RIGIDITIES OF ASYMPTOTICALLY EUCLIDEAN MANIFOLDS

SEONG-HUN PAENG

Let M be an *n*-dimensional compact Riemannian manifold. We study the fundamental group of M when the universal covering space of M, \tilde{M} is close to some Euclidean space \mathbb{R}^s asymptotically.

1. INTRODUCTION

Let (M, g) be an *n*-dimensional compact Riemannian manifold with metric g. For fixed $p \in \widetilde{M}$, let B(p, R) and B(0, R) be *R*-balls in $(\widetilde{M}, \widetilde{g})$ and (\mathbb{R}^s, δ) , respectively. We define M to be an asymptotically Euclidean manifold if

$$\lim_{R\to\infty}\frac{d_H(B(p,R),B(0,R))}{R}=0.$$

where d_H is the Gromov-Hausdorff distance.

It is easy to show $(\widetilde{M}, \varepsilon_i^2 \widetilde{g}) \to (\mathbb{R}^s, \delta)$ for any positive sequence $\varepsilon_i \to 0$ with respect to the pointed Gromov-Hausdorff distance [3], where δ is the Euclidean metric, that is, the *R*-balls centred at p in $(\widetilde{M}, \varepsilon_i^2 \widetilde{g})$ converge to the Euclidean *R*-ball with respect to the Gromov-Hausdorff distance for any R > 0. The notion of the asymptotic cone of \widetilde{M} in [5] is similar to $\lim_{i \to \infty} (\widetilde{M}, \varepsilon_i \widetilde{g})$. We prove the following theorem.

THEOREM 1.1. Let (M,g) be an *n*-dimensional compact Riemannian manifold with metric g. If M is an asymptotically Euclidean manifold, then $\pi_1(M)$ is an almost Abelian group.

REMARK 1.2. For an asymptotically Euclidean space M, if we can observe \widetilde{M} at infinite distance from \widetilde{M} , \widetilde{M} looks like a Euclidean space. If there exists a positi sequence $\{R_i\}$ such that $\lim_{R_i\to\infty} d_H(B(p,R_i),B(0,R_i))/R_i = 0$, then \widetilde{M} looks like a Euclidean space if we observe at infinite distance from \widetilde{M} . We call such a space a weakly asymptotically Euclidean space.

Then we obtain the following corollary immediately:

Received 7th April, 1999

Supported by KIAS and grant No. 1999-2-102-002-3 from the interdisciplinary Research program of KOSEF.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/99 \$A2.00+0.00.

COROLLARY 1.3. Let M be a weakly asymptotically Euclidean manifold. If $\pi_1(M)$ is an almost solvable group, then $\pi_1(M)$ is an almost Abelian group.

If M is an *n*-dimensional compact Riemannian manifold with no conjugate points and $\pi_1(M)$ is almost solvable, then $\pi_1(M)$ is a Bieberbach group [2]. With the Hopf conjecture proved in [1], we obtain the following rigidity theorem:

THEOREM 1.4. Let M be an n-dimensional compact Riemannian manifold without conjugate points. If $\pi_1(M)$ is an almost solvable group, then M is isometric to a flat torus up to finite cover.

We apply a method similar to that for Corollary 1.3 to manifolds with no conjugate points and so give a geometric proof for this theorem.

2. PRELIMINARIES

For the proof of Theorem 1.1, we use the following generalised Bieberbach theorem and corollary as in [3].

THEOREM 2.1. [3] Let G be a closed subgroup of the group of isometries of \mathbb{R}^n . Then $\pi_0(G)$ contains a finite index, free Abelian subgroup whose rank is not greater than dim (\mathbb{R}^n/G) .

COROLLARY 2.2. [3] Suppose, in addition, that the quotient space \mathbb{R}^n/G is compact. Then there exists a normal subgroup G' of G such that

- (1) $[G:G'] < w_n$, where w_n is a number depending only on n,
- (2) \mathbb{R}^n/G' is isometric to a flat torus.

We denote by (X, Γ, p) a pointed length space (X, p) on which a group Γ acts isometrically. Put

$$\Gamma(R) = \{ \gamma \in \Gamma \mid d(\gamma p, p) < R \}$$

and let $B_q(R, X)$ be the *R*-ball centred at *q* in *X*. The notation

$$\lim_{i\to\infty} \left(X_i, \Gamma_i, p_i\right) = \left(Y, G, q\right)$$

means that (X_i, Γ_i, p_i) converges to (Y, G, q) with respect to the equivariant pointed Hausdorff distance. (See [3] for the precise definition of the equivariant Hausdorff distance.)

THEOREM 2.3. [3] Let (X_i, Γ_i, p_i) and (Y, G, q) be such that

$$\lim_{i\to\infty} (X_i, \Gamma_i, p_i) = (Y, G, q);$$

let G' be a normal subgroup of G. Assume that

(1) G/G' is discrete and finitely presented,

- (2) Y/G is compact,
- (3) Γ_i is properly discontinuous and free, X_i is simply connected,
- (4) there exists R_0 such that G' is generated by $G'(R_0)$ and such that $\pi_1(B_q(R_0, Y))$ surjects to $\pi_1(Y)$.

Then there exists a sequence of normal subgroups Γ'_i of Γ_i such that

- (5) $\lim_{i\to\infty} (X_i, \Gamma'_i, p_i) = (Y, G', q),$
- (6) Γ_i / Γ'_i is isomorphic to G/G' for each sufficiently large *i*,
- (7) there exists R_i independent of i such that Γ'_i is generated by $\Gamma'_i(R_1)$.

We observe an asymptotically centralising property for a nilpotent group. We assume that $\pi_1(M)$ is not an Abelian group but a nilpotent group. We denote by Z the centre of $\pi_1(M)$. Let $\pi : \pi_1(M) \to \pi_1(M)/Z$ be the natural quotient map and Z' be the centre of $\pi_1(M)/Z$. For $h'_1 \in Z'$, we denote $\pi^{-1}(\langle h'_1 \rangle)$ by Z_1 . Although Z_1 is not the centre, it is an Abelian subgroup of $\pi_1(M)$. By the following easy example, we see an asymptotically centralising property of the nilpotent group.

EXAMPLE 2.4. Let $G = \langle e_1, e_2, e_3 \rangle$ with the relation $[e_2, e_3] = e_1^r$ and $[e_1, e_j] = 0$ for j = 1, 2, 3. Then G is a nilpotent group and $\langle e_1 \rangle$ is the centre of G. Every element g in G can be represented by $e_1^{l_1} e_2^{l_2} e_3^{l_3}$. If we write $e_1^{l_1} e_2^{l_2} e_3^{l_3}$ as (l_1, l_2, l_3) , then we have the following product in \mathbb{Z}^3 ;

$$(m_1, m_2, m_3) \cdot (l_1, l_2, l_3) = (l_1 + m_1 + rm_3 l_2, m_2 + l_2, m_3 + l_3).$$

So we have $(0,0,1) \cdot (0,l,0) = (l,l,1)$. Then $\lim_{l \to \infty} (0,0,1) \cdot (0,l,0)/l = (1,1,0)$ and we obtain a non trivial central component by G-action asymptotically.

For non central element h_1 in Z_1 , there exists a g such that $[g, h_1] \neq 0$. Let $[g, h_1] = z$, where z is contained in the centre. By the same reason as in the above example, we have $g \cdot h_1^l = h_1^l \cdot z^l \cdot g$. So it has also an asymptotically centralising property. We shall prove Theorem 1.1 by a contradiction from this asymptotically centralising property.

3. Proof of Theorem 1.1

We only need to consider the case that $\pi_1(M)$ is an almost nilpotent group since an asymptotically Euclidean manifold has a polynomial volume growth. Then we can find a nilpotent subgroup N with $[\pi_1(M):N] < \infty$. Let $\varepsilon_i > 0$ be a sequence such that $\varepsilon_i \to 0$. We rescale the metric of \widetilde{M} by multiplying by ε_i^2 . Let X_i be the rescaled manifold. Then

$$(X_i, \pi_1(M)) \to (\mathbb{R}^s, G)$$

S.-H. Paeng

for some isometry group G of \mathbb{R}^s from our assumption. Since $\pi_1(M)$ is almost solvable, if we apply Corollary 2.2 and Theorem 2.3 to some finite covering space of M inductively, we obtain that there exists a subgroup $\Pi_i \in \pi_1(M)$ such that

$$(3.1) (X_i, \Pi_i) \to (\mathbb{R}^s, \Pi),$$

where Π is a translational isometry group and $[\pi_1(M) : \Pi_i] < \infty$. We may assume that $\Pi_i = \Pi_L$ for $i \ge L$. Then

$$\left[\pi_1(M):\Pi_L\cap N\right] \leqslant \left[\pi_1(M):\Pi_L\right] \left[\pi_1(M):N\right] < \infty.$$

For brevity, we write N instead of $N \cap \Pi_L$, which is also a nilpotent group. From the choice of Π_i , we know that N is a torsion free nilpotent group. Let Z be the centre of N. By considering the orbit of a given point $p \in \widetilde{M}$ under the isometric action of N, we regard N as a subset of \widetilde{M} . Then $N = N_i \subset X_i$ converges to \mathbb{R}^s since Π is a translational isometry group of \mathbb{R}^s . Also Z converges to Ξ for some Euclidean space $\Xi = \mathbb{R}^k$, $k \leq s$. If we show that k = s, this will complete the proof for the nilpotent case. Since Z is the centre, the subgroup $\langle \{Z,g\} \rangle$ generated by Z and g is also an Abelian group for any $g \in N$. So $\langle \{Z,g\} \rangle$ also converges to the Euclidean space \mathbb{R}^{k+1} .

Now we study the isometric action of $\pi_1(M)$. Since $\pi_1(M)$ act isometrically on \widetilde{M} , also it acts on \mathbb{R}^s isometrically [4]. Consider $\Xi^{k+1} := \lim_{i \to \infty} \langle \{Z, h_1\} \rangle = \lim_{i \to \infty} Z_1$ and the isometric action by g as in section 2. Let v be a vector orthogonal to Ξ in Ξ^{k+1} . By (3.1), we may assume that $v = \lim (v_1, v_1^2, \cdots)$ for some $v_1 \in Z_1$. From the above computation, we have

$$g(v) = \lim_{l \to \infty} g \cdot v_1^l = \lim_{l \to \infty} z^l \cdot v_1^l \cdot g = z' + v,$$

where $z' = \lim (z, z^2, \cdots) \in Z$.

We shall show that g does not act isometrically on X, which is a contradiction. We consider the Euclidean space Ξ^{k+1} . For $z = \lim (z_1, z_1^2, \cdots) \in \Xi$,

$$d(gz, z) = \lim_{l \to \infty} \frac{1}{l} ||z_1^{-l}gz_1^l|| = \lim_{l \to \infty} \frac{1}{l} ||g|| = 0,$$

where ||g|| = d(p, g(p)). So Ξ is invariant under the action of g.

Since g is an isometric action, g(v) is orthogonal to Ξ . Then

(3.2)
$$0 = \langle g(v), g(\Xi) \rangle = \langle g(v), \Xi \rangle = \langle z', \Xi \rangle \neq 0,$$

which is a contradiction. (\langle,\rangle) is the inner product on \mathbb{R}^s .) This completes the proof of Theorem 1.1.

Now we prove Corollary 1.3. We may assume that $\pi_1(M)$ is a strongly polycyclic group which is not a nilpotent group. It is not known that a weakly asymptotically Euclidean manifold has a polynomial growth. We can only obtain that it has a non-exponential growth. So we need some further arguments.

As above, there exists a subgroup Π_L of $\pi_1(M)$ satisfying (3.1). Let Γ_0 be $\pi_1(M)$ and $[\Gamma_i, \Gamma_i] = \Gamma_{i+1}$. Then $\Gamma_N \neq \{0\}$ and $\Gamma_{N+1} = 0$ for some N. If Γ_N is the centre of $\pi_1(M)$, then we can apply the same proof as above. Assume that $\Gamma_N \simeq \mathbb{Z}^k$ is not the centre of $\pi_1(M)$. We also denote the limit of Γ_N as $X_i \to \mathbb{R}^s$ by $\Xi = \mathbb{R}^k$. Also we have that $g \in \Gamma_{N-1}$ can be considered as an isometry from Ξ to Ξ . Let $v_1 \in \Gamma_N$. We may assume that there exists $g \in \Gamma_{N-1}$ such that $v_1^{-1}gv_1g^{-1} = [v_1^{-1},g] = w \neq 0$ for $w \in \Gamma_N$. In fact, if $[\Gamma_{N-1},\Gamma_N] = 0$, we may consider $\langle \{\Gamma_N,g\} \rangle$ for $g \in \Gamma_{N-1}$ instead of Γ_N . Then $\langle \{\Gamma_N,g\} \rangle$ is an Abelian normal subgroup of Γ_{N-1} . In this way, we may assume $[\Gamma_{N-1},\Gamma_N] \neq 0$. Then $gv_1 = v_1wg$ and $gv_1^2 = v_1wgv_1 = v_1wv_1wg = v_1^2w^2g$ since Γ_N is an Abelian group. So we have that

$$gv_1^n = v_1^n w^n g$$

Let $v = \lim (v_1, v_1^2, \cdots)$, where we consider v_1^i and v as elements of X_i and Ξ , respectively. We know that $g(v) = \lim_{i \to \infty} gv_1^i = v + w'$, where $w' = \lim (w, w^2, \cdots)$. If we take a basis $\{\lim_{n \to \infty} \gamma_i^n\}$ of Ξ for generators $\{\gamma_i\}$ of Γ_N , then $g \in \operatorname{GL}(k, \mathbb{Z})$. Using the packing arguments, we easily show that $g^m = \operatorname{Id}$ for sufficiently large m, since g is an isometry of \mathbb{R}^k . So we obtain that $[g^m, \Gamma_N] = 0$. This is a contradiction to $[g, \Gamma_N] \neq 0$ since we may assume that Γ_{N-1}/Γ_N is a torsion free Abelian group. This completes the proof of Corollary 1.3.

4. An asymptotic approach to Theorem 1.4

Let Z_0 be an Abelian subgroup of $\pi_1(M)$. With the same notation as in the previous sections, we only need to prove the following Lemma:

LEMMA 4.1. We denote Z_0 as a subset of X_i by Z_i . If M has no conjugate points, Z_i converges to the k-dimensional vector space with the standard Euclidean norm, where k is the rank of the centre of $\pi_1(M)$.

We use the same notations as the previous section, that is, $\Gamma_N \simeq \mathbb{Z}^k$ and $[\Gamma_{N-1}, \Gamma_{N-1}] = \Gamma_N$. If we apply the proof in Corollary 1.3 to the Γ_{N-1} and Γ_N with Lemma 4.1, we obtain Theorem 1.4.

PROOF OF LEMMA 4.1: We denote the limit of Z_i by Z. We can easily verify that Z is a vector space with a norm. Basically we shall follow the proof of [1]. We shall prove this lemma by the following step. It is a slight modification of the proof ir [1].

STEP 1. Assume that $\delta_i = 1/i$. Since Z is a k-dimensional vector space, we take k-linearly independent vectors $\lambda_1, \dots, \lambda_k$. Let $\overline{Z} = Z/\langle \lambda_1, \dots, \lambda_k \rangle$. Then \overline{Z} is diffeomorphic to a k-dimensional torus.

For $p \in Z$, there exists a geodesic $\gamma_p \subset \widetilde{M}$ such that $\gamma_p(i) \to p$. In fact, such a geodesic γ_p is not necessarily unique. The following arguments are about the choice of such a geodesic. We know that $\gamma_p(it)$ converges to a geodesic tp in X. Let F and F_0 be unit balls in X and Z, respectively. For *n*-independent vectors $p_j \in F$, we construct global coordinates for \widetilde{M} with the Busemann functions

$$y_j = \lim_{t \to \infty} d\Big(\gamma_{p_j}(t), \cdot\Big) - t,$$

where $p_1, \dots, p_k \in F_0$. Then we obtain a vector field v_{p_j} on \widetilde{M} as $\lim_{t\to\infty} \nabla d(\gamma_{p_j}(t), \cdot)$ for the above γ_{p_j} . For any $p \in F_0$, we obtain v_p by the same manner. This limit exists if we take some subsequence by $C^{1,\alpha}$ (or $L^{2,q}$)-boundedness of the distance function r under the Ricci curvature and the injectivity radius bounded below. (Every compact manifold has a lower bound of Ricci curvature. In our case, we take the limit for a fixed manifold X_i . Since $p \in Z$, we know that the v_p are $\pi_1(M)$ -invariant vector fields.) By taking a subset $V = \{(y_1, \dots, y_k, 0, \dots, 0)\}$, we easily show that V converges to Z as $X_i \to X$. Now we can define an injective map $\iota : F_0 \to UV_x \subset U\widetilde{M}_x$ such that $\gamma_p(i) \to p$ and $\gamma'_p(0) = \iota(p)$, where UV_x and $U\widetilde{M}_x$ are the unit tangent spaces of V and \widetilde{M} at x, respectively. Note that for general manifolds, there are no natural injective maps from F to UM_x . Conversely, we can define $F : S^{k-1} = UV_x \to F_0$ by $F(v) = \lim_{i\to\infty} \exp iv$, that is, $\gamma_{F(v)}(t) = \exp tv$. Then we have $F \circ \iota = \operatorname{id}$.

Define the Busemann function of the geodesic tp by $B_p(q) = \lim_{t \to \infty} d(tp,q) - t$ for $p \in Z$. As in [1], every horosphere of a ray pt is a translation of the tangent cone to F_0 at -p so B_p is a linear function and F_0 has a unique supporting hyperplane at p. (See [1].)

We use similar notation to that in [1]. Denote by UZ and $U\overline{Z}$ the unit tangent bundles of Z and \overline{Z} , respectively. Let (v, p) be a unit tangent vector at $p \in Z \simeq \mathbb{R}^k$, where v is a vector in \mathbb{R}^k and p is a base point. We define $D: UZ \to F_0$ by D(v, p) = v. Then for $q \in F_0$,

$$B_p(q) = -\lim_{i \to \infty} i^{-1} \int_0^i \langle \gamma'_q(t), v_p \rangle dt$$
$$= -\lim_{i \to \infty} \int_0^1 \left\langle i^{-1} \frac{d}{dt} \gamma_q(it), v_p \right\rangle dt$$

So we have

$$B_p(q)^2 \leq \lim \inf_{i \to \infty} \int_0^1 \left\langle i^{-1} \frac{d}{dt} \gamma_q(it), v_p \right\rangle^2 dt.$$

Using normal coordinates, we easily show that $i^{-1}\frac{d}{dt}\gamma_q(it)$ converges to the geodesic flow on UZ.

We fix some lifting map $L: U\overline{Z} \to UZ$. Let *mes* be the normalised Liouville measure on $U\overline{Z}$ invariant under the geodesic flows. In fact, we have not proved that \overline{Z} is a Riemannian manifold yet but we know that there exists an invariant measure by the Krylov-Bogolubov theorem. Let $m = D \circ L(mes)$. We denote $i^{-1}\gamma(it)$ by $\gamma^i(t)$. We define a map $C: U\overline{Z} \to \mathbb{R}$ by

$$C(w) := \left\langle \gamma'_{D \circ L(w)}(0), v_p \right\rangle^2 = \lim_{i \to \infty} \left\langle \frac{d}{dt} \gamma^i_{D \circ L(w)}(0), v_p \right\rangle^2.$$

for a fixed $p \in F_0$. Note that $\gamma'_{DoL(w)}(0) = \iota(L(w))$. Since $i^{-1}\frac{d}{dt}\gamma_q(it)$ converges to the geodesic flow on UZ, we have

$$\begin{split} \int_{F_0} B_p(q)^2 dm(q) &= \lim_{i \to \infty} \int_{U\overline{Z}} B_p (D \circ L(w))^2 dmes \\ &\leqslant \int_{U\overline{Z}} \lim_{i \to \infty} \int_0^1 \left\langle i^{-1} \frac{d}{dt} \gamma_{D \circ L(w)}(it), v_p \right\rangle^2 dt dmes \\ &= \int_{U\overline{Z}} \lim_{T \to \infty} T^{-1} \int_0^T \lim_{i \to \infty} \left\langle i^{-1} \frac{d}{dt} \gamma_{D \circ L(w)}(it), v_p \right\rangle^2 dt dmes \\ &= \int_{U\overline{Z}} C(w) dmes, \end{split}$$

by the Birkhoff ergodic theorem.

Define $g: S^{k-1} \to \mathbb{R}$ by $g(w) = \langle w, v \rangle^2$. Since $\int_{U_x \overline{Z}} \left\langle \frac{d}{dt} \gamma_{D \circ L(w)}(0), v_p \right\rangle^2 dmes$ does not depend on x and v_p , we have

$$\int_{U\overline{Z}} C \ dmes = \int_{\overline{Z}} d\operatorname{vol}(z) \int_{U_x \overline{Z}} \left\langle \frac{d}{dt} \gamma_{D \circ L(w)}(0), v_p \right\rangle^2 dmes_x(w)$$
$$= \int_{U_x \overline{Z}} \left\langle \iota(w), v_p \right\rangle^2 dmes_x(w) = \int_{U_x \overline{Z}} \iota^* g \ dmes_x.$$

Since $F \circ \iota = id$, we have $\iota \circ F(\iota(p)) = \iota(p)$ so $\iota \circ F$ is the identity on $\iota(U_x \overline{Z})$. Thus we obtain that

$$\int_{S^{k-1}} \langle w, v \rangle^2 d\mu \ge \int_{\iota(U_x \overline{Z})} \langle w, v \rangle^2 d\mu = \int_{\iota(U_x \overline{Z})} F^* \iota^* g \ d\mu$$
$$= \int_{F \circ \iota(U_x \overline{Z})} \iota^* g \ F(d\mu) = \int_{U_x \overline{Z}} \iota^* g \ dmes_x,$$

[8]

where μ is the standard measure with $\mu(\iota(U_x\overline{Z})) = 1$ and $v \in S^{k-1}$. Hence we obtain that

$$\int_{F_0} B_p(q)^2 dm(q) \leqslant \int_{S^{k-1}} \langle w, v \rangle^2 d\mu$$

This value does not depend on $v \in S^{k-1}$ and as in [1], we obtain that

$$\int_{F_0} B_p(q)^2 dm(q) \leqslant \frac{1}{k}$$

The following step is the same as in [1].

STEP 2. Let F_0^* be the set of all linear functions supporting F_0 , let $A_{F_0} = \{kL^2 \mid L \in F_0^*\}$ and \overline{A}_{F_0} be the convex hull of A_{F_0} . Applying Section 4 in [1] to the vector space $Z \simeq \mathbb{R}^k$, we obtain that the maximal nonnegative quadratic form Q on $\mathbb{R}^k \simeq Z$ satisfies $Q = k \sum a_l B_{p'_l}^2$ where $\sum a_l = 1$, $a_l \ge 0$ and $p'_l \in Z$. Then

$$k\int_F \sum a_l B_{p'_l}(q)^2 dm(q) = \int_F Q(q) \ dm(q) \leq 1.$$

From $Q(F) \ge 1$, with the above inequality, we obtain that $m\{q \in F \mid Q(q) > 1\} = 0$. Since Q is continuous and m is dense, $F = \{x \in Z \mid Q(x) = 1\}$. So Q is the Euclidean norm if we restrict to Z. This completes the proof of Lemma 4.1.

References

- D. Burago and S. Ivanov, 'Riemannian tori without conjugate points are flat', Geom. Funct. Anal. 4 (1994), 259-269.
- [2] C. Croke and V. Schroeder, 'The fundamental groups of manifolds without conjugate points', Comment Math. Helv. 61 (1986), 161-175.
- [3] K. Fukaya and T. Yamaguchi, 'The fundamental groups of almost nonnegatively curved manifolds', Ann. of Math. 136 (1992), 253-333.
- [4] M. Gromov, 'Groups of polynomial growth and expanding maps', Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73.
- [6] M. Gromov, Asymptotic invariants of infinite groups, London Math. Soc. lecture note series 182 (Cambridge Univ. Press, Cambridge, 1993).

Korea Institute for Advanced Study 207-43 Cheongryangri-dong Dongdaemun-gu Seoul 130-012 Korea e-mail: shpaeng@kias.re.kr

528