor

Blade

Slide glass
Linear motor CCD camera

(b)(a)

Figure 2. Experimental configuration for low-speed blade coating (not to scale). The linear motor is moving
in the direction indicated by the red arrow. The displacement sensor measures the wet thickness of the coated
layer, and the CCD camera records the shape of the puddle for image analysis to determine the height of the
puddle. (a) Side view (omit CCD camera). (b) Front view.

Parameters Values Units

Kinematic viscosity 50 mm2 s−1

Density 957 kg m−3

Surface tension 20.8 mN m−1

Vapour pressure < 1.0 at 220 ◦C torr
Material number m 12.94 —

Table 1. Physical properties of the silicone oil at 25 ◦C.

3. Flow visualization of blade coating flows

3.1. Experimental set-up
Figure 2 depicts a schematic of the blade coating system’s experimental set-up. Silicone
oil was applied to the soda-lime slide glass, which was mounted on a high-precision linear
motor (V-508, Physik Instrumente GmbH & Co. KG). The physical properties of silicone
oil at 25 ◦C are listed in table 1. Silicone oils are Newtonian fluids at typical laboratory
temperatures and shear rates. Furthermore, the vapour pressure is low enough to ignore
evaporation. To scrape the silicone oil puddle, a stainless steel blade of width 25 mm was
used. The blade was sharpened so that the downstream meniscus of the oil could be pinned
during coating operations.

As shown in figure 2, a confocal displacement sensor (CL-PT010, Keyence Co., Ltd.)
was used to measure the wet thickness of the silicone oil. The wet thickness was
determined indirectly by measuring the displacement of the silicone oil’s free surface
from the slide glass surface, which served as the reference plane. Along the centreline
of the glass, the wet thickness was measured at a distance 2 mm from the blade’s edge.

As depicted in the inset of figure 2(b), a CCD camera (Mako U-130B, Allied Vision
Technologies GmbH) was used to record the side view of the puddle. Images obtained
during flow visualizations were used to calculate the height of the puddle and the contact
angles of the silicone oil.

3.2. Experimental results
The range of parameters tested in this study is summarized in table 2. The four coating
speeds used are Ca = 0.002, 0.004, 0.006 and 0.008, in that order. With the blade angle
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Parameters Values Units

Substrate speed (us) 0.8685, 1.737, 2.605, 3.474 mm s−1

Puddle height (hp) 0.625–1.41 mm
Coating gap (h0) 100, 300 μm
Blade angle (α) 20◦ —

Table 2. Operating conditions for low-speed blade coating experiments.

Ca 0.002 0.004 0.006 0.008

φr 40.3◦ 38.0◦ 36.4◦ 34.1◦
φa 42.7◦ 48.4◦ 53.3◦ 57◦

Table 3. Measured dynamic contact angles for the blade coating system with h0 = 300 μm.

(b)(a) (c) (d )

Figure 3. Changes of upstream meniscus shape with respect to different Ca for the blade coating system with
h0 = 300 μm: (a) Ca = 0.002, (b) Ca = 0.004, (c) Ca = 0.006, (d) Ca = 0.008.

20◦, two different coating gaps are used. As a result, we examined eight distinct operating
conditions. It should be noted that three coating experiments were performed at the same
substrate speed and coating gap. Additionally, we checked the cross-web uniformity of
the coated layers to ensure their flatness. This was done to validate the assumption of
two-dimensional coating flows throughout the experiments.

Receding and advancing contact angles for each capillary number were measured
manually and summarized in table 3. As Ca increases, the receding contact angle decreases
slightly, whereas the advancing contact angle increases significantly. As a result, as Ca
increases, the curvature of the upstream meniscus decreases, implying a decrease in
capillary force. Refer to figure 3 for details. It is important to note that the measured
angles will be used as input parameters for the finite element computation and the simple
viscocapillary model.

The optical flow algorithm of the OpenCV library (Bradski & Kaehler 2008) was used
to track the contact line on the blade as well as the substrate surface in order to extract the
puddle height data from the visualization data. The algorithm produced the red markers
at the upstream receding contact line, as shown in figure 3. The puddle height is then

978 A11-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.991


H. Yim and J. Nam

(b)

(a)

(c)

Figure 4. When the substrate moves rapidly (high Ca), the gap is narrow (low H0) and the puddle is large
(high Hp), the contact line of the downstream meniscus can be unpinned from the blade edge, as shown
in the left-hand images of (a,b). To distinguish it from the silicone oil, the blade is coloured in red. Here:
(a) Ca = 0.006, H0 = 0.067, silicone oil wets the upper side of the blade; (b) Ca = 0.008, H0 = 0.067, silicone
oil wets the upper side of the blade; (c) Ca = 0.002, H0 = 0.202, silicone oil does not wet the upper side of
the blade.

calculated by multiplying the contact line to substrate pixel distance by a pixel to length
scale factor.

Despite the mechanical sharpening of the blade edge, under the following conditions,
silicone oil may climb slightly above the edge, i.e. wet the upper surface of the blade
edge, due to the unpinning of the downstream meniscus: fast coating speed, large puddle
and narrow coating gap. When the puddle was large enough, the unpinned meniscus
was observed for h0 = 100 μm (H0 = 0.067), as shown in figures 4(a,b). Under these
conditions, both viscous stress and hydrostatic pressure may push the downstream
meniscus upwards near the edge, unpinning it from the meniscus.

Figure 5 shows dimensionless film thickness T as a function of dimensionless puddle
height Hp obtained from flow visualizations for various capillary numbers Ca and coating
gaps H0. Unlike high-speed blade coating, wet thickness is affected by both Ca and Hp.
Because of the larger viscous drag that entrains the liquid, the higher the Ca, the thicker
the film. Meanwhile, as the coating operation continues, the coating liquid in the puddle is
consumed. As the puddle shrinks, the decrease in hydrostatic pressure leads to increase of
the capillary pressure jump across the meniscus near the advancing contact line, and this
works against viscous drag as a result.

In the next section, we will introduce two-dimensional finite element computations to
predict the wet thickness that can be compared directly to the experimental results.
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(a) (b)

(c) (d )

Figure 5. Dimensionless film thickness T versus dimensionless puddle height Hp for Ca =
0.002, 0.004, 0.006, 0.008 from flow visualizations. For each Ca, H0 = 0.067 (h0 = 100 μm) and
H0 = 0.202 (h0 = 300 μm) are compared. The error bars represent one standard deviation. Here:
(a) Ca = 0.002, (b) Ca = 0.004, (c) Ca = 0.006, (d) Ca = 0.008.

4. Computational approach

4.1. Finite element computations
A notable geometrical feature of typical coating flows is a significantly high aspect
ratio, which means that a length scale in the cross-web or cross-substrate direction is
significantly greater than the other two length scales. Furthermore, the requirement for
uniformity in wet thickness favours vanishing cross-flows away from edges. Otherwise,
there will be thickness variations in the cross-web direction. As a result, we consider the
blade coating flow to be two-dimensional. This flow represents flow away from the edges
in the substrate width direction in the midplane.

We used a system of equations for the two-dimensional blade coating flow, and solved
it numerically using the Galerkin finite element method in this study. The flow domain is
depicted in figure 1. The arbitrary Lagrangian–Eulerian (ALE) method was also used to
solve the free boundary problem caused by the two gas/liquid interfaces.
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nw

nw

φr

φa

nm

nm

nb

u∗ = 0

x∗ = xp

u∗ = us

nm · nb = 0nm · (u∗ – x̊∗) = 0

nm · nw = –cos φ

nm · T ∗ = nmσ (–∇∗ · nm)

β twnw : T ∗ = tw · (u∗ – us)
nb · T ∗ = –nbp∗ + nb · μ[∇∗u∗ + (∇∗u∗)T ]

tw

tw

Figure 6. Flow domain and boundary conditions for the low-speed blade coating flow. The unit normal and
tangent vector definitions are shown.

4.1.1. Governing equations and boundary conditions
The low-speed blade coating flow is governed by the mass and momentum balance
equations

∇∗ · u∗ = 0, (4.1)

ρ

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= ∇∗ · T ∗ + ρg, (4.2)

where u∗ is the velocity field, g is the gravitational field, and T ∗ is the total stress tensor
for Newtonian fluids defined by

T ∗ = −p∗I + μ
[
∇∗u∗ + (∇∗u∗)T]. (4.3)

Figure 6 summarizes the boundary conditions considered in this study. The no-slip
conditions apply to the moving substrate as well as the blade surface:

u∗ = us on the moving substrate, (4.4)

u∗ = 0 on the blade wall. (4.5)

As stated previously, the downstream contact line is pinned at the blade edge during
the desirable coating operations. To reduce the complexity of the computational model,
therefore, we assumed that the contact line is pinned:

x∗ = xp. (4.6)

However, the coating liquid may wet over the blade edge, as observed in § 3.2 for certain
conditions.

Two contact lines moving upstream must be handled with care to avoid a non-integrable
singularity in shear stress caused by the velocity discontinuity (Huh & Scriven 1971). We
use the Navier slip condition with constant dynamic contact angles φ, as described in
Romero & Carvalho (2008):

βtwnw : T ∗ = tw · (u∗ − us
)
, (4.7)

nm · nw = − cosφ, (4.8)

where nw and tw are unit normal and tangent vectors of the wall defined as in figure 6.
Here, β is the empirical slip coefficient, chosen as β = 0.1 g−1 mm2 s. The values of φ for
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advancing and receding contact angles are measured from flow visualization results and
summarized in table 3.

This flow system features a synthetic outflow boundary in which a moving substrate
translates a thin film. The velocity profile at the boundary was unknown a priori, so we
imposed the free boundary condition proposed by Papanastasiou, Malamataris & Ellwood
(1992):

nb · T ∗ = −nb p∗ + nb · μ
[
∇∗u∗ + (∇∗u∗)T]. (4.9)

This boundary condition appears to impose nothing. Renardy (1997), on the other
hand, demonstrated that the condition ensures well-posedness at the discretization level,
particularly for a nearly fully developed flow.

The size of the flow domain at the outlet, i.e. the height of the outlet, is also unknown
at the outflow boundary. In this case, the height is proportional to the film thickness as
determined by the force balance within the coating flow (Ruschak 1985). Furthermore, the
downstream meniscus is forced to be perpendicular to the outflow boundary to prevent
undesirable mesh distortion at the end of the meniscus:

nm · nb = 0. (4.10)

This condition appears to fail when the outflow boundary is close to the blade edge, as
the thickness profile may decrease significantly along the flow direction. Therefore, the
outflow boundary is placed far away from the blade edge to reduce any numerical artefacts
caused by this condition. This distance is set to thirty times the coating gap in this study.

The flow domain is deformable, comprising three fixed boundaries and two deformable
ones, i.e. menisci. In this study, the domain is discretized into quadrilateral finite elements,
whose nodal positions are unknown a priori. Thus the governing equations and boundary
conditions on the physical domain x∗ = (x∗, y∗) should be mapped into the fixed reference
domain ξ = (ξ, η) by x∗ = F (ξ). The inverse transformation F−1 is a solution of elliptic
partial differential equations

∇∗ · D · ∇∗ξ = 0, (4.11)

where D ≡ (Dξ ,Dη) is mesh diffusivity, which controls the nodal spacing in equipotential
curves of ξ and η in the physical domain. Those curves and their intersects define
boundaries and nodes of quadrilateral elements in the physical domain (de Santos 1991).

On the upstream and downstream menisci, the stress balance as well as the kinematic
conditions should be imposed:

nm · T ∗ = σκ∗nm, (4.12)

∂M
∂t∗

+ u∗ · ∇∗M = 0, (4.13)

where nm is the outward unit normal vector of the meniscus, κ∗ = −∇∗ · nm is the
curvature of the meniscus, and M ≡ ξ(x∗, y∗)+ C, where C is a constant. In our ALE
formulation, M = 0 is the equipotential curve for free surfaces. These coupled conditions
allow the mesh boundary to track the free surface precisely.

In the ALE-formulated transient flow system considered in this study, nodal points in the
physical domain governed by (4.11) move through time. As a result, the frame of reference
should be transformed using total derivatives from fixed Eulerian x∗, y∗ coordinates to
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fixed iso-parametric ξ, η coordinates, as described by Christodoulou & Scriven (1992):

∂f ∗

∂t∗
= ◦

f ∗ − ◦x∗ · ∇∗f ∗, (4.14)

where
◦
f ∗ denotes the time derivative of an arbitrary field variable f at fixed iso-parametric

coordinates, so ◦x∗ is interpreted as the mesh velocity. Consequently, the momentum
balance (4.2) and the kinematic condition (4.13) become

ρ
[ ◦u∗ + (

u∗ − ◦x∗) · ∇∗u∗] = ∇∗ · T ∗ + ρg, (4.15)

nm · (u∗ − ◦x∗) = 0, (4.16)

respectively. Finally, the governing equations (4.1), (4.11) and (4.15) are solved
simultaneously with proper boundary conditions to determine field variables including
position, velocity and pressure.

4.1.2. Solution methods
The finite element method (FEM) approximates field variables as linear combinations of
basis functions in the iso-parametric reference domain:

x∗ =
n∑

i=1

x∗
i (t

∗) φi(ξ, η), u∗ =
n∑

i=1

u∗
i (t

∗) φi(ξ, η), p∗ =
m∑

i=1

p∗
i (t

∗) ψi(ξ, η),

(4.17a–c)
where φi(ξ, η) are Lagrangian biquadratic functions and ψi(ξ, η) are linear discontinuous
functions. The coefficients x∗

i (t
∗), u∗

i (t
∗) and p∗

i (t
∗) are the time-dependent nodal values

of the field variables to be solved.
The governing equations are multiplied by weighting functions (basis functions in the

Galerkin FEM) and integrated over the physical domain. The weighted residuals and
their weak forms are described specifically in Romero & Carvalho (2008). Finally, the
governing equations are reduced to a system of nonlinear algebraic equations

R
(
z, ◦z, λ

) = 0, (4.18)

where z is the solution vector consisting of unknown coefficients of the basis functions,
and ◦z contains their time derivatives. The vector λ consists of known system parameters
such as material and geometrical properties.

Utilizing a predictor–corrector algorithm, the evolution of the temporally discrete
system (4.18) is managed. The predictor step provides a good initial guess for the corrector
step, which employs implicit time integration methods. Except for the first and second time
steps, the predictor–corrector pair consists of the second-order Adams–Bashforth (AB2)
method and the second-order trapezoid rule (TR) method:

AB2 zp
n+1 = zn + 3�t∗

2
◦zn − �t∗

2
◦zn−1, (4.19)

TR ◦zn+1 = 2
�t∗

(zn+1 − zn)− ◦zn, (4.20)

where the superscript p refers to the solution vector obtained from the predictor step, and
�t∗ is a fixed time increment. The first-order backward Euler (BE) method is adopted to
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Analysis of low-speed blade coating flows

solve the first time step:

BE ◦zn+1 = zn+1 − zn

�t∗
. (4.21)

Then TR followed by the forward Euler (FE) method are applied in the second time step:

FE zp
n+1 = zn +�t∗ ◦zn. (4.22)

In the corrector step, Newton’s method is used to solve the system of nonlinear equations
for each time step:[

JBE
R

(
zk

1, λ1

)
+ 1
�t∗

MBE
R

(
zk

1, λ1

)]
δzk

1 = −RBE
(

zk
1, λ1

)
,

zk+1
1 = z1 + δzk

0,

⎫⎪⎬
⎪⎭ (4.23)

[
JTR

R

(
zk

n+1, λn+1

)
+ 2
�t∗

MTR
R

(
zk

n+1, λn+1

)]
δzk

n+1 = −RTR
(

zk
n+1, λn+1

)
,

zk+1
n+1 = zn+1 + δzk

n+1 (n ≥ 1),

⎫⎪⎬
⎪⎭ (4.24)

where JR ≡ ∂R/∂z and MR ≡ ∂R/∂ ◦z are the Jacobian matrix and the mass matrix,
respectively. The superscripts BE and TR denote the different kinds of applied temporal
discretizations. The tolerance for the Newton iteration is set to ‖R(zk

n+1, λn+1)‖2

< 10−9.
In this study, transient computation was initiated with a steady-state solution rather than

a static pool of the puddle behind the blade without a downstream film section. If the
static pool is chosen as a starting point, then managing the growth of the downstream film
section becomes necessary. However, re-meshing may be necessary due to the significant
deformation of elements caused by the ALE approach, which can impact negatively the
accuracy of the computed solutions.

Due to the continuous outflow, the blade coating system considered in this study will
never reach a steady state. In contrast, steady-state blade coating systems can be computed
in the case of continuous inflow, as demonstrated by Lee et al. (2020). To accommodate
this approach, we added an artificial inflow boundary on the blade lower surface h0/2 away
from the blade edge, as indicated by the red arrow in figure 7. The inflow boundary has
size h0/2. The effect of artificial boundaries must be reduced for transient computations.
Therefore, the velocity profile at the boundary was designed to decrease the flow rate
linearly:

u∗ =

⎧⎪⎨
⎪⎩

6q
wi

[(
s∗

wi

)
−
(

s∗

wi

)2
](

1 − n
50

)
(−nw), 0 ≤ n < 50,

0, n ≥ 50,
(4.25)

where q is the flow rate per width, which in the steady state is equal to hwus due to mass
conservation. Here, wi is the width of the inlet, s∗ is the local coordinate of the inflow
boundary (0 ≤ s∗ ≤ wi), and n is the time step used in (4.19)–(4.24). It is important to
note that (4.25) guarantees the deactivation of the artificial inlet flow after 50 time steps.

The mesh configuration and streamlines of the initial steady-state solution of the
base case with α = 20◦, m = 12.94 (silicone oil, see table 1), Ca = 0.002, H0 = 0.202
(h0 = 300 μm) and T = 0.3 are shown in figure 7. The values reported in table 3 were
used for the receding and advancing contact angles. The dimensionless puddle height Hp
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Artificialinlet

s ∗
nw

s ∗ = 0

s ∗ = wiu∗ (s∗)

Figure 7. Configuration of the mesh and streamlines of the steady-state solution at α = 20◦, m = 12.94, Ca =
0.002, H0 = 0.202, T = 0.3, Hp = 1.356, φr = 40.3◦ and φa = 42.7◦, where 3100 quadrilateral elements are
used to discretize the flow domain. The artificial inflow boundary is indicated by the thick red arrow and the
details on the inflow velocity profile are shown below. Note that the inlet boundary transitions into a standard
no-slip wall after 50 initial time steps.

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

x∗/h0

y∗
/h

0

Figure 8. Temporal evolution of the downstream menisci profiles from Hp = 1.184 (dark blue line) to Hp =
0.3200 (dark red line), scaled by h0. The time difference between two adjacent profiles is �t∗ = 11.502 s. The
cross markers indicate the minimum height locations, which are regarded as film thickness at the time.

is calculated to be 1.356. Using the first-order natural continuation (Bolstad & Keller 1986)
of relevant parameters, steady-state solutions were computed with different operating
conditions.

4.2. Computational results
The time increment �t∗ is set to 0.05/us, where the unit of us is mm s−1. In other words,
the substrate translates 50 μm in a single time step.

According to the experimental results, the film thickness decreases gradually over time.
As shown in figure 8, our numerical solutions produce a typical long-wave pattern on a
film profile. The minimum height of the film profile at each time step is chosen as the wet
thickness hw. As the puddle height hp decreases or the time passes, the location of the
minimum height moves upstream, and the wet thickness decreases.

The results of transient computations are shown in figure 9. All computations began with
the initial steady state using Hp ∼ 1.4. To reduce the numerical artefacts caused by the
artificial inflow condition, at least the first 250 steps of computed solutions were discarded.
It is worth noting that Hp decreases over time.
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Figure 9. Dimensionless wet thickness T was calculated as a function of dimensionless puddle height Hp for
different capillary numbers Ca and dimensionless coating gaps H0. The blade tilt angle is set to α = 20◦.
The range of Hp is set approximately to 1.1H0(1 + tanα) < Hp < 1.2. Here: (a) Ca = 0.002, (b) Ca = 0.004,
(c) Ca = 0.006, (d) Ca = 0.008.

As the silicone oil is drained from the puddle during the blade coating process, the
thickness of the film decreases, which is consistent with the experimental observations.
The numerical results further indicate an increase in T as a result of higher viscous
drag caused by high Ca. In addition, the narrow coating gap leads to a thicker film in
a dimensionless sense. The next section will introduce a theoretical model to examine
these findings in greater depth.

Figure 10 compares the computational and experimental results. Generally, the predicted
thickness matches the measured thickness accurately in some parameter ranges, such as the
small Hp, large H0, or small Ca regimes. The disparity between the thickness T obtained
from computations and experiments increases with greater puddle height Hp. Two causes
explain the discrepancy.

First, two-dimensional computations cannot account for three-dimensional flow
features, such as swollen coated film edges caused by outward flow towards edges. This
flow reduces the thickness of the film in the interior film region, where the displacement
sensor is aimed. As a result, the thickness predicted by the computations should be greater
than the thickness measured by the experiments, as shown in the H0 = 0.202 cases of
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Figure 10. Comparison of experimental results (markers with error bars) and numerical computation (dashed
lines) for H0 = 0.067 (blue) and H0 = 0.202 (red). Except for H0 = 0.067 with Ca = 0.004, 0.006 and 0.008,
where the silicone oil was not pinned at the blade edge, the two-dimensional computation slightly overestimates
the wet thickness, as shown in § 3.2. Here: (a) Ca = 0.002, (b) Ca = 0.004, (c) Ca = 0.006, (d) Ca = 0.008.

figure 10. This edge effect is common in other coating flows, such as slot coating (Schmitt,
Scharfer & Schabel 2014).

Another factor is associated with the meniscus pinning at the blade edge. During
computations, the meniscus pinning is related to the boundary condition where the extreme
point of the downstream meniscus is fixed at the blade edge. However, according to
§ 3.2, silicone oil tends to wet the upper side of the blade during high-speed operations
when the coating gap is narrow. This ‘unwanted’ edge wetting increases the measured
wet film thickness due to an effective increase in the coating gap. The degree of edge
wetting rises with the pressure near the edge, which can be increased by either raising the
viscous drag (high Ca) or reducing the coating gap (low H0). As a result, the discrepancy
between computations and experiments increases as Ca rises or H0 diminishes. The cases
Ca = 0.006 and 0.008 with H0 = 0.067 in figure 10 highlight this effect.

To focus on the effects that govern wet film thickness, we limited our study to
two-dimensional phenomena, since the precise modelling of swollen edges and edge
unpinning in three dimensions is challenging. In the next section, we propose a simple
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IIIIII

Figure 11. The low-speed blade coating system can be divided into three regions: the upstream meniscus
region I, the convergent channel region II, and the film formation region III.

viscocapillary model for low-speed blade coating flows. This model provides insight into
the nonlinear change in thickness that occurs as the puddle height decreases.

5. Viscocapillary model

5.1. Construction of a simple viscocapillary model
Under the assumption that the coating flow evolves slowly (i.e. in the quasi-steady
state) and the speed of the operations is sufficiently low to ignore the inertial force
(Re = mH0 Ca � 1), a viscocapillary model for low-speed blade coating can be proposed.
As a result, the momentum balance equation (4.2) can be simplified to the Stokes equation:

0 = ∇∗ · T ∗ + ρg. (5.1)

On the moving substrate and the blade wall, the boundary conditions (4.4)–(4.6) are
applied. Two menisci are subjected to the stress balance (4.12). The kinematic condition
(4.13) on the menisci, on the other hand, is simplified as

nm · u∗ = 0, (5.2)

due to the quasi-steady state assumption.
The proposed viscocapillary model for low-speed blade coating divides the flow domain

into three regions, as illustrated in figure 11. In the upstream meniscus region I, the
pressure jump across the gas/liquid interface is taken into account. The pressure field in
the convergent channel region II is affected significantly by the channel shape, particularly
near the blade edge. The film formation region III exhibits flow characteristics similar to
the drag-out problem in dip coating, which was pioneered by Landau & Levich (1942). To
compute the field variables such as pressure, the model treats these regions separately, then
patches them together using pressure-matching conditions. Finally, the wet film thickness
in the film formation region is calculated using the film profile equation.

5.1.1. Upstream meniscus region
The upstream meniscus region can be simplified greatly to the static meniscus under
the quasi-steady state assumption. Because hp is chosen as the characteristic length, the
dimensionless variables for the upstream meniscus region become

x∗ = hpx̃, y∗ = hpỹ, κ∗ = κ̃

hp
, p∗ = σ

hp
p̃. (5.3a–d)

The shape of the approximated quiescence meniscus is governed by the Young–Laplace
equation. Utilizing the contact angles as boundary conditions, the capillary pressure jump
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Blade edge

Receding

contact line

h0

r∗

O

α

θ

Figure 12. The convergent channel region in polar coordinates.

across the meniscus can be derived, as shown in Yim & Nam (2022):

p̃ (ỹ) = −κ̃ (ỹ) = −H2
p ỹ + H2

p

2
− κ̃m0, (5.4)

where κ̃m0 represents the curvature in the absence of gravity,

κ̃m0 = cos (α + φr)+ cosφa. (5.5)

As the matching condition, the pressure at the receding contact line p̃(ỹ = 1) will be used
as the pressure datum for the convergent channel region.

5.1.2. Convergent channel region
The two-dimensional flow is driven by the moving boundary in this wedge-shaped region,
with leakage due to film entrainment. Because the Stokes equation is used to describe
the flow in this region, we use the stream function ψ∗ in polar coordinates, as shown in
figure 12:

u∗
r ≡ − 1

r∗
∂ψ∗

∂θ
, u∗

θ ≡ ∂ψ∗

∂r∗ . (5.6a,b)

Taking the curl of the Stokes equation followed by substituting the stream function yields
the biharmonic equation

∇∗4ψ∗(r∗, θ) = 0. (5.7)

The solutions of this equation could be represented in a separable form:

ψ∗(r∗, θ) = Ar∗λ f (θ), (5.8)

where A is a prefactor and λ is a real or complex number.
Following Riedler & Schneider (1983), a superposition of two distinct solutions is used

to describe the flow in a corner with leakage:

ψ∗ = ψ∗
1 + ψ∗

2 = −usr∗ f1(θ)− q f2(θ), (5.9)

where ψ∗
1 represents flow in a corner with a sliding boundary, also known as Taylor

scraping flow, ψ∗
2 describes leakage from the point sink, i.e. the origin in figure 12, and q
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is sink strength, which is equal to hwus due to mass conservation. To satisfy no-slip at the
wall as well as the constant leakage to the origin, f1(θ) and f2(θ) in the stream function
must satisfy the boundary conditions

f1 = 0, f ′
1 = −1, f2 = 0, f ′

2 = 0 at θ = 0,

f1 = 0, f ′
1 = 0, f2 = −1, f ′

2 = 0 at θ = α.

}
(5.10)

The flow can be described using the dimensionless variable definitions

r∗ = h0 r, ψ∗ = h0us ψ, u∗
r = us ur, u∗

θ = us uθ , p∗ = σ

hp
pc. (5.11a–e)

Solving (5.7) by substituting (5.9) with boundary conditions (5.10) followed by
non-dimensionalization yields

ψ(r, θ) = r
−θ sinα sin 2(α − θ)+ α(α − θ) sin θ

α2 − sin2 α
+ T

θ cosα − cos(α − θ) sin θ
α cosα − sinα

.

(5.12)
Now the pressure field pc can be obtained from the scaled momentum equation with the

velocity field ur or uθ obtained from the stream function above:

−H0

Hp

∂pc

∂r
+ Ca

[
∂

∂r

(
1
r
∂

∂r
(rur)

)
+ 1

r2
∂2ur

∂θ2 − 2
r2
∂uθ
∂θ

]
− H2

0 sin θ = 0,

− H0

rHp

∂pc

∂θ
+ Ca

[
∂

∂r

(
1
r
∂

∂r
(ruθ )

)
+ 1

r2
∂2uθ
∂θ2 + 2

r2
∂ur

∂θ

]
− H2

0 cos θ = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.13)

Using the pressure at the receding contact line, the pressure datum is determined by
matching the upstream meniscus region and this region:

pc

(
Hp

H0 sinα
, α

)
= p̃(ỹ = 1). (5.14)

Finally, the pressure at the blade edge p̃c0 can be calculated as

pc0 ≡ pc

(
1

sinα
, α

)
= pc

c + ph
c + pg

c + pl
c, (5.15)

where

pc
c = −H2

p

2
− κ̃m0, ph

c = H2
p(1 − R),

pg
c = Ca (1 − R)

R
2α sin2 α

α2 − sin2 α
,

pl
c = −Ca (1 − R2)

R
2T cosα sin2 α

sinα − α cosα
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.16)

with pc
c, ph

c, pg
c, pl

c representing the capillary pressure at the receding contact line, the
hydrostatic pressure between the receding contact line and the blade edge, the pressure
growth due to the convergent channel, and the pressure drop due to the leakage,
respectively.
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h0
y∗

x∗O

Blade edge

Static meniscus

subregion Dynamic meniscus subregion

h∗ = h∗ (x∗)

Film entrainment subregion

hw

nm

Figure 13. Three flow subdomains in the film formation region. The outward unit normal vector is defined as
nm = (−h∗′i + j)/

√
1 + h∗′′. It should be noted that the subregions are not scaled.

Here, we introduce an additional dimensionless parameter, called the gap to puddle
height ratio, which can be expressed as

R = h0

hp
= H0

Hp
. (5.17)

As the puddle is drained, this ratio approaches unity, which can indicate the progress of
coating for a given H0. The pressure at the blade edge, pc0, will be used to determine the
matching condition between this region and the film formation region.

5.1.3. Film formation region
In the film formation region, the film is formed from the downstream meniscus, as its name
suggests. The balance among viscous, capillary and gravitational forces determines the
film profile or shape of the gas/liquid interface. The flow system in this region is analogous
to the Landau–Levich problem, with the exception that gravity acts perpendicular to the
moving substrate. Therefore, the curvature-matching method of Landau & Levich (1942)
can be utilized to determine the film thickness T for low Ca flows.

Figure 13 presents a schematic of the film formation region, which can be further divided
into three subregions. Near the blade edge, where flow is minimal, the meniscus can be
assumed to be static, with the meniscus shape determined by the equilibrium between
capillary and gravitational forces. The positive curvature in this static meniscus subregion
leads to a significant reduction in the film thickness. In the dynamic meniscus subregion,
the viscous drag from the moving substrate cannot be ignored and are considered in the
force balance to determine the shape. The curvature and velocity gradient decrease in this
region, and the film profile changes gradually. Ultimately, all forces become balanced, and
the film is entrained by the moving substrate in the film entrainment subregion, where the
film profile is flat.

Following Park & Homsy (1984), the variables for the static and dynamic meniscus
regions are non-dimensionalized by appropriate scales, respectively:

x∗ = h0x, y∗ = h0y, h∗ = h0h,

u∗
x = usux, u∗

y = usuy, p∗ = σ

h0
p

⎫⎬
⎭ (5.18)
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and

x∗ = h0 Ca1/3 x̄, y∗ = h0 Ca2/3 ȳ, h∗ = h0 Ca2/3 h̄,

u∗
x = usūx, u∗

y = us Ca1/3 ūy, p∗ = σ

h0
p̄.

⎫⎬
⎭ (5.19)

Scaled variables in the static meniscus subregion are denoted by dropping the asterisks
like variables in the convergent channel region (5.11a–e), whereas scaled variables in the
dynamic meniscus region are denoted by overbars.

When the capillary number Ca is sufficiently low (Ca1/3 � 1), the Stokes equation
(5.1) and the stress balance condition (4.12) in the static meniscus region can be reduced
in terms of Ca1/3 using the leading-order approximation:

dp
dy

+ H2
0 = 0, (5.20)

p = −d2h
dx2

[
1 +

(
dh
dx

)2
]−3/2

at y = h(x). (5.21)

Integrating (5.21) requires a boundary condition. As the pressure datum boundary
condition, we use the pressure at the edge obtained from the convergent region, (5.15).

As we will discuss later, the matching procedure employed in this study may lead to
order inconsistency in Ca due to the absence of Ca in (5.20) and (5.21), while pc0 contains
Ca (1 − R)/R in pg

c and pl
c. Thus, depending on the puddle height R, this inconsistency

may affect the accuracy of the computed thickness. Despite this issue, we adopted this
matching condition for its practicality, albeit at the expense of mathematical rigour.

Using the matching condition via the pressure datum, the film profile equation for the
static meniscus becomes

d2h
dx2

[
1 +

(
dh
dx

)2
]

= H2
0(h − 1)− R pc0. (5.22)

In the dynamic meniscus region under Ca1/3 � 1, the leading-order equations for the
governing equations and boundary conditions are

∂ ūx

∂ x̄
+ ∂ ūy

∂ ȳ
= 0, (5.23)

−dp̄
dx̄

+ ∂2ūx

∂ ȳ2 = 0, (5.24)

ūx = 1, ūy = 0 at ȳ = 0, (5.25)

∂ ūx

∂ ȳ
= 0,

p̄ = −d2h̄

dx̄2

⎫⎪⎪⎬
⎪⎪⎭ at ȳ = h̄(x̄), (5.26)

−ūx
dh̄
dx̄

+ ūy = 0 at ȳ = h̄(x̄). (5.27)

The x̄-directional velocity field is obtained by solving (5.24)–(5.26):

ūx = d3h̄

dx̄3

(
− ȳ2

2
+ h̄ ȳ

)
+ 1. (5.28)
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Integrating the continuity equation (5.23), followed by applying Leibniz’s rule with the
no-slip condition (5.25) and the kinematic condition (5.27), yields

∂

∂ x̄

∫ h̄

0
ūx dȳ = 0. (5.29)

The integral term is the flow rate per width, which should be equal to h̄w by virtue of
mass conservation. From the velocity profile (5.28) and the mass conservation (5.29), the
dynamic meniscus profile h̄(x̄) is governed by differential equation

d3h̄

dx̄3 = 3
h̄w − h̄

h̄3
, (5.30)

which is the so-called the Reynolds lubrication equation. This equation can describe the
film profile from the dynamic meniscus region to the film entrainment region, where
h̄(x) = h̄w.

Following Landau & Levich (1942), we performed the classical geometrical matching
between the static meniscus profile (5.22) and the dynamic meniscus profile (5.30). For the
static meniscus, the slope as well as the height of the meniscus vanishes at the matching
point (Park & Homsy 1984):

d2h
dx2 → −H2

0 − R pc0 as h → 0,
dh
dx

→ 0. (5.31)

For the dynamic meniscus, the limiting behaviour of the second derivative h̄′′ = d2h̄/dx̄2

towards the matching point, where the height of the meniscus h̄ approaches to infinity,
can be obtained by integrating the canonical form of (5.30) numerically with appropriate
boundary conditions (Maleki et al. 2011):

d2h̄

dx̄2 → 1.338
h̄w

as h̄ → ∞. (5.32)

Consequently, the dimensionless wet thickness T is derived via matching the curvatures
(5.31) and (5.32) after rescaling the variables:

T = c2 Ca − c1 +
√
(c2 Ca − c1)2 + 5.35 c3 Ca5/3

2 c3 Ca
, (5.33)

where

c1 = R

(
κ̃m0 − H2

p

2

)
,

c2 = 2α sin2 α

α2 − sin2 α
(1 − R),

c3 = 2 cosα sin2 α

sinα − α cosα
(1 − R2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.34)
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Figure 14. Dimensionless wet thickness T versus gap to puddle height ratio R for various Ca and H0 (= RHp).
The blade tilt angle is set to α = 20◦. As the puddle size and capillary number increase, the viscocapillary
model (lines) deviates from the numerical computation results (markers). Here: (a) Ca = 0.002, (b) Ca =
0.004, (c) Ca = 0.006, (d) Ca = 0.008.

5.2. Analysis and validation of the model
The dimensionless wet thickness T predicted by the simple viscocapillary model (5.33) is
compared to the numerical results in figure 14, using the gap to puddle height ratio R as
the independent variable. Here, R increases as the puddle height Hp decreases. As shown
in figure 14, all curves predicted for a given H0 (= RHp) configuration collapse into a
monotonically decreasing curve with respect to R. We will discuss later how the limiting
behaviour of R towards unity depends on the coating gap and capillary number.

The convergence of the predicted T curves for R → 1 suggests a length transition
similar to that observed in confined dip-coating flows (Kim & Nam 2017). As R increases,
the puddle size decreases, and the gravitational contribution diminishes, rendering the
capillary length

√
σ/ρg an invalid characteristic length. The only valid characteristic

length in this regime becomes the coating gap h0, akin to confined dip coating (Kim &
Nam 2017).

As Hp decreases or R approaches unity, the hydrostatic contribution decreases, and the
viscous stress contribution diminishes. In the converging channel region, ph

c , pg
c and pl

c
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all vanish as R → 1. This limiting behaviour in the converging channel region suggests
that the hydrostatic contribution decreases and the viscous stress contribution diminishes
as the puddle decreases in the tilted blade configuration. An alternative explanation is
that the blade tilts to the parallel configuration. It is worth noting that both scenarios
result in H0 = Hp. Given the focus of this research, we will focus primarily on the first
interpretation.

Due to the artificial inlet dividing the computation domain of the puddle and the
resulting excessive mesh distortion, our computational model is unable to predict
accurately the shrinking of the puddle. Our model is capable of reaching R ∼ 0.7.
Furthermore, because the model assumes the existence of the converging channel region,
the viscocapillary model (5.33) does not accept R → 1 directly.

Instead, the limiting equation can be obtained by applying R → 1 to (5.16) and
performing the matching (5.31) and (5.32):

T = 1.338 Ca2/3

κ̃m0 − H2
p/2

. (5.35)

The resultant equation is more appropriate for the second interpretation, which involves
tilting the blade to the parallel configuration with negligible viscous stress contribution
from the channel, than for the first interpretation. It is worth noting that in (5.15), using
R → 1 to remove all pressure contributions except pc

c is analogous to removing the
converging channel contribution. Consequently, the equation is virtually equivalent to the
equation proposed by Le Berre et al. (2009).

The viscocapillary model estimates the film thickness reasonably, as shown in figure 14.
However, as the puddle size and capillary number increase, the difference in predicted film
thicknesses between the viscocapillary and computational models grows. The error in the
viscocapillary model is caused primarily by three factors: the static upstream meniscus
approximation, the quasi-steady-state approximation, and potential order inconsistency in
the low-Ca approximation.

The upstream contact lines move quickly when the substate drags the liquid in the
puddle rapidly, i.e. high Ca. The viscous stress increases near the contact lines, causing the
upstream meniscus shape near the lines to deviate from its static equilibrium shape. The
quasi-steady-state approximation is also no longer valid. The transient effect, including
dynamic contact lines, must be considered. Consequently, as shown in figure 14, the
disparity grows as Ca increases.

Another possible explanation for the discrepancy is an order inconsistency of Ca in
the model. While the flow was approximated in this investigation by taking the leading
(zeroth) order of the low-Ca expansion in the film formation region, the pressure at the
blade edge, given by (5.15), already contains terms with first-order apparent Ca. This is
due to the fact that viscous stress is the primary cause of pressure drop in the channel,
making this inclusion necessary.

However, the effect of Ca is always coupled with the effect of R within the channel
region, as shown by pg

c and pl
c in (5.16), where Ca (1 − R)/R is commonly observed in

viscous stress contributions. When R ≈ 1/(1 + Ca−2/3), this term becomes comparable
to Ca1/3. The capillary number range considered in this study is 0.001 � Ca � 0.01,
corresponding to 0.01 � R � 0.05. It is worth noting that the majority of our experimental
observations and computational predictions are conducted at R values higher than those
shown in figure 14. Because (1 − R)/R is a monotonically decreasing function in the range
0 ≤ R ≤ 1, the viscous stress contributions considered in this study may not result in a
significant order inconsistency problem with Ca when R is large enough. Specifically,
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Figure 15. Comparison of the relative error (%) to the two-dimensional (2-D) finite element computations
between the model proposed by Le Berre et al. (2009) and the proposed viscocapillary model (5.33): (a,c)
Ca = 0.002, (b,d) Ca = 0.008.

when the viscous contribution is o(Ca1/3), the order inconsistency of the Ca problem
should not be significant.

For low-speed coatings, the model predictions closely match the computational results,
as shown in the Ca = 0.002 case in figure 14. However, as Ca increases, the disparity
becomes more pronounced. The model tends to overpredict the thickness for low R
values, but it is challenging to determine whether this discrepancy is due mainly to order
inconsistency or strong two-dimensional flow contributions from the large puddle.

Despite potential sources of error, the model that we proposed performs better than the
model proposed by Le Berre et al. (2009), which contains terms independent of Ca and
does not consider the converging channel. They derived a zeroth-order model using the
Landau–Levich curvature matching procedure in the upstream meniscus region (see their
equation (4)). We compare the accuracy of their model and our proposed model (5.33) in
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terms of the relative error to the numerical computation results defined as

relative error (%) ≡
∣∣∣∣Tmodel − TFEM

TFEM

∣∣∣∣× 100(%). (5.36)

Figure 15 shows that, except for the low-R regime, our viscocapillary model has smaller
relative error than the model proposed by Le Berre et al. (2009).

6. Conclusion

In this study, we revisit the low-speed blade coating flow using a combination of
experimental, computational and theoretical analyses. Our experimental results show that
the film thickness is dependent on five dimensionless parameters, and that for small
coating gaps, the film thickness changes significantly as the puddle height varies. To better
understand the flow dynamics, we reduce the system to two-dimensional flows and perform
transient finite element computations. Our computational results capture reasonably the
thickness change with respect to puddle size, except for discrepancies caused by edge
depinning.

Our proposed viscocapillary model for the blade coating flow predicts accurately
the dimensionless wet film thickness, especially for low capillary numbers and
moderate-to-high gap to puddle height ratios. We found that the blade coating flow has two
distinct modes depending on the puddle height. For small gap to puddle height ratios, the
dimensionless wet thickness is relatively thick and highly sensitive to the ratio. However,
as the ratio increases and the puddle shrinks, the wet thickness becomes a slowly decaying
function of the ratio that is insensitive to the coating gap. This transition between the
two modes is similar to that seen in meniscus roll coating, which has flooded-inlet and
starved-inlet modes (Gaskell et al. 1995). Our model captures this transition because
it includes the viscous stress under the blade, which the model proposed by Le Berre
et al. (2009) does not. This model can be useful for predicting film thickness and finding
appropriate operating conditions for laboratory-scale blade-coating-like systems, such as
the solution shearing process.

However, there is room for improvement. The current model treats the dynamic contact
angles φr and φa as constant input parameters, but they could vary with capillary numbers
and solid wall conditions. It is essential to incorporate the consideration of the unpinning
effect of coating liquids in future research. The presence of an unpinned coating liquid can
introduce a three-dimensional effect, which ultimately causes transversal non-uniformity
in the film thickness and an overall increase in the liquid film thickness when compared to
the pinned state. The addition of evaporation effects in the model could be beneficial for
solution shearing processes with colloidal suspensions or volatile solutions. Furthermore,
for multi-functional polymeric coating solutions, the model would need to include fluids
with non-Newtonian behaviour.
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Figure 16. Comparison of experimental results (markers with error bars) and the analytical models (dashed
line for the previous model by Le Berre et al. (2009), and solid line for the current model). The 2-D finite
element computation results (triangular markers) are employed as a reference for the ideal ‘pinned’ scenario.
Here: (a) Ca = 0.002, (b) Ca = 0.004, (c) Ca = 0.006, (d) Ca = 0.008.

Appendix. Experimental and model comparisons

In this appendix, we present a comprehensive comparison between the experimental
results and two-dimensional computational simulations, considering both the current
model and the model proposed previously by Le Berre et al. (2009). The purpose is to
evaluate thoroughly the performance of our model in predicting wet thickness during blade
coating scenarios.

As depicted in figure 16, a close alignment is observed among the experimental results,
computational predictions from 2-D computations, and both simple models for the case
with H0 = 0.202 (red), underscoring the models’ capability to capture essential trends.
However, as the blade gap diminishes (H0 = 0.067, blue), discrepancies become more
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Figure 17. Comparison of the relative error (%) to the experimental results between the model of Le Berre
et al. (2009) and the proposed viscocapillary model (5.33). The relative error is based on average values
of each data point, and the error bars are omitted. Here: (a) Ca = 0.002, (b) Ca = 0.004, (c) Ca = 0.006,
(d) Ca = 0.008.

apparent, indicative of heightened influence from viscous stress beneath the blade, which
is considered only by our model.

For the H0 = 0.067 case (blue), both models yield comparable predictions for Ca
values up to 0.004. Yet as Ca increases, deviations emerge between the two models
and the reference computational results. Notably, our current model exhibits a closer
alignment with the experimental outcomes as Ca rises, particularly for Hp around
0.5, which coincides with computational predictions, signifying the favourable ‘pinned’
configuration. Figure 17 shows clearly that the relative errors of current models from the
experimental results are smaller than in the model from Le Berre et al. (2009) for those
Ca and Hp ranges. As Hp exceeds 0.5, the current model maintains satisfactory agreement
with experimental results. However, we acknowledge the need to consider the possible
influence of an ‘unpinned’ meniscus during the experimental conditions.
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Moreover, the current model occasionally tends to overestimate outcomes, likely
stemming from inherent order inconsistencies in Ca, requiring careful consideration.
Given these circumstances, the observed alignment between the model and experimental
outcomes is likely a serendipitous outcome, especially in cases involving higher Ca values.

In conclusion, our current model demonstrates enhanced predictive capability for
determining wet thickness in low-speed blade coating scenarios. This is particularly
relevant for configurations with reduced blade gaps and Hp values below approximately
0.5, where the influence of viscous forces beneath the blade plays a significant
role.
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