A NOTE ON HOMEOMORPHIC MEASURES ON TOPOLOGICAL GROUPS

by SIDNEY A. MORRIS and VINCENT C. PECK

(Received 20th October 1981)

1. Introduction

The classical von Neumann-Oxtoby-Ulam Theorem states the following:

Given non-atomic Borel probability measures μ , λ on I^n such that

(1) $\mu(A) > 0$, $\lambda(A) > 0$ for all open $A \subset I^n$

(2)
$$\mu(\partial I^n) = \lambda(\partial I^n) = 0$$
,

there exists a homeomorphism h of I^n onto itself fixing the boundary pointwise such that for any λ -measurable set S

$$\mu(h(S)) = \lambda(S).$$

It is known that the above theorem remains valid if I^n is replaced by any compact finite dimensional manifold [2], [4] or with I^{∞} , the Hilbert cube, [8].

We shall say that a space X has the homeomorphic measure property if the above theorem remains valid with I^n replaced by X.

In this note we characterise those compact connected abelian metric groups having the homeomorphic measure property as precisely those which are locally connected. These are T^a , where T is the circle group and a is a non-negative integer or possibly \aleph_0 .

Our proof depends on the following key result:

Theorem A. [6] A countable product of finite dimensional compact manifolds has the homeomorphic measure property.

2. Compact connected metrisable abelian groups

We shall regard T, the circle group, as the unit circle on the complex plane with complex multiplication as the group operation.

Lemma 1. If f is a continuous homomorphism of $G \cong T^m$, onto $H \cong T^n$, there exist subgroups A and B of G such that $G = A \times B$, $A \cong T^n$ and $B \cong T^{m-n}$, $f(\{e\} \times B) = \{e\}$ and $f(A \times \{e\}) = H$.

с

169

Proof. Let C be the kernel of f. Then $C = B \times F$ where $B \cong T^{m-n}$ and F is a finite group. As $B \subseteq G$ and $B \cong T^{m-n}$, Section 25.31 in [3] implies $G = A \times B$ where $A \cong T^n$.

Lemma 2. If f is a continuous homomorphism of $G \cong T^n$ onto $H = H_1 \times \cdots \times H_n$ where each $H_i \cong T$, then there exist subgroups G_1, G_2, \ldots, G_n such that $G = G_1 \times \cdots \times G_n$, $G_i \cong T$, and $f(G_i) = H_i$ for $i = 1, 2, \ldots, n$.

Proof. Now $f^{-1}(H_1)$ is a subgroup of T^n and so is $G_1 \times F$ where $G_1 \cong T^r$, $r \ge 1$, and F is a finite group. But then $f(G_1)$ is a connected subgroup of H_1 and so $f(G_1) = H_1$. As $G_1 \cong T^r$, we must have $G = B \times G_1$ where $B = T^{n-r}$ and $f(B) = \{e\} \times H_2 \times \cdots \times H_n \cong T^{n-1}$. So $n-r \ge n-1$, which implies r=1.

So $G = B_1 \times G_1$, $G_1 \cong T$, $f(G_1) = H_1$ and $f(B_1) = \{e\} \times H_2 \times \cdots \times H_n$. As above, there is a subgroup $G_2 \subseteq B_1$ such that $f(G_2) = H_2$ and $G_2 \cong T$. Continue inductively choosing G_1, \ldots, G_n .

So we have subgroups G_1, \ldots, G_n of G each isomorphic to T and $G_i \cap G_j = \{e\}$ for $i \neq j$. Thus the group generated by G_1, G_2, \ldots, G_n is $G_1 \times \cdots \times G_n$ and is isomorphic to T^n . As $G_1 \times \cdots \times G_n \subseteq G \cong T^n$ we must have $G = G_1 \times \cdots \times G_n$ and the lemma is proved.

Observe that any continuous homomorphism f of T into T is $f(e^{2\pi i\theta}) = e^{2\pi ik\theta}$ where k is a non-negative integer. We have demonstrated that any continuous homomorphism f of T^m onto T^n is isomorphic to a canonical homomorphism q which is a product of n homomorphisms of T into T. That is, there are isomorphisms r and r' of T^m and T^n , respectively, such that $f = r' \circ q \circ r$.

Let f be a canonical continuous homomorphism of T^m onto T^n :

$$f(e^{2\pi i\theta_1},\ldots,e^{2\pi i\theta_n},\ldots,e^{2\pi i\theta_m})=(e^{2\theta ik_1\theta_1},\ldots,e^{2\pi ik_n\theta_n}).$$

If m=n, it is easily seen that f is a $\prod_{i=1}^{n} k_i$ to one covering. In general, f has connected kernel if and only if $k_i=1$ for each i and if A is a connected set of small enough diameter, then $f^{-1}(A)$ consists of $\prod_{i=1}^{n} k_i$ disjoint connected sets which are translates in T^m of each other.

Suppose G is a compact group and g is a continuous homomorphism of G onto T^n . Then g preserves normalised Haar measure. This readily follows from the fact that T^n is dyadically decomposable, that is, expressible as a disjoint union of sets which are translates of each other.

Suppose G is a compact connected metrisable abelian group, then G is an inverse limit space $\{G_i, p_i^{i+1}\}_{i \in \mathbb{N}}$ where the factor spaces $G_i = T^{n_i}$ for some positive integer n_i and where the bonding maps p_i^{i+1} are continuous surjective homomorphisms. (This well-known result follows easily for example from Corollary 1 of Theorem 14 of [5].) We shall let π_i denote the projection of G onto the factor G_i , so that $\pi_i = p_i^{i+1} \circ \pi_{i+1}$. If only a finite number of the bonding maps have disconnected kernel, then G can be expressed as an inverse limit space $\{G'_i, p_i^{i+1}\}_{i \in \mathbb{N}}$ where all the bonding maps have connected kernels. Thus by Theorem 4.3 of [1], G is locally connected.

Lemma 3. Let A be a closed arc contained in G. Let λ and λ_i be normalised Haar

measures on G and G_i, respectively. If p_i^{i+1} has disconnected kernel and $\pi_i(A) \neq G_i$ then

$$\lambda(A) \leq \lambda_{i+1}(\pi_{i+1}(A)) \leq \frac{1}{2}\lambda_i(\pi_i(A)).$$

Proof. Let $\{A_k\}_k$ be a family of non-overlapping closed subarcs of A such that $A = \bigcup_k A_k$. Suppose the lemma holds for each A_k separately, then the lemma holds for A. Therefore, we may assume without loss of generality that A is of as small a diameter as we choose, so that $q_i^{-1}(\pi_i(A))$, where $q_i = p_i^{i+1}$, is a disjoint union of closed connected sets $S_1, S_2, \ldots, S_m, m \ge 2$, where each S_j is a translate of S_1 . Thus $\lambda_{i+1}(S_1) = \lambda_{i+1}(S_j)$ for each j and since p_i^{i+1} preserves Haar measure $\lambda_{i+1}(S_1) = (1/m)\lambda_j(\pi_i(A))$. By connectivity $\pi_{i+1}(A) \subseteq S_i$ for some j. This proves the lemma.

Theorem 1. Let G be a compact connected metrisable abelian group. Then G has the homeomorphic measure property if and only if G is locally connected.

Proof. Sufficiency follows from Theorem A. Suppose G is not locally connected. As G contains a one parameter subgroup, G contains a closed arc S. Let f be a homeomorphism of I onto S and define a Borel measure μ on G by $\mu(A) = m(f^{-1}(A \cap S))$ where m is linear Lebesgue measure. Define a Borel measure α on G by $\alpha = \frac{1}{2}(\mu + \lambda)$. Then α is a locally positive non-atomic Borel probability measure on G but cannot be homeomorphic to λ because $\alpha(S) = \frac{1}{2}$ and by Lemma 3 $\lambda(h(S)) = 0$ for every homeomorphism h of G onto itself.

Acknowledgements. We wish to thank Professor Karl Hofmann for useful discussions. The research for this paper was done while the first author was a Visiting Professor at Tulane University.

REFERENCES

1. C. E. CAPEL, Inverse limit spaces, Duke Math. 21 (1954), 233-245.

2. A. FATHI, Structure of the group of homeomorphisms preserving a good measure, Annales Scientifiques de L'Ecole Normale Supérieure (to appear).

3. E. HEWITT and K. A. Ross, Abstract Harmonic Analysis, Vol. I, (Springer-Verlag, 1963).

4. A. B. KATOK and A. B. STEPIN, Metric properties of measure preserving homeomorphisms (Russian), Uspehi Mat. Nauk 25, no. 2 (152), (1970), 193–220, (Russian Mathematical Surveys 25 (1970), 191–220.

5. S. A. MORRIS, Pontryagin duality and the structure of locally compact abelian groups (Cambridge Univ. Press, 1977).

6. S. A. MORRIS and V. C. PECK, A note on the homeomorphic measure property, *Colloq. Math.* (to appear).

7. J. C. OXTOBY and S. M. ULAM, Measure-preserving homeomorphisms and metric transitivity, Ann. Math. (2) 42 (1941), 874–920.

8. J. C. OXTOBY and V. S. PRASAD, Homeomorphic measures in the Hilbert cube, *Pacific J.* Math. 77 (1978), 483–497.

La Trobe University Bundoora Victoria 3083 Australia TULANE UNIVERSITY New Orleans La, 70118 U.S.A.