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Abstract We define sparse saturated fusion systems and show that, for odd primes, sparse systems are
constrained. This simplifies the proof of the Glauberman–Thompson p-Nilpotency Theorem for fusion
systems and a related theorem of Stellmacher. We then define a more restrictive class of saturated fusion
systems, called extremely sparse systems, that are constrained for all primes.
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1. Introduction

For those concerned with fusion in finite groups, a p-nilpotent group is as trivial as it
gets. As such, p-nilpotency criteria are inherently interesting. Following up on the work
in his dissertation, John Thompson proved, for odd primes p, a p-nilpotency criterion
for finite groups that reduces the problem to a p-local question [21], namely, checking
the fusion in two subgroups NG(J(P )) and CG(Z(P )). Recently, Dı́az et al . proved a
generalization of this theorem for fusion systems [8].

In [14], Kessar and Linckelmann state and prove a generalization to fusion systems
of Glauberman’s improved version of Thompson’s p-nilpotency result: one that reduces
the question of p-nilpotency in G to that of the p-nilpotency of NG(Z(J(P ))). Moti-
vated, presumably, by Gorenstein’s treatment in [10], this result is referred to as the
Glauberman—Thompson p-Nilpotency Theorem.

In this paper we aim to shorten the proof of this last result, showing that it is a conse-
quence of the fusion system version of Thompson’s p-nilpotency criterion and Glauber-
man’s p-nilpotency criterion for groups. This simplification follows from the following
observation: minimal counter-examples to statements whose conclusion is that a fusion
system is trivial tend to only have the trivial subsystem as a proper subsystem on the
same p-group. We call such a fusion system sparse. In § 3, we prove that, for p odd, any
sparse fusion system is constrained, i.e. it contains a normal centric subgroup; this implies
that the system comes from a finite group and, thus, is subject to fusion results for finite
groups. For p = 2, this result does not hold in general and we will give an example of a
fusion system exhibiting this deficiency.
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136 A. Glesser

To demonstrate the ubiquity of sparse fusion systems, we present several further exam-
ples. In § 4.2, we generalize a result of Navarro to fusion systems. This result holds for
all primes and strengthens Navarro’s original result. Furthermore, when applied to the
situation of p-blocks, we obtain a new nilpotency criterion for blocks generalizing the
classical result (see [15] and [6]) that a block with inertial index 1 and abelian defect
group is nilpotent. In this section we also generalize a recent result of Weigel [22] on
slim p-groups. Finally, in § 5, we consider saturated fusion systems for which a proper
subsystem on any p-subgroup is trivial. These extremely sparse fusion systems are always
constrained (even for p = 2) and we give a classification of these systems along with an
example of their use.

The genesis of this paper is a question posed by Radha Kessar asking for metatheorems
that decide when a result from group theory will hold for fusion systems. Consider this
a very tiny first step in that direction.

2. Preliminaries

We begin with a brief summary of saturated fusion systems. The concept of a (saturated)
fusion system is originally due to Puig (in unpublished notes) and the approach used in
this paper is the one adopted by Broto et al . [2]. For more detail, proper motivation or
the proofs of any theorems given without justification, we refer the reader to [16].

2.1. Saturated fusion systems

Let p be a prime, let P be a finite p-group, let F be a category whose objects are
the subgroups of P and, for Q, R � P , let HomF (Q, R) be a subset of the injective
group homomorphisms from Q to R. Composition of morphisms is given as the usual
composition of group homomorphisms. Denote the F-isomorphism class of Q by QF .

(1) A subgroup Q � P is fully F-normalized (respectively, fully F-centralized) if
|NP (Q)| � |NP (R)| (respectively, |CP (Q)| � |CP (R)|) for all R ∈ QF .

(2) The category F is a saturated fusion system on P if the following hold for all
subgroups Q, R � P .

(a) If Q � R, then the inclusion map from Q to R is a morphism in F .

(b) If φ ∈ HomF (Q, R), then the induced isomorphism from Q to φ(Q) and its
inverse are also in F .

(c) HomP (Q, R) ⊆ HomF (Q, R), where the former set denotes the group homo-
morphisms from Q to R induced by conjugation with an element of P .

(d) (The Sylow axiom.) AutP (P ) is a Sylow p-subgroup of AutF (P ).

(e) (The extension axiom.) If φ ∈ HomF (Q, P ) such that φ(Q) is fully F-
normalized, then φ extends to a morphism in HomF (Nφ, P ). Here, Nφ denotes
the inverse image in NP (Q) of AutP (Q) ∩ (φ−1 AutP (φ(Q))φ).
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Sparse fusion systems 137

Example 2.1. Let G be a finite group with Sylow p-subgroup P . For g ∈ G, let cg

denote the automorphism of G given by conjugation by g and, for Q, R � P , set

HomF (Q, R) = {cg|Q | g ∈ G, Qg � R}.

It is a straightforward application of the Sylow theorems to show that this gives a satu-
rated fusion system on P and we denote it by FP (G). Recall that a group G is p-nilpotent
if it has a normal p-complement, i.e, if G = POp′(G). In the language of fusion systems,
G is p-nilpotent if and only if FP (G) = FP (P ). In general, we call a saturated fusion
system F on P trivial if F = FP (P ).

Part of the motivation for the above definition is that it allows us to mimic quite a bit
of local group theory, including normalizers, centralizers and Alperin’s Fusion Theorem.

2.2. Subsystems and quotient systems

Let F be a saturated fusion system on a finite p-group P . A subcategory G of F is a
saturated subsystem of F if there exists a subgroup Q of P such that G is a saturated
fusion system on Q. Puig defined subcategories, corresponding to local subgroups in
finite group theory, NF (Q), NP (Q)CF (Q) and CF (Q) whose objects are the subgroups
of NP (Q), NP (Q) and CP (Q), respectively, and where

HomNF (Q)(R, S) = {φ ∈ HomF (R, S) | ∃ϕ ∈ HomF (QR, QS) : ϕ|R = φ},

HomNP (Q)CF (Q)(R, S) = {φ ∈ HomF (R, S) | ∃ϕ ∈ HomF (QR, QS) :
ϕ|R = φ, ϕ|Q ∈ AutP (Q)},

HomCF (Q)(R, S) = {φ ∈ HomF (R, S) | ∃ϕ ∈ HomF (QR, QS) :
ϕ|R = φ, ϕ|Q = idQ}

for subgroups R and S of these respective groups. If Q is fully F-centralized, then
NP (Q)CF (Q) and CF (Q) are saturated subsystems of F . If Q is fully F-normalized,
then NF (Q) is saturated. In the special case where NF (Q) = F , we say that Q is normal
in F and write Q � F . If CF (Q) = F , we say that Q is central in F . When Q is fully
F-normalized, all of the above systems are saturated and we get the following chain of
saturated subsystems of F :

CF (Q) ⊆ NP (Q)CF (Q) ⊆ NF (Q) ⊆ F .

The largest normal and central subgroups of F are denoted by Op(F) and Z(F), respec-
tively. For more details and proofs, see [16, § 3].

It may happen that a subgroup Q is normal in P but not normal in F . In this context,
there are a couple of gradations worth mentioning. If Q is stabilized by every F-morphism
defined on Q, then Q is called weakly F-closed. Furthermore, if the image, under any
F-morphism, of every subgroup of Q remains in Q, then Q is strongly F-closed. Therefore,
if Q � P , then

Q � F =⇒ Q strongly F-closed =⇒ Q weakly F-closed =⇒ Q � P.
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138 A. Glesser

When Q is strongly F-closed, Puig defined a category F/Q whose objects are the
subgroups of P/Q and whose morphisms are induced from F and stabilize Q and proved
that it is a saturated fusion system. We omit a precise definition here as we will only need
quotient systems in the context of the following proposition of Kessar and Linckelmann.
For more details on F/Q, we recommend the recent article by Craven [7], where several
technical flaws in earlier treatments are overcome and F/Q is proven to be a saturated
fusion system.

Our goal in many cases is to reduce to the case where F = PCF (Q) for some Q � P .
To do so, we use the following result of Kessar and Linckelmann.

Proposition 2.2 (Kessar and Linckelmann [14, Proposition 3.4]). Let G ⊆ F
be saturated fusion systems on a finite p-group P . If Q and R are normal subgroups of
P such that Q � R and F = PCF (Q), then

G = NF (R) if and only if G/Q = NF/Q(R/Q).

2.3. Alperin’s Fusion Theorem

The theorem we refer to here as Alperin’s Fusion Theorem is a generalization to fusion
systems of a theorem first proved by Alperin and improved upon by Goldschmidt and
Puig. This version uses F-essential subgroups: a class of subgroups that is, in some sense,
minimal when it comes to generating fusion. Recall that a proper subgroup H of a finite
group G is strongly p-embedded if it contains a non-trivial Sylow p-subgroup P of G and
H ∩ P x = 1 for any x ∈ G \ H. In particular, if Op(G) �= 1, then G has no strongly
p-embedded subgroup.

Definition 2.3. Let F be a saturated fusion system on a finite p-group P and let Q

be a subgroup of P .

(1) Q is F-centric if CP (R) � R for all R ∈ QF .

(2) Q is F-essential if Q is F-centric and OutF (Q) = AutF (Q)/AutQ(Q) has a strongly
p-embedded subgroup.

We start with a few useful trivialities and then a lesser-known property of F-essential
subgroups and the extension axiom.

Lemma 2.4. Let F be a saturated fusion system on a finite p-group P .

(1) P is not F-essential.

If Q < P is F-essential, then

(2) AutF (Q) is not a p-group,

(3) AutF (Q) does not have a normal Sylow p-subgroup (in particular, a cyclic p-group
is never essential), and

(4) if R ∈ QF is a fully F-normalized subgroup of P , then there exists ϕ ∈ HomF (Q, R)
such that Nϕ = Q.
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Proof. The Sylow axiom in the definition of a saturated fusion system implies that
OutF (P ) is a p′-group and so, by definition, it cannot have a strongly p-embedded sub-
group. Thus, P is not F-essential, proving (1). By definition, a p-group cannot have a
strongly p-embedded subgroup and so OutF (Q) is not a p-group. This implies the exis-
tence of a p′-automorphism for Q in F proving (2). If AutF (Q) has a normal Sylow
p-subgroup, then (as it must contain AutP (Q)) Op(OutF (Q)) �= 1; this is a contradiction
since it implies OutF (Q) has no strongly p-embedded subgroup. To prove (4), note that
as Q is F-essential, we may choose A, B ∈ Sylp(AutF (Q)) such that A ∩ B = AutQ(Q).
Furthermore, without loss of generality, we assume that AutP (Q) � A. Since R is
fully F-normalized, AutP (R) is a Sylow p-subgroup of AutF (R) ∼= AutF (Q) and so if
φ ∈ HomF (Q, R), then φ−1 AutP (R)φ ∈ Sylp(AutF (Q)). Thus, there exists ψ ∈ AutF (Q)
such that ψ−1φ−1 AutP (R)φψ = B. Set ϕ = φψ. If c : NP (Q) → AutP (Q) denotes the
homomorphism sending an element u ∈ NP (Q) to the automorphism cu given by conju-
gation by u, then

Nϕ = c−1(AutP (Q) ∩ ϕ−1 AutP (R)ϕ) � c−1(A ∩ B) = c−1(AutQ(Q)) = QCP (Q) = Q,

where the last equality follows since Q is F-centric. �

Another important property of F-essential subgroups is that they always contain
Op(F).

Proposition 2.5 (Broto et al . [3, Proposition 1.6]). Let F be a saturated fusion
system on a finite p-group P . If Q is an F-essential subgroup of P , then Op(F) � Q.

It is worth pointing out that, for non-trivial P , every F-centric subgroup properly
contains Z(P ) so that, in fact, every F-essential subgroup contains Z(P )Op(F).

We now state Alperin’s Fusion Theorem. Morally, it tells us that a saturated fusion
system is determined by the F-automorphisms of P and the F-essential subgroups of P .

Theorem 2.6 (Alperin’s Fusion Theorem). Let F be a saturated fusion system on
a finite p-group P . Every F-isomorphism is the composition of finitely many morphisms
of the form φ : Q → R where there exist Q, R � S � P such that S = P or S is
F-essential and there exists α ∈ AutF (S) such that α|Q = φ.

By [8, Proposition 2.10], a saturated fusion system F is generated by the F-auto-
morphisms of a set of representatives of the F-isomorphism classes of F-essential sub-
groups of P . This motivates the following definition.

Definition 2.7. Let F be a saturated fusion system on a finite p-group P . The essen-
tial rank of F is the number of F-isomorphism classes of F-essential subgroups of P .
The essential rank of F is denoted by ranke(F).

The structure of a saturated fusion system F on a finite p-group P with essential
rank 0 is particularly straightforward.

Lemma 2.8. If F is a saturated fusion system on a finite p-group P , then the following
are equivalent.
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140 A. Glesser

(1) P � F .

(2) ranke(F) = 0.

(3) F = FP (P � OutF (P )).

Proof. If P � F , then Op(F) = P and so, by Lemma 2.4 and Proposition 2.5, there
are no F-essential subgroups of P . Conversely, if there are no F-essentials, then Alperin’s
Fusion Theorem implies that each F-automorphism extends to P and P is normal in F .
This shows that (1) is equivalent to (2). As P is clearly normal in FP (P � OutF (P )), it
remains to show that (1) implies (3). In this case, by (2) and Alperin’s Fusion Theorem,
F is generated by AutF (P ). The result now follows since AutP (P ) ∈ Sylp(AutF (P )). �

2.4. Constrained fusion systems

In [3, Proposition 4.3], Broto et al . prove that if F is a saturated fusion system, then
for every fully F-normalized F-centric subgroup Q of P , there exists a unique finite
group G (up to isomorphism) such that Op′(G) = 1, CG(Op(G)) � Op(G) and such that
NF (Q) = FNP (Q)(G). In this case there is an exact sequence

1 → Z(Q) → G → AutF (Q) → 1.

In particular, if Q is normal in F , then F = FP (G). In this case, where F has a normal
F-centric subgroup, F is called constrained. By Lemma 2.8, any saturated fusion system
with essential rank 0 is constrained. The importance of being constrained is that it reduces
some questions about fusion systems to questions about groups (see [9], [8] or [14] for
some recent examples).

3. Sparse fusion systems

We begin by proving a useful lemma due to Onofrei and Stancu. This will help us reduce
to the case where the fusion system is of the form F = PCF (Q) for some Q � F .

Lemma 3.1 (Onofrei and Stancu [17, Lemma 3.7]). Let F be a fusion system
on a finite p-group P , and let Q � P . If Q � F , then

F = 〈PCF (Q), NF (QCP (Q))〉.

Proof. Let T be an F-essential subgroup of P and take ϕ ∈ AutF (T ). As Q is
weakly F-closed, we have θ = ϕ|Q ∈ AutF (Q), and since TQCP (Q) � Nθ, there is
ψ ∈ HomF (TQCP (Q), P ) such that ψ|Q = ϕ|Q. Then

ϕ = (ϕ ◦ (ψ|T )−1) ◦ ψ|T ;

ϕ ◦ (ψ|T )−1 is a morphism in PCF (Q); ψ|T is a morphism in NF (QCP (Q)) because
ψ(QCP (Q)) = QCP (Q). Thus, ϕ is a morphism in 〈PCF (Q), NF (QCP (Q))〉. By
Alperin’s Fusion Theorem, it follows that F = 〈PCF (Q), NF (QCP (Q))〉. �
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Proposition 3.2. Let F be a saturated fusion system on a finite p-group P . If Q and
R are normal subgroups of P such that Q � R and F = PCF (Q), then

(1) NF (R) is trivial if and only if NF/Q(R/Q) is trivial; in particular, F is trivial if
and only if F/Q is trivial; and

(2) R � F if and only if R/Q � F/Q.

Proof. We obtain (1) by applying Proposition 2.2 with G = FP (P ). Statement (2) is
obtained when applying Proposition 2.2 with G = F . �

Definition 3.3. A non-trivial saturated fusion system F on a finite p-group P is called
sparse if the only proper subfusion system of F on P is FP (P ).

The motivation for defining this class of fusion systems is that a (putative) minimal
counter-example to a theorem whose conclusion is that a saturated fusion system is trivial
will often be a sparse fusion system. A tangible example of a sparse fusion system is the
fusion system of S4 on D8. In the picture below, the fusion of D8 on D8 is described by
the circled dots, while the additional fusion of S4 on D8 is described by the dashed line:
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Sparse fusion systems are necessarily ubiquitous objects. Take any non-trivial saturated
fusion system F on a finite p-group P and consider the lattice of subsystems of F on P .
Any minimal non-trivial subsystem in this lattice is a sparse fusion system. In particular,
for any finite p-group on which there is at least one non-trivial saturated fusion system,
there is a sparse fusion system on that p-group.

For a finite p-group P , the Thompson subgroup, J(P ), is the subgroup of P generated
by the abelian subgroups of P of maximal order. A classical result of Thompson is that a
group G with Sylow p-subgroup P is p-nilpotent if and only if NG(J(P )) and CG(Z(P ))
are p-nilpotent. This was recently extended to saturated fusion systems in [8]. Recall
from [14] that a saturated fusion system is S4-free if all of the groups arising from the
normalizers of F-centric, fully F-normalized subgroups of P , as in [3, Proposition 4.3],
are S4-free.

Theorem 3.4 (Dı́az et al . [8, Theorem 4.5]). Let F be a saturated fusion system
on a finite p-group P where p is odd or F is S4-free. If NF (J(P )) = FP (P ) = CF (Z(P )),
then F = FP (P ).
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142 A. Glesser

We use this result to detect constraint in sparse fusion systems.

Theorem 3.5. Let F be a sparse fusion system on a finite p-group P .

(1) Let Q � P such that Q � F . If QCP (Q) is not normal in F , then F = PCF (Q).
In this case, Q ∩ Z(P ) � Z(F).

(2) If p is odd or F is S4-free, then F is constrained.

Proof. If QCP (Q) is not normal in F and F is sparse, we have NF (QCP (Q)) =
FP (P ). By Lemma 3.1, F = PCF (Q), proving (1). If Z(P ) and J(P ) are not normal
in F , then, as F is sparse, their F-normalizers are all trivial. By [8, Theorem 4.5], we
conclude that F = FP (P ), a contradiction proving that Op(F) �= 1. Set Q = Op(F).
If Q is F-centric, then F is constrained. Therefore, we assume that Q is not F-centric.
This implies that Q is a proper subgroup of QCP (Q) and, as Q = Op(F ), we have that
QCP (Q) is not normal in F . Applying (1), we get F = PCF (Q). If F/Q is trivial, then so
is F by Proposition 3.2, giving a contradiction. If F is S4-free, then [14, Proposition 6.3]
implies that F/Q is also S4-free. Thus, by [8, Theorem 4.5], at least one of CF (Z(P/Q))
and NF (J(P/Q)) is not trivial, so we may assume that there is a normal subgroup R of P

properly containing Q such that NF/Q(R/Q) is not trivial. Using Proposition 2.2 again,
NF (R) is not trivial and so, since F is sparse, R � F , contradicting the maximality of Q.
This proves (2). �

In [7], a saturated fusion system F on a finite p-group P is called p-solvable if there
exists a chain of strongly F-closed subgroups 1 = P0 � P1 � · · · � Pn = P such that
Pi/Pi−1 � Op(F/Pi−1) for all 1 � i � n. When such a chain exists, the length of a
minimal possible chain satisfying the above is called the p-length of F . It is easy to see
from the above proof that a sparse fusion system is p-solvable with p-length 2 when p is
odd or the fusion system is S4-free.

A careful reading of the proofs of Lemma 3.1 and Theorem 3.5 shows that a slightly
weaker condition on Q will suffice: namely, we only require that Q be a weakly F-closed
subgroup contained in every subgroup T of some conjugation family for F . For example,
if Q � F , then, by Proposition 2.5, Q is contained in every F-essential subgroup.

Note that the statement of Theorem 3.5 (2) only considers the case where F is S4-free
when p = 2 but that the result holds for FD8(S4). This led us, in an earlier version of
this paper, to conjecture that all sparse fusion systems are constrained. However, David
Craven pointed out a family of counter-examples to this conjecture. Take, for example,
the fusion system on D16 afforded by PGL(2, 7). This system is easily seen to be sparse
(see [16, Example 8.8] for details) and not constrained. It is still an open question as to
whether there exist any sparse exotic fusion systems.

4. p-nilpotency criteria

4.1. ZJ and the Stellmacher functor

We use Theorem 3.5 to give a streamlined version of the proofs of [14, Theorem A]
and [17, Theorem 1.3].
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Theorem 4.1. Let p be an odd prime and let F be a saturated fusion system on a
finite p-group P . The following are equivalent:

(1) F = FP (P ),

(2) NF (Z(J(P ))) = FP (P ),

(3) NF (W(P )) = FP (P ).

Here J(P ) denotes the Thompson subgroup of P , and W denotes the Stellmacher
functor (as in [19]).

Proof. It is clear that (1) implies both (2) and (3). We will prove that (2) implies
(1) and the proof that (3) implies (1) will be the same almost verbatim (referring, of
course, to Stellmacher’s result instead). Let F be a minimal counter-example with respect
to the number |F| of morphisms in F . If G is a proper subfusion system of F on P ,
then NG(Z(J(P ))) ⊆ NF (Z(J(P ))) = FP (P ) and so by the minimality of F we have
G = FP (P ). In particular, F is sparse. By Theorem 3.5, F is constrained and so by
[3, Proposition 4.3] there exists a finite group G with Sylow p-subgroup P such that
F = FP (G). This implies that

FP (NG(Z(J(P )))) = NF (Z(J(P ))) = FP (P ).

By Glauberman’s and Thompson’s p-Nilpotency Theorem for groups, F = FP (G) =
FP (P ): a contradiction. �

4.2. A theorem of Navarro

We now generalize a result of Navarro and then translate it to fusion systems. In the
following, P ′ denotes the derived subgroup of P , i.e. the smallest normal subgroup of
P with abelian quotient, and Φ(P ) denotes the Frattini subgroup of P , i.e. the smallest
normal subgroup of P with elementary abelian quotient.

Theorem 4.2 (Navarro). Let G be a finite group with Sylow p-subgroup P . If NG(P )
is p-nilpotent, then NG(Q) is p-nilpotent for every subgroup P ′ � Q � Φ(P ).

The original statement of Navarro’s theorem is slightly weaker: namely, it makes the
stronger assumption that NG(P ) = P and only considers the case where Q = P ′. The fol-
lowing proof is based on one given by I. M. Isaacs (personal communication) for Navarro’s
original statement. The inspiration for considering this stronger version is in Remark 4.5.

Proof. As P ′ � Q, P is a Sylow p-subgroup of NG(Q). Also, NNG(Q)(Q) = NG(Q)
and so, without loss of generality, we assume that Q � G. As

[P, NG(P )] = [P, PCG(P )] = P ′ � Q,

we have P/Q � Z(NG(P )/Q) = Z(NG/Q(P/Q)), and so by Burnside’s Normal p-Com-
plement Theorem [10, Theorem 7.4.3], P/Q has a normal complement in G/Q. Let
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144 A. Glesser

Q � K � G such that G = PK and P ∩ K = Q. The Schur–Zassenhaus Theorem [10,
Theorem 6.2.1] implies that there exists L � K such that K = QL and Q ∩ L = 1:

G

��
��

��
�

��
��

��
�

��
��

��
�

P

��
��

��
� K

��
��

��
�

��
��

��
�

��
��

��
��

Q

��
��

��
��

L

��
��

��
��

1

As Q is solvable, any two such complements are K-conjugate. By the Frattini argu-
ment, G = KNG(L) = QLNG(L) = QNG(L). Dedekind’s Lemma now implies that
P = QNP (L) and, since Q � Φ(P ), this gives P = NP (L). As G = PK = PQL = PL,
we have L � G and so L is a normal p-complement for G, i.e. G is p-nilpotent. �

Proposition 4.3. Let F be a fusion system on a finite p-group P such that NF (P )
is trivial. If P ′ � Q � P such that F = PCF (Q), then F is trivial.

Proof. By Burnside’s Fusion Theorem (see [16, Theorem 3.8]), F/Q = NF/Q(P/Q),
and by Proposition 2.2 NF/Q(P/Q) is trivial. Therefore, F/Q is trivial and, applying
Proposition 2.2 again, F is trivial. �

Theorem 4.4. Let F be a fusion system on a finite p-group P . If NF (P ) is trivial,
then NF (Q) is trivial for every subgroup P ′ � Q � Φ(P ).

Proof. Without loss of generality, we may assume that Q � F . Let F be a mini-
mal counter-example with respect to |F| (so that Q > 1). If Q is F-centric, then F is
constrained. By [3, Proposition 4.3], F is the fusion system of a finite group G with
Sylow p-subgroup P satisfying NG(P ) = PCG(P ). The result now follows from Theo-
rem 4.2. So we assume that Q < QCP (Q) and that QCP (Q) � F . As F is sparse and
NF (P ) is trivial, Theorem 3.5 and Proposition 4.3 imply that F = PCF (Q) = FP (P ): a
contradiction. �

Remark 4.5. For any choice of Q, the proof of Theorem 4.4 only requires Navarro’s
original theorem (where NG(P ) = P ) and not the full strength of Theorem 4.2. In fact,
if Q is a normal F-centric subgroup of P , then F = FP (G) for some finite group G with
Q � G, CG(Q) � Q and, since AutF (P ) is a p-group, NG(P ) = PCG(P ). Consequently,
CG(P ) � CG(Q) = Z(Q) � P and so NG(P ) = P . This gives an excellent example of
a statement about groups being used to prove a result in the context of fusion systems
and thereby obtaining a stronger result about groups.

https://doi.org/10.1017/S0013091512000090 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000090


Sparse fusion systems 145

4.3. Navarro’s theorem for blocks

Recall that if b is a p-block of a finite group G over an algebraically closed field and
if (P, eP ) is a maximal b-Brauer pair, then for every subgroup Q of P , there exists a
unique block eQ of CG(Q) such that (Q, eQ) � (P, eP ) (for details about this inclusion,
see [1] or [5]). The group G acts on the set of b-Brauer pairs by conjugation and this
gives rise to a saturated fusion system on P where, for Q, R � P , conjugation by an
element g ∈ G is in the fusion system if it respects the b-Brauer pair structure, i.e. if
(Q, eQ)g � (R, eR). The F-automorphism groups of subgroups of P are easily seen to
be AutF (Q) ∼= NG(Q, eQ)/CG(Q), and |OutF (P )| is called the inertial index of b. The
block b is called nilpotent if the corresponding saturated fusion system is trivial. For
more details and a presentation of the structure of nilpotent blocks, we refer the reader
to [20]. For an explicit proof that a block gives rise to a saturated fusion system, see [13].
The following corollary generalizes the classical result (see [15] or [5]) that a block with
inertial index 1 and abelian defect group is nilpotent.

Corollary 4.6. Let b be a p-block of a finite group G with inertial index 1 and
maximal b-Brauer pair (P, eP ). Let P ′ � Q � Φ(P ) and let eQ be the unique block of
CG(Q) such that (Q, eQ) � (P, eP ). If fQ is a block of NG(Q) covering eQ and if it is
in Brauer correspondence with b, then fQ is nilpotent. In particular, if Q � G, then b is
nilpotent.

G b

NG(Q) fQ

NG(Q, eQ) eQ

CG(Q) eQ

Proof. Let F = F(P,eP )(G, b) be the saturated fusion system on P corresponding to
the block b and the maximal b-Brauer pair (P, eP ). The condition that b has inertial
index 1 is equivalent to the condition that NF (P ) is trivial. Therefore, by Theorem 4.4,
FP (P ) = NF (Q) = F(P,eP )(NG(Q, eQ), eQ) and hence eQ is nilpotent as a block of
NG(Q, eQ). As Q is a normal p-subgroup of NG(Q), fQ = trNG(Q)

NG(Q,eQ)(eQ) is a block of
NG(Q) covering eQ and is in Brauer correspondence with b. Now, [12, Proposition 2.13]
implies that F(P,eP )(NG(Q, eQ), eQ) = F(P,eP )(NG(Q), fQ), completing the proof. �
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4.4. Slim p-groups

In [22], Weigel introduces the following definition. Set Y1 = Cp � Cp and, for m > 1,
define Ym to be the pull-back in the diagram:

Cp � Cp
�� Cp

Ym
��

��

Cpm

��

Definition 4.7. With the notation as above, a finite p-group P is slim if Ym is not a
subgroup of P for all m � 1.

Theorem 4.8 (Weigel [22]). Let G be a finite group and let P be a Sylow p-subgroup
of G. If

(1) p is odd and P is slim or

(2) p = 2 and P is D8-free,

then G is p-nilpotent if and only if NG(P ) is p-nilpotent.

The following elementary lemma connects Theorem 3.5 with the present context.

Lemma 4.9. Let F be a saturated fusion system on a finite p-group P and let H be
a finite group with p-subgroup Q. If P is Q-free, then F is H-free.

Proof. Let S be a fully F-normalized, F-centric subgroup of P and let G be the
unique finite group with Sylow p-subgroup NP (S) guaranteed by [3, Proposition 4.3].
If G is Q-free, then it is H-free, so assume that K/L ∼= Q is a section of G. A Sylow
p-subgroup R of K is conjugate to a subgroup of NP (S) � P and hence is Q-free. On the
other hand, since K/L is a p-group, Q ∼= K/L ∼= RL/L ∼= R/(R∩L): a contradiction. �

The restatement of Theorem 4.8 for fusion systems is clear and a minimal counter-
example to such a result is easily seen to be sparse. Moreover, if P is D8-free, then the
previous lemma shows that any saturated fusion system on P is S4-free. So, regardless
of p, Theorem 3.5 implies that the minimal counter-example is constrained.

Theorem 4.10. Let F be a saturated fusion system on a finite p-group P . If

(1) p is odd and P is slim or

(2) p = 2 and P is D8-free,

then F = FP (P ) if and only if NF (P ) = FP (P ).

Restricting to blocks, we get the following corollary, again generalizing the result that
a block with inertial index 1 and abelian defect group is nilpotent.

Corollary 4.11. Let b be a p-block of a finite group G with defect group P and
inertial index 1. If p is odd and P is slim or if p = 2 and P is D8-free, then b is nilpotent.
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5. Extremely sparse fusion systems

In the spirit of § 3, we define an even more restrictive situation: namely, that of an
extremely sparse fusion system.

Definition 5.1. A non-trivial saturated fusion system F on a finite p-group P is called
extremely sparse if the only proper subsystem of F on any subgroup Q of P is FQ(Q).

Clearly, if a fusion system is extremely sparse, then it is sparse. We will see that
every extremely sparse fusion system is constrained, regardless of p. In fact, we offer two
proofs of this result: the first because it seems that Lemma 2.4 (4) may be of independent
interest and the second because it gives a clearer picture of this situation.

Theorem 5.2. Every extremely sparse fusion system is constrained.

Proof. Let F be an extremely sparse fusion system on a finite p-group P . By
Lemma 2.8, we may assume that P has a fully F-normalized, F-essential subgroup Q.
By Lemma 2.4 (4), there exists ϕ ∈ AutF (Q) such that Nϕ = Q. As any morphism in
FNP (Q)(NP (Q)) extends to P , we conclude that ϕ /∈ AutNP (Q)(Q) and hence NF (Q) is
non-trivial. Since F is extremely sparse, it follows that NF (Q) = F . As Q is F-essential,
it is F-centric and so F is constrained. �

Now we offer a different proof: one that provides a simple classification of all extremely
sparse fusion systems.

Theorem 5.3. Let F be a saturated fusion system on a finite p-group P . If F is
extremely sparse, then F = FP (P � A), where A is a cyclic group of order q for some
prime q �= p.

Proof. If Q is an F-essential subgroup of P , then, by Lemma 2.4 (2), there exists
a non-trivial p′-element α in OutF (Q). It follows that FQ(Q) is a proper subsystem of
FQ(Q � 〈α〉). However, Lemma 2.4 (1) implies Q �= P , and FQ(Q � 〈α〉) is therefore a
proper subsystem of F , contradicting the extreme sparseness of F . Therefore, ranke(F) =
0 and, by Lemma 2.8, F = FP (P � OutF (P )). As F is non-trivial, there exists a non-
trivial q-automorphism β of P for some prime q �= p. The sparseness of F implies that
F = FP (P � 〈β〉). �

Let F be a saturated fusion system on a finite p-group P . The focal subgroup of F is
defined as

[P,F ] = 〈x−1ϕ(x) | x ∈ P, ϕ ∈ HomF (〈x〉, P )〉.

As with the analogue for group theory, the focal subgroup of a fusion system controls
the existence of subsystems of p-power index with abelian quotient. For more detail and
properties we refer the reader to [4] and [9]. In the former reference, the reader can find
a definition of Op(F). Here it suffices to say that Op(F) is the unique saturated sub-
fusion system of F on [P, Op(F)] with p-power index and that F is the unique saturated
subfusion system of F on P with p-power index.
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Corollary 5.4. Let F be an extremely sparse fusion system on a finite p-group P and
let A be a p′-group of F-automorphisms of P such that F = FP (P � A).

(1) If Q < P , then NA(Q) = CA(Q).

(2) [P,F ] = P .

(3) Op(F) = F .

Proof. Let 1 �= α ∈ A such that α(Q) = Q. This implies that α|Q is a p′-auto-
morphism in AutF (Q). Since Q < P , the subsystem FQ(Q � 〈α〉) is a proper subsystem
of F and, hence, is trivial: an impossibility unless α is the identity on Q. This proves (1).
For u ∈ P ,

α(u−1α(u)) = α(u)−1α(α(u)) ∈ [P, α],

and so α normalizes [P, α]. As α induces the identity on P/[P, α], α cannot centralize [P, α]
(otherwise it would be the identity on P ). By (1) we conclude that P = [P, α] � [P,F ],
proving (2). Finally, as P/[P, Op(F)] controls the existence of a saturated subsystem of
F with p-power index and P/[P,F ] controls the existence of a saturated subsystem of
F with p-power index on an abelian quotient, [P,F ] = P implies [P, Op(F)] = P and so
there is no proper saturated subsystem with p-power index. This gives (3). �

For a saturated fusion system F on a finite p-group P and Q � P , set [Q,F ; 0] = Q

and, for positive integers i, define

[Q,F ; i] = [[Q,F ; i − 1],F ].

As [Q,F ; i] � [Q,F ; i − 1] for any positive integer i, we may define

[Q,F ; ∞] =
∞⋂

i=0

[Q,F ; i].

Note that if G is a subfusion system of F on P , then [P,G; i] � [P,F ; i] for all i. Similarly,
if Q � F , then [P/Q,F ; i] � [P,F ; i]Q/Q for all i. Our final corollary generalizes a well-
known result of groups (see [11, Theorem 4.3] or [18, Proposition 12.4]) to fusion systems.

Corollary 5.5. Let F be a saturated fusion system on a finite p-group P . If
[P,F ; ∞] = 1, then F = FP (P ).

Proof. Let F be a minimal counter-example with respect to |F|, the number of mor-
phisms in F . If G is a proper subfusion system of F on Q � P , then [Q,G; ∞] �
[P,F ; ∞] = 1 and so, by the minimality of F , we have G = FQ(Q). Therefore, F is
extremely sparse. However, the previous corollary implies that [P,F ; ∞] = P . We con-
clude that P = 1 and F is trivial: a contradiction. �

Note that, unlike many of the previous proofs, this one does not use the original
theorem from group theory and therefore gives an alternate proof of that result.
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