On certain Theorems in Determinants.

By J. H. Maclagan-Wedderburn.

(Abstract.)

(Read 11th December 1908. Received 4th May 1909.)

The object of this note is to show that, in applying the methods of hypercomplex numbers to the theory of determinants, there is, for many purposes, no gain in using a particular number system.

1. We assume as usual a basis of n linearly independent units or positional symbols $e_{1}, e_{2}, \ldots e_{n}$ which are associated with ordinary numbers to form the elements of an extended algebra. In what follows the elements of the extended algebra are denoted by ordinary letters, and common numbers by Greek letters. The laws of operation are then briefly :-
I. If $x=\sum \xi_{r} e_{r}, y=\Sigma \eta_{r} e_{r}$
(i) $x+y=\Sigma\left(\xi_{r}+\eta_{r}\right) e_{r}=y+x$
(ii) $\lambda x=\Sigma \lambda \xi_{r} e_{r}$
(iii) $x=y$ if, and only if, $\xi_{r}=\eta_{r}(r=1,2, \ldots n)$
II. (i) $x y=\Sigma \xi_{r} \eta_{t} e_{r} e_{1}$
(ii) $x \cdot y z=x y \cdot z$
III.

$$
\begin{aligned}
& x(y+z)=x y+x z \\
& (x+y) z=x z+y z
\end{aligned}
$$

x, y and z being any three elements.
In linear associative algebra, $e_{r} e_{s}(r, s=1,2, \ldots n)$ are considered to be linearly dependent on $e_{1}, e_{2}, \ldots e_{n}$, but for many purposes it is convenient to regard them as a set of n^{2} new positional symbols. Similarly the products of p units form n^{p} independent units, and so on. We arrive in this way at an extended linear associative algebra with an infinite number of units. This is, of course, practically Gibb's indeterminate product.

and let

$$
\left|x_{1}, x_{2 y}, . x_{m}\right|=\searrow \pm x_{r_{1}} x_{r_{2}} \ldots x_{r_{m^{\prime}}}
$$

the sign being determined as usual.
Evidently

$$
\begin{aligned}
& \left|x_{1}+x_{1}^{\prime}, x_{2} \ldots x_{m}\right|=\left|x_{1}, x_{2} \ldots x_{m}\right|+\left|x_{1}^{\prime}, x_{2} \ldots x_{m}\right| \\
& \left|x_{1}, x_{2} \ldots x_{m}\right|=-\left|x_{2}, x_{1} \ldots x_{m}\right|
\end{aligned}
$$

and so on.
Replacing the x 's by their expressions in terms of the e's, we get

$$
\begin{aligned}
\left|x_{1}, x_{2} \ldots x_{m}\right| & =\Sigma \xi_{1 r_{1}} \xi_{2 r_{2}} \ldots \xi_{m r_{m}}\left|e_{r_{1}}, e_{r_{2}} \ldots e_{r_{m}}\right| \\
& =\Sigma\left|\xi_{1_{1} e_{1}}, \xi_{2_{2}} \ldots \xi_{m e_{m}} \| e_{a_{1}}, e_{f_{2}} \ldots e_{m}\right|
\end{aligned}
$$

where $s_{1}, s_{2} \ldots s_{m}$ are arranged in order of magnitude, and the summation extends over all such arrangements of $1,2, \ldots n, m$ at a time.

In particular we may notice that

$$
\left|x_{1}, x_{2} \ldots x_{n}\right|=\left|\xi_{r n}\right|\left|e_{1}, e_{2} \ldots e_{n}\right| .
$$

3. Suppose now that we transform the elements $x_{1}, x_{2} \ldots$ by a linear transformation $\mathrm{A}=\left(a_{r c}\right)$ so that x_{r} becomes

$$
\begin{gathered}
x_{r}^{\prime}=\Sigma \xi_{r}^{\prime} e_{s}=\mathbf{A} x_{r} \\
\xi_{r a}=\Sigma a_{r r} \xi_{r r} .
\end{gathered}
$$

where
Then

$$
\begin{aligned}
& \left|\mathrm{A} x_{1}, \mathrm{~A} x_{2}, \ldots \mathrm{~A} x_{m}\right|=\sum\left|\xi_{{ }_{1}{ }_{1}} \ldots \xi_{m_{m}}\right|\left|e_{e_{1}}, \ldots e_{m}\right| \\
& =\Sigma\left|{ }_{g} a_{a_{q},} \xi_{1 q}, \ldots\right|\left|e_{e_{i}}, \ldots e_{s_{m}}\right| \\
& =\sum_{i=}\left|a_{i_{1} r_{1}} \ldots a_{m_{m} r_{m}}\right| \xi_{r_{1} 1_{1}} \ldots \xi_{r_{m}^{\prime} m} \| e_{s_{1}} \ldots e_{m} \mid \\
& =[\mathbf{A}]_{m}\left(\left|x_{\mathrm{i}}, \ldots x_{m}\right|\right)
\end{aligned}
$$

where $[\mathrm{A}]_{m}$ is a linear transformation whose coefficients are the minors of the determinant $|\mathrm{A}|$ of A .

The well known properties of $[A]_{m}$ follow immediately. For, if B is any other linear transformation,

$$
\begin{aligned}
\left|\mathrm{AB} x_{1}, \mathrm{AB} x_{2 y}, \ldots \mathrm{AB} x_{m}\right| & =[\mathrm{A}]_{m}\left|\mathrm{~B} x_{1}, \ldots \mathrm{~B} x_{m}\right| \\
& =[\mathrm{A}]_{m}[\mathrm{~B}]_{m}\left|x_{1} \ldots x_{m}\right|
\end{aligned}
$$

so that* $[\mathrm{AB}]_{m}=[\mathrm{A}]_{m}[\mathrm{~B}]_{m}$.
In the same way it can be shown that $\mathrm{A} x_{1} \mathrm{~A} x_{2} \ldots \mathrm{~A} x_{m}$ may be derived from $x_{1} x_{2} \ldots x_{m}$ by a linear transformation which has invariantive properties similar to those possessed by $[\mathrm{A}]_{m}$.

Many other relations may be similarly deduced, e.g.,

$$
\begin{gathered}
\stackrel{\Sigma}{\Sigma}\left|x_{1}, \ldots x_{r-1}, \mathrm{~A} x_{r}, x_{r+1}, \ldots x_{n}\right| \\
={ }_{r}^{\Sigma}\left|\mathrm{B} x_{1}, \ldots \mathrm{~B} x_{r-1}, \mathrm{AB} x_{r}, \mathrm{~B} x_{r+1}, \ldots \mathrm{~B} x_{m}\right| \div|\mathrm{B}| .
\end{gathered}
$$

[^0]
[^0]: * A full discussion of the matrices $S(A)$ whose co-ordinates are rational functions of the co-ordinates of the matrix A, and which possess the property $\mathrm{S}(\mathrm{AB})=\mathrm{S}(\mathrm{A}) \mathrm{S}(\mathrm{B})$, is given by I . Schur Über eine Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen (Berlin, 1901), where further references to the literature will be found.

