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Closed and Exact Functions in the Context
of Ginzburg–Landau Models

Dedicated to Professor George A. Elliott on the occasion of his sixtieth birthday

Anamaria Savu

Abstract. For a general vector field we exhibit two Hilbert spaces, namely the space of so called closed

functions and the space of exact functions and we calculate the codimension of the space of exact func-

tions inside the larger space of closed functions. In particular we provide a new approach for the

known cases: the Glauber field and the second-order Ginzburg–Landau field and for the case of the

fourth-order Ginzburg–Landau field.

1 Introduction

Statistical physics has developed a variety of interacting particle systems that capture

some aspects of the movement of particles on the microscopic scale. An interacting

particle system is usually a complex Markov process with a finite or infinite state

space. By taking an appropriate scaling limit of an interacting particle system, we

expect to derive the evolution of the system on the macroscopic scale, in general

a nonlinear partial differential equation. The transition from microscopic scale to

macroscopic scale is fairly well understood, at least for some systems, and in this note

we take this step for granted.

The most interesting microscopic models constructed so far lack the so-called gra-

dient condition. This condition corresponds to Fick’s law of fluid dynamics according

to which the instantaneous current w of particles over a bond is the gradient τh − h

of some local function h. Since the work of Varadhan [7], Quastel [4], and Varad-

han and Yau [8] on nongradient systems, new ideas have been introduced in the field.

The main idea is that a nongradient system has a generalized version of Fick’s law, also

called the fluctuation-dissipation equation, of the form w ≈ â(m)(τh−h)+Lg, where

â is the transport coefficient depending on the particle density m in a microscopic

cube, h is some local function, and L is the generator of the microscopic dynamics.

The Lg part of the approximate equation above is negligible on the macroscopic scale,

and is called the fluctuation part of the equation.

One of the main difficulties in finding the scaling limit of a nongradient system is

to make rigorous sense of the fluctuation-dissipation equation. As has been shown

in [3,4,7,8], the current w, the gradient τh− h, and the fluctuations Lg are elements

of the Hilbert space of closed functions and the fluctuation-dissipation equation is
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a consequence of a direct-sum decomposition of this Hilbert space. The gradient

part τh − h of the current w that survives after taking the scaling limit of the model

is just the projection of w onto a one-dimensional subspace of the Hilbert space of

closed functions. The remaining negligible fluctuations Lg are vectors of the Hilbert

subspace of exact functions.

The purpose of the present paper is not to show how the Hilbert spaces of closed

functions and exact functions arise in the context of interacting particle systems, but

rather to motivate the direct-sum decomposition of the Hilbert space of closed func-

tions and to find the codimension of the space of exact functions inside the space

of closed functions. We calculate this codimension for an arbitrarily chosen vector

field. The three continuum models known as the Glauber system, the second-order

Ginzburg–Landau system and the continuum solid-on-solid model, also called the

fourth-order Ginzburg–Landau system, are covered by our general result. Our ap-

proach to establishing the direct-sum decomposition of the Hilbert space of closed

functions is new and differs from the approach used before to study the first two

models (see [7]). We have followed a different path based on Fourier analysis that

has allowed us to handle a general vector field.

2 The Decomposition Theorem

In this section we introduce some terminology and state the main result.

The Hermite polynomials provide an orthogonal basis for the Hilbert space of

functions defined on the real axis that are square integrable with respect to the Gaus-

sian probability measure 1√
2π

exp(− x2

2
)dx. The i-th Hermite polynomial is defined

through

Hi(x) =
(−1)i

i!
exp

( x2

2

)( di

dxi
exp

(
−x2

2

))
, i ∈ N.

We stress that Hi is not normalized to have L2 norm 1 with respect to the probability

measure 1√
2π

exp(− x2

2
))dx, but rather 1√

i!
.

There is an extension of Hermite polynomials to more variables. A multi-index

is a double-sided infinite sequence I = {in}n∈Z of positive integers, with at most

finitely many non-zero entries. The degree of a multi-index is |I| =
∑

n∈Z
in. Call

I the set of multi-indices and IN the set of multi-indices of fixed degree N . The

multidimensional Hermite polynomials are

HI(x) = Πn∈ZHin
(xn), I ∈ I.

We assume the convention that if a multi-index I has some strictly negative entries,

then HI = 0. Together, the multidimensional Hermite polynomials {HI}I∈I form

an orthogonal basis for the Hilbert space of functions defined on R
Z that are square

integrable with respect to the probability measure

dν
gc
0 =

⊗

i∈Z

1√
2π

exp
(
−x2

i

2

)
dxi.
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It is interesting to note that this Hilbert space is a model for the symmetric Fock space

over the space of square summable, double-sided sequences l2(Z), and decomposes

as a direct sum of the degree N subspaces HN = {HI

∣∣ |I| = N}c. The superscript

on the line above means that we take the closed linear span of the set.

The shift τ acts on configurations as (τ (x))n = xn+1 and on functions as (τ f )(x) =

f (τx), and τ n stands for the n-fold composition τ ◦ · · · ◦ τ . If a multi-index

I = (in)n∈Z has in = 0 for all n < 0, we shall say that the multi-index is supported on

the set of positive integers. We shall use the notation δn for the multi-index that cor-

responds to the configuration with a single particle at the site n. Two multi-indices

can be added and the addition is point-wise.

The action of the annihilation, creation, and shift operators on the multidimen-

sional Hermite polynomial HI is very simple:

∂nHI(x) = HI−δn
(x), (xn − ∂n)HI(x) = HI+δn

(x), τHI = Hτ−1I.

Above, ∂n stands for the partial derivative with respect to the n-th coordinate.

Given a double-sided sequence of real numbers (ak)k∈Z, that are all but finitely

many zero, consider the vector field D0 =
∑

k∈Z
ak∂k with constant coefficients.

Translating a’s to the left or to the right produces a new sequence that defines the

vector field Dn =
∑

k∈Z
ak∂k+n, n ∈ Z. Now we have the setup needed to introduce

the closed and exact functions.

Definition 2.1 We shall say that a function ξ ∈ L2(R
Z, dν

gc
0 ) is closed (or more

precisely, D0-closed) if it satisfies the condition Dn(τmξ) = Dm(τ nξ) in the weak

sense, for all integers m and n. Let CD denote the space of all D0-closed functions.

Definition 2.2 We shall say that a function ξg ∈ L2(R
Z, dν

gc
0 ) is exact (or more

precisely D0-exact) if there is a local function g, a function that depends on finitely

many co-ordinates, such that ξg
= D0

(∑
k∈Z

τ kg
)

=
∑

k∈Z
D0(τ kg). Let ED denote

the closed linear span of the set of D0-exact functions.

Although the infinite sum
∑

k∈Z
τ kg does not make sense, after applying the dif-

ferential operator D0, we get a meaningful expression. Since g is a local function, the

vector field D0 kills all but finitely many terms of the infinite formal sum.

The terminologies of exact and closed functions are not arbitrarily chosen. We

can define formally the form w =
∑

n∈Z
τ nξ dxn and the boundary operator d f =∑

n∈Z
Dn( f ) dxn. With these new definitions, it is not hard to see that the form w is

closed (dw = 0) in the vector calculus sense if and only if Dn(τmξ) = Dm(τ nξ), i.e.,

if and only if ξ is a closed function.

Knowing that any exact function is closed, a natural question to ask is about the

codimension of the space of exact functions inside the space of closed functions. In

this paper we provide the answer for this question.

Theorem 2.1 (Decomposition Theorem) Let D0 =
∑

k∈Z
ak∂k be a vector field with

constant real coefficients. All but finitely many numbers in the sequence (ak)k∈Z are zero.

The following decomposition results hold.
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(i) If the sum of the coefficients of the vector field D0 is not equal to zero,

then CD = ED.

(ii) If the sum of the coefficients of the vector field D0 is equal to zero,

then CD = R1 ⊕ ED.

2.1 Idea of the Proof for Theorem 2.1

We outline the main ideas used to prove the Decomposition Theorem. We shall show

later that a function ξ is D0-closed if and only if the projections Proj
HN

ξ, N ≥ 0

are D0-closed. Degree 0 subspace is easy to analyze since it is one dimensional. Any

constant function is always D0-closed, but is exact if and only if the sum of the coef-

ficients of D0 is not equal to zero. If the sum of the coefficients of D0 is equal to zero,

then any D0-closed function is orthogonal on the degree 0 subspace. Therefore, the

result of the theorem holds if we can prove that given a D0-closed function ξ in HN ,

N ≥ 1, the function ξ can be approximated with D0-exact functions.

We shall investigate the properties of the Fourier coefficients of closed and exact

functions, and we shall rather establish that the Fourier coefficients of a closed func-

tion can be approximated in an appropriate sense with Fourier coefficients of exact

functions. The ideas will be elaborated in the following sections.

Note In two cases relevant for statistical physics questions, namely the second-order

Ginzburg–Landau vector field Y0 = ∂1 − ∂0 and the fourth-order Ginzburg–Landau

vector field X0 = ∂1 − 2∂0 + ∂−1, the decomposition result of Theorem 2.1 is equiv-

alent to the fluctuation-dissipation equation mentioned in the introduction.

Note To get a flavour of the result stated in Theorem 2.1, we give some examples

of exact and closed functions in the case of the fourth-order Ginzburg–Landau field,

X0 = ∂1 − 2∂0 + ∂−1: the functions xn + x−n − 2x0 are X0-exact, and 1, x0, and xn +

x−n are examples of X0-closed, but not X0-exact functions. A strange phenomenon

appears, for besides the function 1, there exists another function that is X0-closed

and not X0-exact, namely x0. Therefore, one might expect that the codimension

of the space of exact functions is two. This is not the case and x0 can in fact be

approximated with exact functions.

3 The Set of Multi-Indices

A multi-index I = {in}n∈Z can be thought of as a configuration of particles sitting

on the sites of the lattice Z. On top of the site n sit in particles. Rather than saying

how many particles are at each site, we give the positions of the particles. This way

we obtain a vector

(3.1) zI = (n1 . . . n1︸ ︷︷ ︸
in1

, . . . , nk . . . nk︸ ︷︷ ︸
ink

).

that lists, in increasing order, all occupied sites of I repeated according to the number

of particles that occupy the site. We assume the only non-zero entries of the multi-

https://doi.org/10.4153/CJM-2008-030-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-030-5


Closed and Exact Functions 689

index I are in1
, . . . ink

. Note that the dimension of the vector zI is the degree of the

multi-index I. If the multi-index has zero degree, then zI is just a point. We say that

zI is a new coding of the multi-index I. This correspondence shows that the set IN is

bijective with the set of vectors of Z
N with entries in increasing order or is in bijection

with the quotient space Z
N/SN , where SN is the group of permutations of N letters.

For the results that follow we need to say more about the set of multi-indices. We

partition the set of multi-indices into orbits with the help of the group action

(3.2) Z × Z
Z,−→ Z

Z (n, I) 7−→ n · I := τ n(I − δn + δ0).

When restricted to Z × I, the map (3.2) is not an action any more since the multi-

indices that enumerate the basis of the L2 space are constrained to have positive en-

tries.

The orbits of the action (3.2) provide a partition of the set of multi-indices Z
Z.

For each multi-index I ∈ I we define o(I) to be the shadow of the orbit of I on the

set I, i.e., o(I) = { J | J = n · In ∈ Z} ∩ I = { J | J = n · In ∈ s(I)}. Here,

s(I) = {n ∈ Z | in 6= 0} is the finite set of occupied positions of I. From now on we

will refer to o(I) as the orbit of I, although this is just a part of the actual orbit of the

action. It has the advantage of being finite since the multi-index I has all but finitely

many entries zero and there are just finitely many n’s that after acting on I give rise to

a multi-index with positive entries. All the multi-indices in the same orbit have the

same degree. The orbits partition I and IN . Denote the set of orbits by O, and the set

of orbits containing multi-indices of degree N by ON .

It is worth mentioning that inside each orbit o(I) there exists a unique represen-

tative supported on the positive integers. Denote this multi-index by R(o(I)). To see

that this is true, let us assume that I has some particles in some negative position, i.e.,

that there exists some n < 0 such that in ≥ 1. If k is the leftmost occupied position

of I and k < 0, then k · I ∈ o(I) is supported on the positive integers. Let us call R

the set of all representatives, and RN the set of degree-N representatives.

So far the orbit space {o(I)}I∈I is an abstract object. Fortunately, we are able to

give a concrete description of the orbit space. For this purpose it is very useful to

know that any orbit o has a unique representative R(o) supported on the positive

semi-axis. The vector zR(o) is a point in the positive cone

C
+
N = {z ∈ Z

N | z = (z1, . . . , zN ), 0 ≤ z1 ≤ · · · ≤ zN}.

Therefore the set of representatives, and in particular the set of orbits ON , are in

bijective correspondence with the cone C+
N . Since there is only one multi-index with

zero degree, namely 0 = (0)n∈Z, the sets I0, O0 and R0 each contain just a single

element. By convention, C+
0 is just the one-point set.

We can say even more about this picture. The cone C+
N itself is an orbit space

which we shall describe below.

Let us define the following transformations that act on the lattice Z
N . For any

1 ≤ i, j ≤ N ,

σi, j : Z
N → Z

N , σi, j(z1, . . . , zi , . . . , z j . . . , zN ) = (z1, . . . , z j , . . . , zi , . . . , zN ),

γ1 : Z
N → Z

N , γ1(z1, z2, . . . , zN ) = (−z1, z2 − z1 . . . , zN − z1).
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The smallest group generated by σi, j , 1 ≤ i, j ≤ N and γ1 will be denoted by S̃N .

To see that S̃N is isomorphic with the group of permutations of N letters, we write

down the basic relations among the generating transformations: (γ1σ1,2)3
= id and

γ1σi,i+1 = σi+1,iγ1, 1 ≤ i ≤ N − 1. The group S̃N has SN , the group of permutations

of N letters, as a subgroup, and S̃N decomposes into left cosets with respect to SN , as

S̃N = SN ∪ γ1SN · · · ∪ γNSN , where the transformations γi are

γi : Z
N → Z

N , γi(z1, z2, . . . , zN ) = (−zi , z2 − zi . . . , zN − zi).

It is interesting to note that Z
N/S̃N is in bijective correspondence with the cone

C+
N , as the next argument proves. Any orbit of Z

N/S̃N contains at least one vector, let

us say z, with components in increasing order. If this vector does not have positive

coordinates, it means that z1 < 0. But (−z1, z2 − z1, . . . , zN − z1) is still a point

in the orbit of z under the action of S̃N . We can rearrange the coordinates of the

new vector to be in increasing order and hence the orbit of z under the action of S̃N

contains at least one vector of the cone C+
N . To see that the orbit of z does not contain

more than one vector of C+
N , we use the coset decomposition of S̃N . If z is in C+

N ,

then rearranging the coordinates of z we obtain either the vector z or some vector

outside the cone C+
N . If we act on z or some other vector obtained from z by changing

the places of the coordinates, with either of the transformations γ1, . . . , γN we get a

vector that has at least one negative coordinate, and so does not belong to C+
N .

Now we can say that the set of orbits ON is in bijective correspondence with the

cone C+
N , and hence with the quotient space Z

N/S̃N . The bijection is o ∈ ON 7→
zR(o) ∈ C+

N .

In addition, if I and J are two multi-indices in the same orbit of the action (3.2),

then zI and z J are in the same orbit of the action of S̃N on Z
N . Assume that J = n j · I

with I =
∑k

i=1 aiδni
, where ai 6= 0 and n1 ≤ · · · ≤ nk. Then

J =

∑

i=1,...,k,i 6= j

aiδni−n j
+ (a j − 1)δ0 + δ−n j

,

and so

zI = (n1, . . . , n1︸ ︷︷ ︸
a1

, . . . , nk, . . . , nk︸ ︷︷ ︸
ak

),

z J = (−n j , n1 − n j , . . . , n1 − n j︸ ︷︷ ︸
a1

, . . . , 0, . . . , 0︸ ︷︷ ︸
a j−1

, . . . , nk − n j , . . . , nk − n j︸ ︷︷ ︸
ak

).

It follows that z J is the image of zI under some element of S̃N .

Let us denote by z
SN∼ z ′ and z

eSN∼ z ′ two lattice points z and z ′ that have the same

image in the quotient space Z
N/SN and Z

N/S̃N , respectively.

Before we leave this section it is important to notice the following crucial facts. Let

N ≥ 1. Since IN is identified with Z
N/SN , we can think of any function ξ̂ : IN → R
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as being an SN -invariant function ξ̂ : Z
N → R, where ξ̂(z) = ξ̂(I) if z

SN∼ zI . Similarly,

since ON is identified with Z
N/S̃N we can think of any function c : ON → R as being

a S̃N -invariant function c̃ : Z
N → R, where c̃(z) = c(o) if there exists a multi-index

I ∈ o such that z
SN∼ zI .

4 Properties of Closed Functions and of Exact Functions

This section contains a detailed study of closed and exact functions.

4.1 Closed Functions

We start with a very simple but important property of closed functions.

Lemma 4.1 Let D0 be a vector field with constant coefficients, D0 =
∑

k∈Z
ak∂k.

Assume that all but finitely many coefficients of the vector field D0 are zero. A function

ξ ∈ L2(R
Z, dν

gc
0 ) is D0-closed if and only if the projection Proj

HN
ξ onto the degree N

subspace HN is D0-closed for any N ≥ 0.

Proof By ∂ j is meant the differential operator with respect to the j-th coordinate.

We shall also consider the adjoint operator ∂∗
j = −∂ j + x j the adjoint operator of

∂ j . The adjoint is taken with respect to the inner product 〈 , 〉 of L2(R
Z, dν

gc
0 ). The

operators ∂ j and ∂∗
j are bounded operators when restricted to a degree subspace,

although they are unbounded on the whole space L2(R
Z, dν

gc
0 ).

If ξ ∈ HN , with Fourier series ξ =
∑

I∈IN
ξ̂IHI , then the image of ξ under the

operator ∂ j is ∂ j(ξ) =
∑

I∈IN
ξ̂IHI−δ j

, with the convention that if the multi-index

I − δ j has some negative entries, then HI−δ j
= 0. For a function f ∈ L2(R

Z, dν
gc
0 )

denote by ‖ f ‖ =
√
〈 f , f 〉 the L2 norm of f .

The operators ∂ j and ∂∗
j act on the degree N subspaces as follows:

∂ j(HN ) ⊆ HN−1, N ≥ 1, ∂∗
j (HN ) ⊆ HN+1, N ≥ 0.

The boundedness of these operators follows from the observation that

1

(N!)N
≤ inf

I∈IN

‖HI‖2 ≤ sup
I∈IN

‖HI‖2 ≤ 1,

and from the existence of two strictly positive constants, CN
1 , CN

2 , that depend just on

N , such that

(4.1) CN
1

∑

I∈IN

ξ̂2
I ≤ ‖ξ‖2 ≤ CN

2

∑

I∈IN

ξ̂2
I , CN

1

∑

I∈IN

ξ̂2
I ≤ ‖∂ j(ξ)‖2 ≤ CN

2

∑

I∈IN

ξ̂2
I .

Indeed,

‖∂ jξ‖2
=

∑

I∈IN

ξ̂2
I ‖HI−δ j

‖2 ≤
∑

I∈IN

ξ̂2
I ≤ (N!)N

∑

I∈IN

ξ̂2
I ‖HI‖2 ≤ (N!)N‖ξ‖2,
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and hence the norm of the operator ∂ j : HN → HN−1 is bounded above by (N!)N .

The vector field D0 with constant coefficients has similar properties:

D0(HN ) ⊆ HN−1, N ≥ 1, D∗
0 (HN ) ⊆ HN+1, N ≥ 0.

For any function ξ ∈ L2(R
Z, dν

gc
0 ) and any test function φ ∈ HN−1 we have

〈Dn(τmξ), φ〉 = ξ, τ−m(D∗
nφ)〉 = 〈Proj

HN
ξ, τ−m(D∗

nφ)〉(4.2)

= 〈Dn(τm Proj
HN

ξ), φ〉,

〈Dm(τ nξ), φ〉 = 〈ξ, τ−n(D∗
mφ)〉 = 〈Proj

HN
ξ, τ−n(D∗

mφ)〉(4.3)

= 〈Dm(τ n Proj
HN

ξ), φ〉.

It follows that Dn(τmξ) = Dm(τ nξ) in the weak sense if and only if

Dn(τm Proj
HN

ξ) = Dm(τ n Proj
HN

ξ)

in the strong sense for all N ≥ 0.

We recall that a function ξ is closed if and only if Dn(τmξ) = Dm(τ nξ) for all

m, n ∈ Z, which, by the previous equalities (4.2) and (4.3), is equivalent to

Dn(τm Proj
HN

ξ) = Dm(τ n Proj
HN

ξ) m, n ∈ Z, N ≥ 0.

Therefore, a function ξ is closed if and only if Proj
HN

ξ is closed for all N ≥ 0.

Note If ξ =
∑

I∈IN
ξ̂IHI is a function inside the space HN , two norms can be defined

for ξ: the L2 norm ‖ξ‖ and the sum of squared Fourier coefficients
∑

I∈IN
ξ̂2

N . It is

important to note the inequality (4.1) implies that these two norms define the same

topology on the space HN .

Note Assume that ξ ∈ HN is a D0-closed function, with Fourier series expansion

ξ =
∑

I∈I
ξ̂IHI . We calculate,

Dnξ =

∑

I∈I

[∑

k∈Z

akξ̂I+δ(n+k)

]
HI , D0(τ nξ) =

∑

I∈I

[∑

k∈Z

akξ̂τ n(I+δk)

]
HI.

Therefore, a function is closed if and only if its Fourier coefficients satisfy the relations

(4.4)
∑

k∈Z

akξ̂I+δ(n+k)
=

∑

k∈Z

akξ̂τ n(I+δk) n ∈ Z, I ∈ I.
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4.2 Construction of Exact Functions

It is important to have some examples of functions that are exact. The functions

which will be constructed next will be used in the proof of Theorem 2.1, to approxi-

mate closed functions with exact ones.

Lemma 4.2 Let c be a function defined on the set of orbits with finite support, i.e.,

c(o) = 0 except for finitely many orbits o. The function

ξ =

∑

o∈O

c(o)D0

[∑

n∈Z

τ nHR(o)+δ0

]

is D0-exact and the Fourier coefficients of ξ are

ξ̂I =

∑

k∈Z

akc(o(τ−kI)).

Proof The function ξ which has been introduced is well defined since the sum is

over a finite set, and it is exact, as a sum of exact functions. To obtain the conclusion

of the lemma we need to calculate the Fourier coefficients of ξ. We have

ξ =

∑

o∈O

c(o)D0

[∑

n∈Z

Hτ−n(R(o)+δ0)

]
=

∑

o∈O,n∈Z

c(o)
∑

k∈Z

akHτ−n(R(o)+δ0−δ
−n+k)

=

∑

o∈O,n∈Z

c(o)
∑

k∈Z

akHτ−k[(−n+k)·R(o)] =

∑

I∈I

∑

k∈Z

akc(o(τ kI))HI .

(4.5)

To justify the integration by parts in (4.5), we make the following observation. For

any multi-index I ∈ I, there exists a unique orbit o ∈ O and a unique integer n ∈ Z

such that I = τ−k[(−n + k) ·R(o)]. This is a consequence of the freeness of the action

(3.2). Moreover, the orbit o is the same as o(τ kI). We stress again that the sums in

(4.5) are over finite sets as c has finite support. Actually all computations that we

carried out to prove this lemma are valid because c is a function with finite support

and the sums are finite, although this was not emphasized each time we used it. Also

we have made use of the convention that HI = 0 if I is a multi-index with negative

entries.

Lemma 4.3 Let N ≥ 1 be a natural number and e = (1, . . . , 1) ∈ Z
N . In addition if

c̃ is a real-valued function defined on Z
N with finite support and S̃N -invariant, then the

function

(4.6) ξec =

∑

I∈IN

(∑

k∈Z

akc̃(zI − ke)
)

HI

is a well-defined D0-exact function in the degree N subspace HN .

Proof This lemma follows from Lemma 4.2. Since c̃ : Z
N → R is S̃N -invariant, it

makes sense to introduce the function c : O → R, where c(o) = c̃(zI) if I is a multi-

index in the orbit o of degree N , and c(o) = 0 otherwise. We should note that if I is
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a multi-index in the orbit o, then zI + ke = zτ−kI and c̃(zI − ke) = c(o(τ kI)). Hence

the Fourier coefficients of the function ξec are of the form
∑

k∈Z
akc(o(τ kI)), and the

function ξec is D0-exact.

In the previous lemma an operator has come out in a natural way in our construc-

tion of exact functions. Below we provide the exact definition of this operator.

Definition 4.4 Let D0 =
∑

k∈Z
ak∂k be a vector field with constant coefficients,

all the coefficients being zero except finitely many. The vector field D0 defines an

operator TD0
that acts on a function c : Z

N → R to produce a function TD0
c : Z

N →
R, where

(TD0
c)(z) =

∑

k∈Z

akc(z − ke), z ∈ Z
N .

Here e is the vector (1, . . . , 1) of the lattice Z
N .

5 Proof of the Decomposition Theorem 2.1

We start by listing two important properties of the operator TD0
introduced at the

end of the previous section.

Lemma 5.1 Let c be a real-valued function defined on the lattice Z
N , N ≥ 1. Assume

that the function c is square-summable and S̃N - invariant. Then there exists a sequence

(cn)n≥1 of real-valued, finitely supported, S̃N -invariant functions such that TD0
cn →

TD0
c as n → ∞ and the convergence is in the Hilbert space topology of L2(Z

N ).

Proof We define a sequence of S̃N -invariant regions of the lattice Z
N , namely,

Pi =
⋃

γ∈eSN

γ{z = (z1, . . . , zN ) ∈ Z
N |0 ≤ z1 ≤ · · · ≤ zN ≤ i − 1}, i ≥ 1.

For the readers convenience we add two pictures of the region Pi in dimension N = 1,

respectively, N = 2. In dimension N = 1 the region Pi contains the lattice points

inside the segment [−i + 1, i − 1] (Figure 1), whereas in dimension N = 2 the region

Pi contains the lattice points inside the hexagon shown in Figure 2

t t t t t t t t t
-i+1 -i+2 . . . 0 . . . i-2 i-1

Figure 1: The region Pi in dimension N = 1.

Besides being S̃N -invariant, the sequence of regions (Pi)i≥1 defined above grows

to cover the entire lattice Z
N as i → ∞. Define cn to be c1Pn

, for n ≥ 1. Since 1Pn
is

the characteristic function of the region Pn, we have immediately that cn is a finitely
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t t t t tttttt t t

t t t

t t t tt t t t tt t t t t tt t t t t t tt t t t t tt t t t tt t t t
(-i+1,-i+1)

(-i+1,0)

(0,-i+1) (i-1,i-1)

(i-1,0)

(0,-i+1)

(0,0)

Figure 2: The region pi in dimension n = 2.

supported, S̃N -invariant function. Square-summability of c implies that cn → c as

n → ∞ in the topology of L2(Z
N ) (the norm ‖c − cn‖2

=
∑

z /∈Pn
c2(z) involves only

the values of c outside the region Pn, and these values decay to zero as n → ∞ since

c is square-summable). Then, obviously, cn → c and Tcn → Tc as n → ∞ in the

topology of L2(Z
N ).

Below we discuss certain facts about the Fourier transform of functions defined

on the lattice Z
N . The Fourier transform of a function c : Z

N → C is formally defined

to be

Fc : [−π, π)N → C, Fc(α) =
1√
2π

∑

z∈ZN

c(z)eizα.

In the exponent above zα stands for the dot product z1α1 + · · · + zNαN . The reader

may consult Rudin [5] for an extended treatment of the Fourier transform of func-

tions defined on a lattice. We remind the reader that F is an isometry between the

spaces L2(Z
N ) and L2([−π, π)N ). The space L2([−π, π)N ) is considered with respect

to Lebesgue measure on [−π, π)N . Also if c is invariant under a certain group of

transformations, then Fc is invariant, as well. Note though that the symmetry group

of Fc might not coincide with the symmetry group of c. Indeed, if c is symmetric, or

SN -invariant, then Fc is symmetric. Now suppose that c is S̃N -invariant. Then Fc is

invariant under the action of the group Σ̃N generated by the transformations

sii+1 : [−π, π)N → [−π, π)N , 1 ≤ i ≤ N − 1,

sii+1(α1, . . . , αN ) = (α1, . . . , αi+1, αi, . . . , αN ),
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and

g : [−π, π)N → [−π, π)N ,

g(α1, . . . , αN ) = (mod2π(−α1 − · · · − αN ), α2, . . . , αN ).

On the line above we used the notation mod2π(t). Any real number t can be written

uniquely as 2πa + b, where a is an integer number and b is a real number in the

interval [−π, π). By mod2π(t) we denote the remainder b. It is also true that if the

Fourier transform Fc is Σ̃N -invariant, then c is S̃N -invariant.

In Section 4 it was established that a function ξ =
∑

I∈IN
ξ̂IHI is D0-closed if and

only if the following holds:

(5.1)
∑

k∈Z

akξ̂I+δ(n+k)
=

∑

k∈Z

akξ̂τ n(I+δk) n ∈ Z, I ∈ I.

Obviously we can use the Fourier coefficients of ξ to construct an SN -invariant func-

tion ξ̂ : Z
N → R, ξ̂(z) = ξ̂I if z

SN∼ zI . The relations (5.1) force our function ξ to

satisfy

(5.2)
∑

k∈Z

akξ̂(z + ke1) =

∑

k∈Z

akξ̂(z − z1e − (z1 + k)e1), z = (z1, . . . , zN ) ∈ Z
N .

The vectors e and e1 of the lattice Z
N are (1, . . . , 1) and (1, 0, . . . , 0), respectively.

After applying the Fourier transform in both sides of equation (5.2), we find that ξ̂
satisfies

(5.3) p(e−iα1 )(Fξ̂)(α) = p(ei(α1+···+αN ))(Fξ̂)(g(α)),

α = (α1, . . . , αN) ∈ [−π, π)N ,

where p is the rational function p(x) =
∑

k∈Z
akxk. To wrap up our argument, we

can say that the D0-closedness condition implies property (5.3).

Next we shall establish a crucial fact about functions that satisfy relation (5.3).

Lemma 5.2 Let ξ̂ be a real-valued, SN -invariant function defined on the lattice Z
N ,

N ≥ 1 that satisfies (5.3). Then there exists a sequence (cn)n≥1 of real-valued, square-

summable, S̃N -invariant functions defined on the lattice Z
N such that TD0

cn → ξ̂ as

n → ∞ in the topology of L2(Z
N ).

Proof Examples of functions ξ̂ satisfying the properties listed in the hypothesis of

this lemma, are the functions constructed, as explained before in this section, from

the Fourier coefficients of closed functions.

The first step towards establishing our result is to solve, at least on a formal level,

the equation TD0
c = ξ̂. The Fourier transform for functions defined on the lattice

will help us to make our guess.
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After applying the Fourier transform in each side of the equation TD0
c = ξ̂, we get

p(ei(α1+···+αN ))(Fc)(α) = (Fξ̂)(α), α = (α1, . . . , αN ) ∈ Z
N ,

where p is the rational function
∑

j∈Z
a jx

j canonically associated to TD0
.

After multiplying the equation p(x) = 0 with a high enough power of x, we see

that any solution x of p(x) = 0 has to be a root of a certain polynomial. Since the

number of roots of any polynomial is finite, the number of solutions of p(x) = 0 is

finite as well. If the equation p(x) = 0 has no solutions on the unit circle, then the

equation TD0
c = ξ̂ can be solved in the space L2(Z

N ). Indeed the unique, square-

summable solution of TD0
c = ξ̂ is

c = F
−1

( 1

p(ei(α1+···+αN ))
(Fξ̂)

)
.

That ξ̂ has been built out of the Fourier coefficients of a closed function implies that

c is S̃N -invariant. Hence the lemma is proved in this case. We can choose cn = c, for

any n ≥ 1.

A more involved case is when the equation p(x) = 0 has solutions on the unit

circle. If the sum of the coefficients of p is equal to 0, then the number 1 is a solution

of p(x) = 0. The cases arising from interacting particle models are of this kind.

The difficulty in this case arises because the equation Tc = ξ̂ cannot be solved in

L2(Z
N). To get around this problem, we shall consider a slightly modified equation

F(TD0
c) = (Fξ̂)1An

. The function Fξ̂ is multiplied with the characteristic function of

a set An that is Σ̃N-invariant and carefully chosen to avoid the unit roots of p. More

precisely,

An =

⋂

γ∈eΣN

{
γ(α)

∣∣ α = (α1, . . . , αN ) ∈ [−π, π]N ,

|mod2π(α1 + · · · + αN ) − rk| >
1

n
, eirk unit root of p

}
.

The next table contains the roots of the rational function p(x) in four particular

cases.

Vector field D0 Rational function p(x) Solutions of p(x) = 0

∂0 1 none

∂1 − ∂0 x − 1 1

∂1 − 2∂0 + ∂−1 x − 2 + x−1 1, 1

∂3 − ∂0 x3 − 1 1, 1+
√
−3

2
, 1−

√
−3

2

If the vector field D0 is ∂1 −∂0 or ∂1 −2∂0 + ∂−1, then the region An in dimension

N = 1 is just An = {α ∈ [−π, π) | |α| > 1
n
} (Figure 3).

If the vector field D0 is ∂1 − ∂0 or ∂1 − 2∂0 + ∂−1 then the region An in dimension

N = 2 is the subset of the square [−π, π]2, enclosed by the polygonal lines depicted

in Figure 4.
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Figure 3: The region An in dimension N = 1.
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Figure 4: The region An in dimension N = 2, as a subset of the square [−π, π]2.

Let cn be the unique L2(Z
N ) solution of the equation F(TD0

cn) = (Fξ̂)1An
, n ≥ 1.

The solution cn is defined through

cn = F
−1

( 1

p(ei(α1+···+αN ))
(Fξ̂)(α)1An

(α)
)

.

The Σ̃N -invariance of the set An and the fact that ξ̂ is constructed from the Fourier

coefficients of a closed function implies that cn is S̃N -invariant, n ≥ 1.

Obviously we have the convergence F(TD0
cn) → Fξ̂ as n → ∞ in the topology of

L2([−π, π]N ), hence TD0
cn → ξ̂ as n → ∞ in the topology of L2(Z

N ).

Proof of Theorem 2.1 Let ξ ∈ L2(R
Z, dν

gc
0 ) be a D0-closed function. The decompo-

sition ξ = Proj
H0

ξ +
∑

N≥1 Proj
HN

ξ is obvious. From Lemma 4.1 we know that

Proj
HN

ξ is D0-closed, for any N ≥ 0. Since H0 is generated by the constant function

1, Proj
H0

ξ is a constant function equal to 〈ξ, 1〉1.

If the sum of the coefficients of D0 is not equal to zero, then the constant function∑
j∈Z

a j =
∑

j∈Z
D0(x j) is a D0-exact function and hence, the constant function

Proj
H0

ξ is D0-exact, as well. In this case we see that ξ is D0-closed if any of the
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projections Proj
HN

ξ, N ≥ 1 belong to the space ED, or if any of the projections

Proj
HN

ξ, N ≥ 1 can be approximated by D0-exact functions.

When the coefficients of D0 sum up to zero, as the computation below shows, the

constant function 1 and hence, Proj
H0

ξ are orthogonal to any D0-exact function.

〈∑

j∈Z

D0(τ jg), 1
〉

=

∑

k∈Z

ak

∑

j∈Z

〈∂k(τ jg), 1〉 =

∑

k∈Z

ak

∑

j∈Z

〈∂0(τ jg), 1〉

=

∑

j∈Z

〈
∂0(τ jg),

(∑

k∈Z

ak

)
1
〉

= 0.

Again, if we can prove that any of the projections Proj
HN

, N ≥ 1 belong to the space

ED, or that if any of the projections Proj
HN

, N ≥ 1 can be approximated by D0-exact

functions, the decomposition theorem follows in this case, as well.

Therefore, in any possible case, the decomposition theorem follows as long as we

establish that any D0-closed function ξ ∈ HN , N ≥ 1, can be approximated by

D0-exact functions.

Assume that ξ =
∑

I∈IN
ξ̂IHI ∈ HN , N ≥ 1. Define the SN -invariant function

ξ̂ : Z
N → R through ξ̂(z) = ξ̂I if z

SN∼ zI ; see (3.1). We use Lemmas 5.1 and 5.2 to find

a sequence of finitely supported S̃N -invariant functions (cn)n≥1 such that TD0
cn → ξ̂

as n → ∞ in the topology of L2(Z
N). But Lemmas 4.2 and 4.3 tell us that each of

TD0
cn, n ≥ 1, defines a D0-exact function ξcn

; see (4.6). At the end of Lemma 4.1 we

noticed that the topology of HN and L2(Z
N) are equivalent, and hence we can claim

that ξcn
→ ξ as n → ∞ in the Hilbert space topology of HN , or L2(R

Z, dν
gc
0 ).

6 Second-Order Ginzburg–Landau Field and Algebraic Topology

We conclude with some remarks about the second-order Ginzburg–Landau field

Y0 = ∂1 − ∂0 which has been studied in the work of S. R. S. Varadhan [7]. Our

approach places Varadhan’s result in a new light by depicting a topological aspect, to

be explained below.

In Section 3 we presented an extensive study of the set of multi-indices I. There

we partitioned the set of multi-indices I into disjoint orbits, and we denoted by O the

space of orbits. Below we exhibit a procedure to construct a directed graph that has

as vertices the orbits of the set of multi-indices.

A directed graph is a pair (V, E) of two sets, where V is the set of vertices of the

graph and E is the set of directed edges. A directed edge is a pair of two vertices (v1, v2)

where the first vertex indicates the starting point of the edge and the second vertex

indicates the tip of the edge. We choose V to be the set of orbits O. We also say that

we have a directed edge (o1, o2) if there exists a multi-index I ∈ o1 such that τ I ∈ o2.

Notice that if there exists an edge between two orbits, then the orbits contain multi-

indices with identical degrees. Hence our graph will have at least one connected

component for each degree N ≥ 0. We shall show that there exists precisely one

connected component for each degree N ≥ 0.

We would like to have a concrete or geometric presentation of the graph. For this

purpose we use the identification of the set of orbits ON containing the multi-indices
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of degree N , with the cone C+
N of the lattice Z

N , N ≥ 0.

If N = 0, then ON contains a single orbit, the orbit of the multi-index 0, and this

orbit contains a single multi-index. Since the multi-index 0 has the property that

0 = τ0, we will have a directed edge going out of and returning to 0; in other words,

we have a loop at 0.

Assume that N ≥ 1. It can be shown that a directed edge links z ∈ C+
N to z ′ ∈ C+

N

if and only if either z ′ = z − e1 − · · · − eN or z ′ = z + ei for some 1 ≤ i ≤ N . Here

ei is the lattice vector (0, . . . , 1, . . . , 0) with the i-th coordinate 1. We shall indicate

below how this presentation of the graph can be obtained.

Let o ∈ ON be some orbit and R(o) =
∑k

i=1 aiδni
, with ai ≥ 1 and 0 ≤ n1 <

n2 < · · · < nk be the representative of the orbit o. Given our rule, the orbit o is

connected by an edge going out of o to each of the orbits o(τR(o)), o(τ (n1·R(o))), . . . ,

o(τ (nk · R(o))). For each of the orbits in this list we can calculate the representatives

and the corresponding point in the cone C+
N .

For example, the representative of the orbit o is R(o) =
∑k

i=1 aiδni
and the cone

point is

zR(o) = (n1, . . . , n1︸ ︷︷ ︸
a1

, . . . , nk, . . . , nk︸ ︷︷ ︸
ak

).

Assume that n1 ≥ 1. The representative of the orbit of τR(o) is τR(o) and the corre-

sponding cone point is

zτR(o) = (n1 − 1, . . . , n1 − 1︸ ︷︷ ︸
a1

, . . . , nk − 1, . . . , nk − 1︸ ︷︷ ︸
ak

).

We notice that zτR(o) = zR(o) − e1 − · · · − eN . Also, if n1 = 0, the representative of the

orbit of τR(o) is (−1) · τR(o) and the corresponding cone point is

z(−1)·τR(o) = (0, . . . , 0︸ ︷︷ ︸
a1−1

, 1, . . . , nk − 1, . . . , nk − 1︸ ︷︷ ︸
ak

),

and z(−1)·τR(o) = zR(o) + ea1
. Similarly, we can analyze the other orbits connected

with o.

In particular our discussion proves that for any two given orbits o1 and o2, if there

exists a multi-index I ∈ o1 and τ I ∈ o2, then this multi-index is unique. We will see

later that this observation allows us to assign in a unique way a multi-index to any

directed edge of our graph.

We include three pictures (Figures 5–7) of the connected components of the di-

rected graph for N = 0, N = 1 and N = 2.

Suppose we are given a function ξ ∈ L2(R
Z, dν

gc
0 ) with Fourier expansion

ξ =
∑

I∈I
ξ̂IHI . We can actually turn our directed graph into a weighted graph by

assigning to each directed edge (o1, o2) the Fourier coefficient ξ̂I corresponding to the

unique multi-index I such that I ∈ o1 and τ I ∈ o2. Note that each Fourier coefficient

will be assigned to one and only one edge and each edge will have assigned one and

only one Fourier coefficient, since there is a one-to-one correspondence between the

edges of our graph and the set I of multi-indices. For example the edge (o(I), o(τ I))

will have attached the weight ξ̂I , Figure 8.
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Figure 7: The connected component of the graph for N = 2.

It is interesting to note that if ξ is Y0-closed, then the weights of the graph dis-

cussed above sum up to zero along any directed cycle of the graph except the loop of

the connected component corresponding to N = 0. Indeed, the closedness condi-

tion of ξ imposes no restriction on the coefficient ξ̂0. Also note that the Y0-closedness

condition (4.4)

ξ̂I+δ(n+1)
− ξ̂I+δn

= ξ̂τ n(I+δ1) − ξ̂τ n(I+δ0) n ∈ Z, I ∈ I,

plus the square-integrability of ξ are equivalent to the property that the weights of

the graph associated to ξ sum up to zero around any directed cycle of any connected

component corresponding to N ≥ 1. However, if ξ is Y0-exact then ξ̂0 = 0 and hence

the weights of the graph sum up to zero around any directed cycle of the graph. If ξ is
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ξ̂Ir r-

o(I) o(τ I)

Figure 8: A directed edge and its attached weight.

Y0-exact and is constructed as in Lemma 4.2, then we can say that in any connected

component of the graph all but finitely many weights are zero.

The above can be explained from a topological point of view. We can turn our

directed graph into a 2-dimensional ∆-complex (see [2]) by attaching enough discs

to cycles of the graph that each of the connected components N ≥ 1 can be re-

tracted to a single point. We do not attach a disc onto the loop of the connected

component N = 0. After the attaching process, the 2-dimensional ∆-complex can

be retracted to the disjoint union of a circle with a countable number of points. The

Fourier coefficients of a Y0-exact function form a coboundary of our 2-dimensional

∆-complex and the Fourier coefficients of a Y0-closed function form a cocycle for

our 2-dimensional ∆-complex. Since the cohomology group H1(C, R) of a circle C

is one-dimensional, we expect the space of Y0-exact functions to have codimension

one inside the space of Y0-closed functions.
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