
S. Takeuchi
Nagoya Math. J.
Vol. 57 (1974), 121-138

ON COMPLETENESS OF HOLOMORPHIC
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§ 0. Introduction

In this paper we shall investigate the structure of complex Lie
groups from function theoretical points of view. A. Morimoto proved
in [10] that every connected complex Lie group G has the smallest closed
normal connected complex Lie subgroup Ge, such that the factor group
G/Ge is Stein. On the other hand there hold the following two basic
structure theorems (A^ and (A2) for a connected algebraic group G (cf.
[12]). (Ax): G has the smallest normal algebraic subgroup N such that
the factor group G/N is an affine algebraic group. Moreover N is a
connected central subgroup. (A2): G has the unique maximal connected
affine algebraic subgroup L, where L is normal and the factor group
G/L is an abelian variety.

It is well known that for algebraic groups "affine" and "linear" are
equivalent, but for complex Lie groups "affine" i.e. "Stein" does not
imply "linear" although the converse implication is true (cf. [9]).
Nevertheless we may roughly say that Stein groups correspond to affine
algebraic groups. In such a sense Morimoto's result can be considered
as the analytic version of (Aj). Considering that complex tori corre-
spond to abelian varieties, we can formulate the analytic version of (A2),
which is, however, not true in general. We shall prove, for reductive
complex Lie groups, a structure theorem (Theorem 23) analogous to (A2).
In general every connected complex Lie group G admits a bundle struc-
ture over a complex torus, whose fibre is a Stein manifold and whose
structure group is a Stein subgroup of G (Corollary 25). We are mainly
concerned about the dimension of the complex torus which appears in
the above fibreing of (?. We shall find that it is independent of the
group structure of G, but depends only on the underlying complex struc-
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122 SHIGERU TAKEUCHI

ture of G (Proposition 17, Corollary 38).
By [8] we know that every holomorphic principal bundle over a Stein

manifold with a Stein fibre is Stein. In § 3 we shall generalize this
result to g-complete manifolds (Theorem 36), as follows if P = P(B, G)
is a holomorphic principal bundle over a ^-complete manifold B with a
connected r-complete structure group G, then P is (q + r)-complete.

Throughout the present paper, every manifold is assumed to have
countable topology. We denote by Z, Q, R, C, and C*, the ring of inte-
gers, the field of rational numbers, the field of real numbers, the field
of complex numbers and the group of non-zero complex numbers respec-
tively.

I wish to express my sincere gratitude to Professor A. Morimoto and
Professor K. Kasahara for their kind advices during the preparation of
the present paper, and also to Doctor H. Kazama whose suggestions,
given in his correspondence, motivated me to complete the latter half of
of this work.

§ 1. Fundamental relations of indices

First we define four indices of complex Lie groups, and next we
study their properties. Let G be a connected complex Lie group with
the Lie algebra g. Let K be a maximal compact subgroup of G with
the Lie algebra ϊ. Then F : = ϊ + V ^ ϊ ϊ is a complex Lie subalgebra
of g. By [7] G is analytically homeomorphic to Kc x Ca, where Kc is a
conneted complex Lie subgroup of G whose Lie algebra is ϊc, and Ca is
a complex vector space of dimension a. On the other hand ϊ0: = ϊ Π
V —1 ϊ is a complex Lie subalgebra of g, determined uniquely by G, in-
dependently of the choice of K (cf. [10]). Since dimΛ tc = dimΛ ϊ +
dinifl V^ΐ ϊ — dimΛ ϊ Π V^-ϊ Ϊ and since dimΛ ϊ is independent of the
choice of K, we obtain the following

DEFINITION 1. a(G): = dimc G — dimc K
c is called the complex char-

acteristic index of G.

DEFINITION 2. β(G): = dimc ϊ0

DEFINITION 3. γ(G): = dimΛ K is called the characteristic coindex
of G.

For a complex space X we denote by δ(X) the complex dimension of
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X. We denote by H(X) the set of all holomorphic functions on X, For

a point xeX, the set Xx = [yeX\f(x) = f(y),Vfe H(X)} is a sub variety
of X. It is easy to verify the following

PROPOSITION 4. Let σ be a complex analytic automorphism of X.

Then we have Xo{x) = σ(Xx) for x e X. Especially, if x is fixed by σ,

Xx is invariant under σ.

DEFINITION 5. τ(X): = mίxexδ(Xx) is called the holomorphic degen-

eracy of X.

DEFINITION 6. A complex manifold M is called (H, C) if H(M) = C

(cf. [10]).

From Definitions 5, 6 we have immediately

PROPOSITION 7. A connected complex manifold M is (H, C) if and

only if τ{M) = δ(M).

For a connected complex Lie group G, the following three condi-

tions are equivalent (cf. [8], [10]).

( i ) G is Stein,

(ii) τ(G) = 0,

(iii)

PROPOSITION 8. For a connected complex Lie group G there holds

the following equality:

(1.1) a(G) - β(G) + γ(G) - δ(G) = 0 .

Proof. δ(G) - a(G) + β(G) = dimc (ΐ + Λ/^Ϊ Ϊ) + dimc (ϊ Π </=! ΐ) =

m^ϊ + dimΛ <f^ϊ ϊ) = ά\mR I = γ(G) q.e.d.

PROPOSITION 9. For a closed normal connected complex Lie subgroup

N of G, there hold the following equalities and inequalities:

(1.2) δ(N) + δ(G/N) = δ(G)

(1.3) γ(N) + γ(G/N) = r(G)

(1.4) β(N) + β(G/N) ^ β(G) ^ β(N)

(1.5) (̂iV) + a(G/N) ^ α(G) ^ a(G/N)

(1.6) 3(G) - r(G) ^ α(G) .
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Proof. (1.2) is evident. (1.3) follows from the fact that for a

maximal compact subgroup Z of G, K ΓΊ N and KN/N are maximal

compact subgroups of N and G/N respectively (cf. [3] p. 533 Lemma 3.15).

(1.4) is proved in the following way. By the above remark β(N) =

dimc (ϊ Π n) Π -/—"ICE Π n), where n denotes the Lie algebra of Λf. Since

n is a complex Lie algebra we have β(N) = dim c(ϊ 0 f l n ) ^ β(G). On the

other hand denoting the natural surjection from g onto g/n by TΓ* we

have that π*(ϊ)Q: = πr#(ϊ) Π V ^ Ί τr*(!) = **(!) Π TΓ^O/^Ϊ ϊ) =) 7r*(ϊ0) which

concludes the former inequality of (1.4). Since a(N, G): == a(N) + a(G/N)

- (G) = β(N,G): = β(2V) + j3(G/ΛO - j8(G) the former inequality of (1.5)

follows directly from (1.4). The latter inequality of (1.5) follows from

the fact that π*(ϊc) = π*{ϊ)c: = τr#(ϊ) + V^-Ί?r*(ϊ). (1.6) is an immediate

consequence of the fact that KG contains Ge (cf. [8], [10]). q.e.d.

PROPOSITION 10. Let G and G be connected complex Lie groups.

If there exists a complex analytic homomorphίsm π from G onto G such

that the kernel of π is a discrete subgroup of G, then there hold the

following relations:

(1.2)' 3(G) - ί(G)

(1.3)' γ(G) ̂  γ(G)

iXΛY β(G) ̂  β(G)

(1.5)' a{G) ̂  a{G) .

Furthermore if the kernel of π is finite, the equalities hold.

Proof. (1.2)' is evident. First we prove the equalities in case the

kernel of π is finite. Let K be a maximal compact subgroup of G. Then

π~\K) is a compact subgroup of G, hence contained in some maximal

compact subgroup K of G. π(K) is a compact subgroup of G and con-

tains a maximal compact subgroup K of G. Hence we obtain 7Γ(JK") = 2£,

which proves ϊ = ϊ, where ! and ϊ denote the Lie algebras of K and Z

respectively. Since π induces the complex Lie algebra isomorphism π*

from g onto g, we get ϊc s F and ϊ 0 : = ϊ Π ΛΓ=~ΪΪ S Ϊ ΓΊ V ^ Ί Ϊ = ϊ0.

Thus we obtain the equalities γ(G) = y(G), ]8(G) = β(G) and α(G) = α(G).

Secondly we prove the inequalities in case ker π is discrete. Let "K be

a maximal compact subgroup of G. Then π(K) is a compact subgroup

of G, hence contained in some maximal compact subgroup K of G.
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Since π* is an isomorphism, we can consider ϊ as a subalgebra of ϊ by

identifying § with g. Evidently we have tc c lc and ϊ0 c ϊ0. Thus we

obtain the inequalities (1.3/ and (1.4)'.

If-a complex Lie group G is not assumed to be connected, we denote

by G° the connected component of G which contains the neutral element

of G.

DEFINITION 11. a(G): = α(G°). β(G): = β(G°). γ(G): = γ(G°).

PROPOSITION 12. For a complex Lie group G and its closed normal

complex Lie subgroup N there holds the following relation:

(1.4)" j8(G) ^ β(N) + β(G/N) .

Proof. Since NQ is a closed connected normal complex Lie subgroup

of G (and consequently of G°), we can consider the factor group G/N°

and GQ/N°. Then G°/N° is the connected component of G/N° since G°/N°

is connected and of the same dimension as G/N°. Thus G°/N° is an open

and closed subset of G/N\ Since the canonical surjection π from G/N°

onto G/N is open and continuous, the image π(G°/N°) is an open con-

nected subgroup of G/N. Hence π(GQ/N°) is closed in G/N and of the

same dimension as G/N, which concludes that π(G°/N°) = (G/N)\ Since

G°/N° is a covering group of (G/N)\ we get the desired relation:

β(G°/N°) ^ β(G/N). Thus (1.4)" is proved.

For later reference we prepare the following

PROPOSITION 13. γ is topologically invariant i.e. if G and Gf are

homeomorphic we have γ(G) = γ(G').

Proof. Let K and Kf be maximal compact subgroups of G° and G'°

respectively. Let p = γ(G) and pf = (̂GO Since if and Kf are ori-

entable, H*>(GQ, Z) = i P ( Z , Z) = Z and iϊ^(G / 0,2) = H*'(K'9 Z) = Z. For

any g(> p), H^(G/0, Z) - H^X7,2) = 0. It follows that p ^ pf. We also

have the converse inequality pr ^ p. q.e.d.

§2. (£Γ.C)-subgroups and Stein subgroups

Let G be a connected complex Lie group with the neutral element e.

DEFINITION 14. A connected closed complex Lie subgroup N of G

is called an (H, C)-subgroup of G if τ(ΛΓ) = δ(N).
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DEFINITION 15. A connected closed complex Lie subgroup N of G

is called a Stein subgroup of G if τ(N) = 0.

By [10] Ge - {xeG\f(x) = f(e),v/e H(G)} is an (H, C)-subgroup of

G. Let N be an (if, C)-subgroup of G. Then we have Ge ZD N, since

GeZ)GeΠN^Ne = M We have β(Ge) ^ β(G) ^ β(Ge) + β(G/Ge) = β(Ge)

by (1.4) since G/Ge is Stein (cf. [10]). Thus we obtain

PROPOSITION 16. Ge is the unique maximal (H, C)-subgroup of G

and moreover for any closed normal connected complex Lie subgroup N

of G such that Ge c N c G, there holds the equality: β(Ge) = β(N) = β(G).

Let G be holomorphically homeomorphic to another complex Lie

group Gf. Then there exists a holomorphic homeomorphism from G onto

G', which preserves the unit elements of the respective groups. By

Proposition 4 we get Ge ^ G'e. Then β(Ge) - 3(Gβ) - γ(Ge) = d{G'e) - γ(G'e)

= ]8(Gί), since α(Gβ) = α(Gί) = 0. Hence we obtain

PROPOSITION 17 (cf. Corollary 38). β is an analytic invariant i.e.

if G « Gr, j8(G) = j8(G0.

Let KQ be the connected complex Lie subgroup of G whose Lie

algebra equals ϊ0 = ϊ Π \Λ—Ί ϊ. ^o is n ° t closed in general but is con-

tained in Ge (cf. [9]). We prove

PROPOSITION 18. Ge is the smallest closed complex Lie subgroup of

G, which contains KQ.

Proof. Let N be the smallest closed complex Lie subgroup of G

which contains Ko. Since Ge contains N and Ge is central, so is N.

Let n be the Lie algebra of N. Then β(N) = dimc (ϊ0 Π n) = dimc ϊ0 =

β(G) = β(Ge), since n c ϊ0. On the other hand (! Π n) + V^ΪOE Π n)

contains ϊ0, and the connected complex Lie subgroup of N, whose Lie

algebra equals (ϊ Π n) + V — l(ϊ ί ln), is closed in N (cf. [7]). Hence we

get n c (ϊ Π n) + V--l(ϊ Π n) from the minimality condition on N. The

converse inclusion is evident, hence a(N) — 0. For Ge also, we obtain

a(Ge) = 0 by (1.6), since τ(Gβ) = β(Gβ). Ge/N is also ( ί f ,O hence

a(Ge/N) = 0. By applying (1.1) - (1.3) to the pair Ge > N, we obtain

β(Ge/N) = β(Ge) - β(N) = 0. Thus Ge/2V is at the same time Stein and

(H, C), which is possible only when N = Ge. q.e.d.

Now we proceed to a characterization of Stein subgroups.
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LEMMA 19. Let G be a connected abelίan complex Lie group. Then

there exists a maximal Stein subgroup L such that δ{L) — δ(G) — β(G).

Furthermore for any maximal Stein subgroup N of G, the factor group

G/N is a complex torus of dimension not smaller than β(G).

Proof. ( i ) First we prove the existence of a non-trivial Stein sub-

group for a non-compact group G. Let δ(G) = m, r(G) = n and β(G) = r,

with n > r or equivalently m > r. By [6] G is decomposed into the

direct sum of a Stein subgroup S = Cp Θ C*α and the (H, C)-subgroup

Ge. If p + # > 0, then £ is a non-trivial Stein subgroup. We assume

now p + q — 0 i.e. G = Ge. Let Cn be the universal coveing group of

G, and let A be the kernel of the covering homomorphism π from Cn

onto G. Λ is a discrete subgroup of C \ By identifying Cn with g, we

can identify Λ®ZR with ϊ. Thus p(G) = dim Λ ϊ equals rk^ Λ: = # {maxi-

mal system of generators of A which are linearly independent over R}.

Since a{G) = 0 by (1.6), we get γ(G) = n + r by (1.1). α(G) = 0 means

that (A ®ZR)G = C n . Thus we can choose the generators (eu -9en9d19

• , dr) of /ί, which are linearly independent over R, in such a way

that {el9 ,βn} constitute a base of the complex vector space Cn. Thus

for a suitable complex (r, %)-matrix A = ( α o ) x ^ ^ r , we have ê  = Σ5=i α<iβi

(i = 1, , r). Let Re A : = (Re α^), and let Im A : = (Im α^). Then

Re di: = Σl=ι ^ e aijej e >̂ where 3 is a real vector subspace of g = Cw

spanned by {e^ , en} over #. Evidently g = %c : — δ + ΛJ~^\ % and

δ 9 Im dι: = 2]y-i Im a^ej. Since {e2, , en, d19 , dr} are linearly inde-

pendent over R and since {Re dιy , Re dr} c 3, thus V ^ ϊ {Im du ,

Im dr} are inearly independent over R which implies that {Im dλ, , Im dr}

span the r-dimensional real vector subspace α of ^. Without loss of

generality, we may assume α to be spanned by {e19 , er} over R. De-

noting by h the real subspace of 3 spanned by {er+19 , en}, we have the

direct sum decomposition g = §>c = $ 0 v ^ 7 ! ^ = α c ® b c = ( α θ ΛA^Ί α) Θ

( δ θ V — IB). Let 7r be the canonical projection from g onto Q/hc. Then

π(A) is a finitely generated subgroup of the additive group τr(g). hc + A

is closed in g if and only if π(Λ) is closed in ττ(g). For a finitely gen-

erated subgroup τr(Λ) of ττ(g), let # {maximal system of generators of π( ί̂)

which are linearly independent over Q (resp. If)} be denoted by rkQ π(A)

(resp. τkEπ(A)). We prove that rkRπ(A) = rkQπ(yl), which is equivalent

to the closedness of π(A) in τr(g). il is generated by {eί9 , en, dx, , dr}
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and thus π(Λ) is generated by {el9 , er, du , dr}, where et = π{ei) etc.

Thus rkQ πU) ^ 2r. On the other hand, {eί9 , e r, c ,̂ , c£r} are linearly

independent over R, since -/--I {Im c ,̂ , Im dr) spans </--Ί α, and

q/hc = ac = α Θ V--ΐ δ, where α: = τr(α) = α is spanned by {e19 , er}.

Thus we have rkΛ ττ(yί) = rkQ 7r(/ί) = 2r. Hence b c + A is a closed subgroup

of a isomorphic to hc ®Z2r. Let (hc + A)/A be denoted by if. Then H

is a Stein subgroup of G — g/Λ, and isomorphic to c*w~ r .

(ii) Now we prove that the factor group of G by any maximal

Stein subgroup N is compact. Let G/N be non-compact. Then by (i)

there exists a nontrivial Stein subgroup H of G/N. Let π be the canon-

ical surjection from G onto G/N. Then π~\E) is a Stein subgroup of

G containing N9 since π~ι(H) is an extension of a Stein group H by a

Stein group N (cf. [8]). By the maximality condition of N9 we have

π~\H) = N, which is a contradiction. As for the numerical relation, we

have δ(G/N) = β(G/N) ^ β(G) by (1.4) since β(N) = 0.

(iii) The existence of a Stein subgroup of codimension β(G) is shown

by making use of the construction of H — c*n~r in (i). Let G be decom-

posed into the direct sum Cp Θ C*9 Θ Ge. Siece Ge contains a Stein

subgroup H ^ c*w~ r, Cp®C*q®H is a Stein subgroup of G of codimen-

sion r = β(G) = 0(Gβ). q.e.d.

DEFINITION 20. A Lie algebra g is called reductive if the center of

g (denoted by i?(g)) equals the unique maximal solvable ideal of g (de-

noted by rad (g)).

DEFINITION 21. A (connected) complex Lie group G is called reduc-

tive if its Lie algebra g is reductive.

LEMMA 22 (cf. [2] p. 80). Let g be reductive. Then any ideal a of

g and any quotient algebra g/α are also reductive.

THEOREM 23. Let G be a connected reductive complex Lie group.

Then there exists a maximal normal Stein subgroup of codimension β(G).

Furthermore for any maximal normal Stein subgroup N of G, the factor

group G/N is a complex torus of dimention not smaller than β(G).

Proof. If G is abelian, Theorem 23 reduces to Lemma 19. Now

we assume G to be non-abelian. Denoting the Lie algebra of G by g,

we find rad (g) = Z(φ Q g. So by the decomposition theorem of Levi,

there exists a non-trivial semi-simple complex Lie subalgebra 3 of g such
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that 3 Π rad (g) = {0} and 3 + rad (g) = g. Since [3, g] = [3,3 + Z(g)] =

[3, 3] £ 3, we find that § is an ideal of g. Thus we conclude that g =

£ + Z(g) is a direct sum decomposition of a Lie algebra g. By the same

argument as in [7] p. 210 we prove now that the connected normal sub-

group S of G corresponding to the ideal 3 of g is closed in G. Since G

is connected, we get G = Z(G)S, where Z(G) denotes the connected cen-

ter of G. iSΠ Z(G) is finite, since the center of a connected complex

semisimple Lie group is finite. We define a group homomorphism p from

G: = Z(G) x S onto G = Z(G)S, by p(x, y) = xy, (x e Z(G), yeS). Intro-

ducing the natural topology on G, we find that p is a continuous

homomorphism with the finite kernel ^ Z(G) Π S. Consequently p is

a closed map. Since every semi-simple complex Lie group is Stein (cf.

[8]), we obtain a nontrivial normal Stein subgroup S of G. Now we

prove that for a maximal normal Stein subgroup N of G, G/N is com-

pact. For if not, G/N is again reductive by Lemma 22, and hence con-

tains a non-trivial normal Stein group H. Denoting the canonical

surjection from G onto G/N by π, we find that π~\H) is a normal Stein

subgroup of G (cf. [8]) which contains N as a proper subgroup. This

contradicts the maximality condition on N. δ(G/N) = β(G/N) <. β(G) fol-

lows directly from (1.4) since β(N) = 0. Now we construct a maximal

normal Stein subgroup L of condimension β(G). Since £ Π Z(G) is finite,

we have β(G/S) = β(Z(G)S/S) = jB(Z(G)) by (1.4)7. On the other hand

j8(G) ^ j8(Z(G)) ̂  j8(Ge) - j8(G). Thus we have /3(G) - j8(G/S). Since G/S

is abelian we can apply Lemma 19 to G/S, to conclude that G/S con-

tains a maximal Stein subgroup iV such that δ(N) = δ(G/S) — β(G).

Denoting the canonical surjection from G onto G/S by π, we see that

L: = π'KN) is a normal Stein subgroup of G such that <5(L) = δ(N) + δ(S)

- β(G). q.e.d.

EXAMPLE 24. If a(G) = 0 then G is reductive as is shown implicitly

in the proof of the Proposition in [7] p. 209. In this case any (maximal)

normal Stein subgroup N of codimension β(G) satisfies a(N) = 0 by (1.1)

~ (1.3).

COROLLARY 25. Every connected complex Lie group G has a struc-

ture of holomorphίc fibre bundle G = E(π, F, T, N) over a complex torus

T of dimension δ(G) — β(G), whose fibre is a Stein manifold biholomor-

phically isomorphic to N x Ca, where the structure group N of E is a
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maximal normal Stein subgroup of Kc and a = a(G). N acts trivially
on Ca, and on N as a left translation.

Proof. It is an immediate consequence of Example 24 since G is
analytically homeomorphic to KG x Ca (cf. § 1). q.e.d.

COUNTEREXAMPLE 26. If G is not reductive, Theorem 23 is not true
in general. Let g be a three-dimensional complex solvable Lie algebra
with a base {X19X2,X,} such that [X19X2] = [Xl9X3] = 0, and [X2,X3] = XX.

Let G be the simply connected solvable group whose Lie algebra is g.
Then the center of G = Z(G) ^ C contains a discrete subgroup Γ = Z2 of
rank 2. Let G = G/Γ be the factor group of G by Γ. Then the unique
normal Stein subgroup of G is trivial, but G is not compact.

§ 3. Completeness and compactness

There are two definitions of g-complete complex manifolds in [1] and
in [13]. We adopt here the latter one from an aesthetic point of view.

DEFINITION 27. Let φ be a C°° real valued function on an ^-dimen-
sional complex manifold X and let (z19 , zn) be a coordinate system on
some neighborhood of a point x e X. φ is called strongly g-pseudoconvex
at x if the Levi form of φ:

UΦ) = Σ

has at least (n — g) positive eigenvalues at x. If 0 is strongly q-
pseudoconvex at every point of Z, we say φ is strongly g-pseudoconvex
on X.

DEFINITION 28. A complex manifold X is g-complete if there exists
a strongly g-pseudoconvex function φ on X such that for any c e R,
X(φ, c): = {x e X\ φ(x) < c} is relatively compact in X.

Since every complex manifold X of dimension n is ^-complete (cf.
[14]), we can associate to X a (finite) non-negative integer q(<^ n) in the
following way.

DEFINITION 29. Completeness of X (denoted by com (X)) is q, if X
is g-complete and not (q — Incomplete.

The following is an immediate consequence of the above definition
and we shall omit the proof.
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LEMMA 30. Let Y be a closed submanίfold of a complex manifold

X. Then we have com (X) ;> com (Y).

DEFINITION 31. A complex manifold X is weakly o-complete (or

woe) if there exists a C°°-function φ: X —> R such that,

(i) L(φ) ̂  0 (i.e. positive semidefinite) on X

(ii) X(φ, c): = {x eX\φ(x) < c} c X, vc e R.

DEFINITION 32. A woe manifold X is g-compact if there exists a

C°°-f unction φ: X -* R such that,

(i) L(φ) :> 0 and L(φ) has at least (n — q) positive eigen values at

every point of X, where n — δ(X).

(ii) X(φ,c):={xeX\φ(x)<c}cX,VceR

DEFINITION 33. Compactness of a woe manifold X (denoted by

comp (X)) is g, if X is g-compact but not (g — l)-compact.

For a woe manifold X, it is evident that comp (X) ^ com (X) and

comp (X) = 0 Φ=Φ comp (X) = 0. The following analogy of Lemma 30 is

easily verified.

LEMMA 34. Any closed submanifold of a q-compact manifold is

again q-compact.

PROPOSITION 35. Let G be a connected complex Lie group. Then

β(G) ^ com (G).

Proof. Since com (G) ̂  com (Ge) by Lemma 30 and β(G) = β(Ge), it

is enough to prove β(Ge) <: com (Ge). Let δ = δ(Ge) and γ = ̂ (G^).

Then Ge has the same homotopy type as a ^-dimensional real torus,

hence H'(Ge, C) = C. On the other hand, Hδ+q(Ge, C) = 0 if g > com (Ge)

(cf. [13]). Thus we obtain that γ ^ δ + com (Ge). Since α(Gβ) = 0,

β(Ge) = r(Ge) - 3(Gβ) = r - 3 ̂  com (Ge) by (1.1). q.e.d.

THEOREM 36. Let G be a connected complex Lie group, and let

P = P(B, G) &β a holomorphic principal bundle over a complex manifold

B with the structure group G. Then we have

(3.1) com (P) ^ com (B) + β(G) .

Proof. (Step 1) First we assume the assertion of the theorem for

simple structure groups of arbitrary dimensions (a simple group means

a Lie group which contains no non-trivial connected normal subgroup).
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We prove the assertion for non-simple structure groups by the induc-

tion on d(G). If δ(G) — 0 there is nothing to prove. Let us assume

Theorem 36 for any G such that δ(G) ^ n. If δ(G) = n + 1 and G is

neither Stein nor (if, C) then 1 <g δ(Ge) <£ n and we get

(3.2) com (P/Ge) ^ com (B) + β(G/Ge)

(3.3) com (P) ^ com (PjGe) + β(Ge)

from the induction hypothesis. Here we denote by P/Ge the quotient

holomorphic principal bundle P(β, G)/Ge: = P/Ge(B, G/Ge) of P = P(B, G),

induced naturally by the normal subgroup Ge. P can be considered in

a natural fashion as a holomorphic principal bundle over P/Ge, with the

structure group Ge. Combining (3.2) and (3.3) we get (3.1) since β(G)

= /3(Gβ), β(G/Ge) = 0. If G is Stein but not simple, there exists a closed

normal connected complex Lie subgroup A of G such that (i) {e} £ A £ G,

(ii) GjA is Stein (cf. [8], Proposition 7). By the induction hypothesis

we obtain similarly as before

com {PI A) ^ com (B) + β(G/A)

com (P) ^ com (P/A) +

Thus we get (3.1) since β(A) = /3(G) = β(G/A) = 0. If G is (ΰ,C) and

not compact, there exists a maximal Stein subgroup N of G such that

δ(G/N) = β(G/N) = /3(G). By the induction hypothesis we obtain

com (P/iV) ^ com (£) + j8(G/N)

com (P) ^ com (P/N) + /3(ΛΓ) .

Since β(N) = 0, we obtain (3.1) combining the above inequalities. Let

us assume now G to be compact. If B is g-complete with respect to

a strongly g-pseudoconvex function φ: B -> R, such that B(φ, c): =

{x eB\φ(x) < c} c β, for vce2?, denoting the projection mapping from P

onto 1? by π, we can induce a strongly (g + £(G))-pseudoconvex function

π*φ = φoπ:P->R. P(π*φ, c):={peP\π*φ(p) < c} = π-\B(φ, c)) c P, since
7r is a proper mapping. Thus com (P) ^ com (B) + ^(G), which implies

(3.1) since δ(G) = β(G). Thus Step 1 is complete.

Before procteding to Step 2 we introduce the following notion.

DEFINITION 37. We say that a C°°-f unction φ: P(B, G) -* R is

strongly g-pseudoconvex along the fibre if the restriction of φ to each
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fibre of P(B9 G) is strongly g-pseudoconvex.

Now we consider P = P(B9G)9 where G = GL(n9C). Since B is

assumed to be paracompact, we can choose a locally finite covering

{Ua}aeI of B in such a way that P is trivial on each Ua. We can take

a positive difinite C°°-hermitian metric along the fibre of P ; in terms

of the covering {Ua}aeI it is represented as the system of C^-mappings

{ha}aei from each Ua to the space of positive definite hermitian matrices

such that hp =
 lga^agap9 if P is represented by the holomorphic cocycle

gaβ Ua Π Uβ->GL(n9 C). Let φa be the identification mapping from Ua x G

onto Tf̂ C/J. For xeUaΠUβ9 p = φa(x,ξ(a)) = φβ(x,ξ(β)) for some f(α),

ξ^eG = GL(n9C)9 that satisfy f(α) = #αi3(x)?(iS). Since ί|(β)feβ(α5)$(β) =
tξCβ)hβ(x)ξ(β), we can define a global C00 function Φh:P—>R by setting

φΛ(p) = trace ψa)ha(x)ξ{a) for p = Ŝβ(a;, ξ(α)). Under this situation we prove

the following

LEMMA 38. Φh is a strogly O-pseudoconvex function along the fibre

of P = P(β, G) and consequently strongly m-pseudoconvex on P, where

m = 3(5).

Proof. We can assume, without loss of generality, each £7α to be

a coordinate neighborhood. We fix a local coordinate system (zί9 , zm9

zm+i> > 3m+n«) on the neighbourhood π'KC/α) of p e P, by taking («!,••• ,zTO)

as the coordinate system on Ua, and «TO+1: = ξ[ΐ\ zm+2: = fa}, ,«TO+n:

where fif denotes the (i, /)-component of the matrix ξ(a) e GL(n9 C). Then

representing the Levi form of Φh in terms of this coordinate system,

we get

D\

ϊ"~" 0
(3.4) L(Φh) =

0 'h.

where A and D denote some matrices of type (m, m) and (^2, m) respec-

tively. Since feα is positive definite, L(Φh) is positive definite if restictited

to the holomorphic tangent space of the fibre of P, which means Φh is

strongly O-pseudoconvex along the fibre. Consequently Φh is strongly

https://doi.org/10.1017/S0027763000016421 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016421


134 SHIGERU TAKEUCHI

m-pseudoconvex on the total space P.
Now we proceed to

Proof of Theorem 36 (Step 2). There remains only to prove the
theorem for simple structure groups. It is well known that every con-
nected complex semisimple Lie group is (isomorphic to) a closed complex
subgroup of GL(n, C) for some n. On the other hand simple groups
that are not semisimple are one-dimensional i.e. C, C* and complex tori.
For a compact structure group G, the assertion of the theorem is al-
ready verified, while C and C* are isomorphic to closed subgroups of
GL(n, C) for some n. So it is sufficient to prove the theorem for such
P(B, G) as G is a closed (connected) complex subgroup of GL(n, C) for
arbitrary n. Now assume the theorem for P^ByGLin^C)). If G is a
closed complex subgroup of GL(n,C), then P : = P(B,G) can be consid-
ered as a closed complex submanifold of Px = P^B, GL(n, C)) whose
representing holomorphic cocycle is the same as that of P{B, G). Thus
we have com (P) <; com (Px) ^ com (B) (cf. Lemma 30), since GL(n, C) is
Stein. Now we must prove the theorem for Pγ{B,GL{n9C)). We define
a group homomorphism ω from GL(n, C) into SL(n + 1, C) by setting

ω(g) = (9 cietα""1) f o r 9^GL(n,C). Since the image of ω is closed in
SL(n + 1, C) and ω is injective, we can consider Pι(B, SL(n + 1, C)) as
a closed submanifold of P 2 : = P2(B, SL(n + 1, C)) and consequently of
P 3 : = Pz(B,GL{n + 1,C)) which are trivial extensions of P in the sense
that their representing holomorphic cocycles are the same as that of P.
By restricting the strongly m-pseudoconvex function Φh on P3, defined
as above, to P19 we get a strongly m-pseudoconvex function Φh\Pι (de-
noted by the same symbol if there is no fear of confusion), on Plf where
m = δ(B). By the remark in [1] p. 257 we can choose a coordinate of the
fibre π~\x) in such a way that (dha)x = 0 (xeUJ, which implies D = 0
for D in (3.4). Thus we obtain

A

(3.5) UΦh) =

0

0

with respect to such a coordinate system. We can consider A as the
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hermitian form on the holomorphic tangent space TX(B) of B at x. Let

B be g-complete with respect to a strongly g-pseudoconvex function φ<

Then we can construct a C -̂f unction ψ: R-> R such that, if u = ψoφ,

L(u) + A has (m — q) positive eigenvalues and B(u, c) = {xe B u(x) < c]

c -B (cf. [15]). We can assume u > 0 without loss of generality. Let ?P*

be the C°° real valued function on Pl9 defined by Ψ: = uoπ + Φh. Then

the Levi form of ¥:

L(u) +

0

A

0

0

•

0

has (n2 + m — q) positive eigenvalues, which implies Ψ is strongly q-

pseudoconvex on Pλ. On the other hand P^Ψ, c): = {p e ί\ W(p) < c} is

relatively compact in P19 since P^W, c) c Px(^ o π, c) ΓΊ Pγ{Φh, c), B(u, c) c B,

Pλ(Φhy c) c P2(Φh, c) ΓΊ P19 and TΓ"1^) (Φ Λ , C) : - {p e TΓ"1^) - SL(^ + 1, C)

ΦΛ(2>) < C} C TΓ^O) = SL(t^ + 1, C), where π denotes the projection from

P2 = P2(B, SL(w + 1, O) onto B. Thus we have com (P,) ̂  com (B). Step

2 is now complete, and the theorem is proved.

COROLLARY 39. β(G) = com (G), and hence β is a complex analytic

invariant of G, i.e. if G « Gf (as complex manifolds), then β(G) — β(Gf)

(cf. Proposition 17).

Proof. By Proposition 35 we have already β(G) ̂  com (G), while

the converse inequality is obtained as a trivial case of the theorem.

q.e.d.

COROLLARY 40. a is a complex analytic invariant of G.

Proof. As a = β + δ — γ by (1.1), the invariance of a follows from

the above Corollary and Proposition 13. q.e.d.

COROLLARY 14. // B is Stein, com (P) = β(G).

Proof. Since G is a fibre of P, com (G) <̂  com (P) by Lemma 30.

On the other hand com (P) ^ β(G), since com (B) = 0. q.e.d.

We shall use later the following which is easily verified.

LEMMA 42. Let M and N be complex manifolds. Then com (M x N)

<Ξ com (M) + com (N). If both M and N are woe, so is M x N and we
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have comp (M x N) <* comp (M) + comp (N).

LEMMA 43. Let X and X be complex manifolds such that (X, π, X)

is a finite holomorphic covering. Then X is woe <=> X is woe. Further-

more if X (or X) is woe, then comp (X) = comp (X).

Proof. If X is woe with respect to a pseudoconvex function φ, then

π*φ — φoπ is pseudoconvex (i.e. L(φoπ) Ξ> 0) and L(φ) = L(φoπ), if we

identify the tangent space of X at p e X, with that of X at π(p) e X.

Relative compactness of X(φoπ,c): = {p e X\φoπ(p) < c) in X is evident

since π is a proper mapping from X onto X. Thus X is woe with re-

spect to π*φ and we obtain comp (X) <. comp (X). On the other hand,

let X be woe with respect to a pseudoconvex function φ. Then we can

define a C°° function φ:X-+ R, by setting

We have L(φ,x) = Σpιe«-i(a:>£(0> p*), if we identify the tangent space of

X at x with those of X at Pieπ~\x). Since every L(φypi) (Pieπ~\x))

is positive semidefinite, so is L(φ,x). If every L(φ9Pi) (Pieπ~ι(x)) has g

positive eigen values, so does L(φ,x). Relative compactness of X(φ9c):

= {xeX\φ(x) < c] in X is evident. Thus X is woe with respect to the

exhausting function φ and we have comp (Jt) ^ comp (X). q.e.d.

The following is due to Kazama [4].

LEMMA 44. Every connected complex abelίan Lie group G is woe

and com (G) ^ β(G).

THEOREM 45 (cf. [5]). Every connected complex Lie group G is woe

and comp (G) = com (G) = β(G).

Proof. As G is analytically homeomorphic to Kc x Ca, we prove

first that Kc is woe, and secondly that comp (Kc) = β(G). Since Z 0 ' is

reductive, by the same argument as in the proof of Theorem 23 we have

KG = ZS, where Z is the connected center of Kc and S is the maximal

semisimple normal connected subgroup of Kc. Letting p be the analytic

homomorphism from Z x S onto KG = ZS, we have comp (Z x S) =

compGK^), since kerp is finite and Z x S is woe (cf. Lemma 42,43 and

44). On the other hand comp (Z x S) = comp (Z) ^ β(Z) ^ β(G) = com (G),

and comp (G) ^ comp (ίCc) + comp (Ca) = comp(Kc). Thus we obtain
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comp (G) <̂  β(G) = com (G) <; comp (G). q.e.d.

REMARK. In [5] Kazama proved that every G is woe and that
comp (G) :g r(G), independently of his original result (i.e. Lemma 44).

§ 4. Some extension and problems

There remains the problem whether Theorem 36 is true, without the
assumption of connectedness on G. By the same argument as in the
proof of Lemma 43 we can prove easily

LEMMA 46. Let X and X be complex manifolds, such that (X,π,X)
is a finite holomorphic covering. Then we have com (X) <^ com(X).

We can generalize Theorem 36 in the following way.

THEOREM 47. Let P = P(B9 G) be a holomorphic principal bundle
such that G/G° is a discrete subgroup of GL(n, C) for some n > 0. Then
com (P) ^ com (B) + β(G).

Proof. Let P/G° = P/G\B9G/G°) be the quotient bundle of P in-
duced by G°. Then P is a principal bundle over P/G° with the structure
group G°. We can apply Theorem 36 to P = P(P/G0

9G°)9 since G° is
connected. Hence we obtain com(P) <̂  com (P/G°) + β(G°). On the other
hand G/G° is a discrete subgroup of GL(n9C) and hence we can consider
P/G° as the closed submanifold of the holomorphic principal bundle
P' : = P'(B, GL(n9 O) which is a trivial extension of P/G° (cf. § 3). Thus
we obtain com (P) <: com (B) + β(G)9 since β(G) = β(G°) q.e.d.

Now we may ask whether com (P) = com (B) + β(G) is true or not.
This is not true in general. For example P : = C*2, considered as a
complex Lie group, has a closed (normal) subgroup G ^ C and the factor
space B: = C*2/C is a one-dimensional complex torus, hence com(P) =
0 < com (B) = 1. By [8], if α(G) = com (P) = 0, we have com (B) = 0.
Can we generalize this result in the following way; if a(G) = 0 then
com(P) = com(β) + β(G)Ί This conjecture is based also on the fact that
a(N) = 0 induces β(N, G) = 0 for a connected complex Lie group G and
its closed connected normal complex Lie subgroup N (cf. Prop. 9).

The last problem is to generalize Theorem 36 (or 47) to arbitrary
holomorphic fibre bundles E = E(π9 F9 B9 G) over a base space B with
fibre F and structure group G. We may conjecture that com (E) <£ com (#)
+ com (F). This conjecture was solved affirmatively by Villani [15] for
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holomorphic vector bundles. The above inequality is a generalization of
the well known result of Matsushima and Morimoto [8] which asserts
com (E) = com (B) + com(F) in case B and F are Stein, and G is con-
nected.

REFERENCES

[ 1 ] Andreotti, A., and Grauert, H., "Theoremes de finitude pour la cohomologie des
espaces complexes," Bull. Soc. Math. France 90 (1962), 139-259.

[ 2 ] Bourbaki, N., Groupes et algebres de Lie (Chap. 1), Hermann, Paris, 1961.
[ 3 ] Iwasawa, K., "On some types of topological groups," Ann. Math. 50 (1949), 507-

558.
[ 4 ] Kazama, H., "On pseudo convexity of complex abelian Lie groups," J. Math. Soc.

Japan 25 (1973), 329-333.
[ 5 ] , "On pseudoconvexity of complex Lie groups, "Mem. Fac. Sci. Kyushu Univ.

27 (1973), 241-247.
[ 6 ] Kopfermann, K., "Maximale Untergruppen Abelscher komplexer Liescher Grup-

pen," Schr. Math. Inst. Univ. Minister 39 (1964).
[ 7 ] Matsushima, Y., "Espaces homogenes de Stein des groupes de Lie complexes,"

Nagoya Math. J. 16 (1960), 205-218.
[ 8 ] , and Morimoto, A., "Sur certains espaces fibres holomorphes sur une variete

de Stein," Bull. Soc. Math. France 88 (1960), 137-155.
f 9 ] Morimoto, A., "On various complex Lie groups," Sugaku 15 (1963-1964), 202-214.

(in Japanese)
[10] , "Non-compact complex Lie groups without non-constant holomorphic func-

tions," Proc. Conf. Complex Analysis at Univ. Minn., Springer, Berlin, 1965; pp.
257-272.

[11] Narasimhan, R., "The Levi problems for complex spaces II," Math. Ann. 146
(1962), 195-216.

[12] Rosenlicht, M., "Some basic theorems on algebraic groups," Amer. J. Math. 78
(1956), 401-443.

[13] Vesentini, E., On Levi convexity of complex manifolds and cohomology vanishing
theorem. Tata Institute Lecture Notes, 1967.

[14] Villani, V., "Su alcune proprieta coomologiche dei fasci coerenti su uno spazio
complesso," Rend. Sem. Mat. Universita di Padova 35 (1964), 47-55.

[15] , "Fibrati vettoriali olomorfi su una varieta complessa q-completa," Ann.
Scoula Norm. Sup. Pisa S. 3 vol. 20 (1966), 15-23.

Gifu University

https://doi.org/10.1017/S0027763000016421 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016421



