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Summary: Let {Xn} be a sequence fo independent and identically distributed random
variables such that 0 < fi = SXn iS, +co and write Sn = X1 + X2 + . . . +Xn. Let v £: 0
be an integer and let M(x) be a non-decreasing function of x 2? 0 such that M(x)jx is
non-increasing and Af(0) > 0. Then if ^|-Xi|»Af(|.Xi|) < 00 and (i < 00 it follows that
<?|SB|"Af(jS,I|) — (npYM(nn) as n -> 00. If /* = 00 (v = 0) then «fM(|Sn|) = 0(«). A variety
of results stem from this main theorem (Theorem 2), concerning a closure property of proba-
bility generating functions and a random walk result (Theorem 1) connected with queues.

1. Introduction

The work of the present note originated in a desire to prove Theorem 1
below, which, in a somewhat more restricted version, was announced by the
author during the Chapel Hill Symposium on Congestion Theory (Smith
and Wilkinson (1965), pp. 132—133). The proof then available was needlessly
complicated; it will now follow from a useful general theorem on generating
functions (Corollary 3.1, below).

In Smith (1967) a class J( of 'moment functions' M(x) is introduced
as a means of dealing with problems involving a random variable X, say,
when it is given that the highest absolute moment of X known to be finite
is not necessarily an integral power of X. For example, one might be given
that g\X\% log+|Z| < 00. In Smith (1967) the use of such information in
the expansion of characteristic functions and in certain renewal-theoretic
problems is discussed. A rather more fundamental property of a large class
of these functions M is as follows. If Xt, X2, . . ., are independent and
identically distributed random variables such that 0 < /i = SXn < 00 and
if Sn = Xj+ . . . +Xn, then provided £M(\X\) < 00 it follows that
#M(\Sn\)~M(n[t) as n -> 00. This result is described in detail in Theorem 2.

Theorem 3, below, is then an easy consequence of Theorem 2. It con-
cerns the finiteness of SM(\SN\) when N is a non-negative integer-valued
random variable independent of the {Xn}. When the {Xn} are themselves
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also non-negative integer-valued random variables we are led at once to
Corollary 3.1, below, concerning a useful closure property of probability
generating functions. As explained, it is from this Corollary that we deduce
Theorem 1, the original object of the present work.2

We now state:

THEOREM 1. (i) Let {Xn} be an infinite sequence of independent and
identically distributed random variables, with common distribution function
F(x) = P{Xn ^ x), such that 0 < SXn g +00.

(ii) Write Sn = X{-\- ... -\-Xn, as usual, and Tn = max{51( S2,..., Sn}.
(iii) Lei v ^ 0 be an integer and M(x) be a non-decreasing function of

x 5g 0 such that M(x)/x is non-increasing for all large x. Suppose M(0) > 0
(and note that M(x) may be a constant identically). Then any one of the fol-
lowing three statements implies the other two:

(1.1) f° \x\w>M(\x\)dF{x) < 00;
J —OO

(1.2) 2 n^-1)M{n)P{Sn ^ 0} < 00;
n = l

(1.3) 2 n"M(n)P{Tn g 0} < 00.
u=l

In order to prove this result on random walks, which incidentally
is of some relevance to the theory of queues, we prove the following Theorem
2. This theorem would appear to be of general interest.

THEOREM 2. Suppose the conditions and notations (i), (ii) and (iii) of
Theorem 1 hold, with the additional proviso that {i = SXn <C 00.

Then, if ^X^'M^Xj}) < 00, it follows that, as n -> 00,

If, however, p, = SXn = 00 (which can be the case only when v = 0) one
can infer from SMfl-Xjl) < 00 only the weaker conclusion SM(\Sn\) = 0(n).

From Theorem 2, as already explained, we can easily deduce the fol-
lowing theorem concerning moments of sums of random numbers of random
variables.

THEOREM 3. (i) Let {Xn} be an infinite sequence of independent and
identically distributed random variables such that 0 < SXn < 00 and write
Bn(x) = P{Sn ^ x) for n = 1, 2, . . .; B0{x) = P{0 ̂  *}.

2 The special case of this theorem when M is a constant was obtained by Heyde (1964).
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(ii) Let {cn} be % discrete probability distribution {i.e. cn ^ 0, all n, and
£ ~ cn = 1) such that c0 < 1.

(iii) Let the d.f. A{x) be thus defined:

n=0

(iv) Let v and M(x) be as in Theorem 1 (iii).
Then a necessary and suffideni condition to ensure that

(1.4) (^ \x\"M(\x\)dA(x) < co
J — 00

is that both the following statements be true:

(1.5) C^ WMi^dB^x) < co;
J —OO

oo

(1.6) ^n"M(n)cn < oo.
7 1 = 1

//, for the case v = 0, it should happen that (i), . . ., (iv) hold except for
the fact that SXn — +00 then one can still infer that (1.4) is true if (1.5) is
given, together with the condition 2i° wcn < °°-

If v and M(x) are as in Theorem 1 and if Yl{s) = *%nns
n, O ^ s ^ l ,

is a probability generating function, then we shall say that J J is in the
class &{v, M) if

^n"M(n)7in < 00.
n=l

An immediate corollary to Theorem 3 is the following:

COROLLARY 3.1. Let v and M(x) be as in Theorem 1 (iii) and let a(s),
/3(s), y(s) be probability generating functions, 0 5S s 5S 1. Suppose that
P(s) = 2 ~ bns

n, that £S° nbn < 00, and that a(s) = y (/3(s)). 27K:» a e ^(v, M)
if and only if both /3 and y belong to @(v, M).

If, for the case v = 0, it should happen that '£™nbn = 00 one can still
infer that a e ^(0, M) if it is given that fi e &(0, M) and £1° ncn < 00.

We close this introduction by mentioning that in the course of proving
Theorem 2 we establish the following:

COROLLARY 2.1. Under the conditions of Theorem 1, for any e > 0,

\Sn\"M(\Sn\)d'P = 0{n"M(n)),J
> e

as n ->• oo.

Needless to say, every result in this paper which depends on the

https://doi.org/10.1017/S1446788700007680 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007680


432 Walter L. Smith [4]

condition 0 < SXn fS, oo has a counterpart when — oo 5S SXn < 0; the
essential requirement being SXn =£ 0, of course.

2. On moment functions and some preliminary lemmas

In Smith (1967) we have introduced a class <J( of moment-functions.
A function M(x) belongs to J( if: (i) it is nor-decreasing in [0, oo); (ii)
M(x) ^ 1, all x S 0; (iii) M{x+y) •£ M(x)M(y) for all x, y S 0. If
M eJK and, additionally, (iv) M(2x) = 0(M(x)) for all x 5; 0 then we say
M e'~#*. We say a d.f. F(x) is in the class <&(v, M), for any real v ̂  0,
i1 J iS |*|"M(|a;|)iF(a;) < oo. From the point of view of defining a class
^(r, M), the moment function M(a;) can be replaced by any non-decreasing
function N(x) such that N(x)^cM(x) as x-+ co("cf>(x)^:ip(x) as ar^-oo"
means that there exist positive constants d and zl such that d<j> (x) ^
tp(x) ^ zl</>(x'l for all large a;). Thus we are led to introduce an extended class
E^f* in such a way that a function N(x) e E^tf* if we can find a function
M(x) eJK* such that N(x)^:M(x) asx->joo. We can then say M(x) represents

Suppose that for some / I S O and some A > 0 the function N(x)
satisfies the following:

(i)' N(x) is non-decreasing for x S; A;
(ii)' N(A) > 0;

(iii)' N(x+y) ^ AN(x)N{y) for all x ^ A, y ^ A;
(iv)' A (̂2x) = 0(N(x)) for all x ^ A.

Then we may suppose, with no less of generality, that AN (A) 5: 1 and define

M(x) = AN(x), x^A,
= M(A), x^A;

the function M(x) so defined belongs to JK*. Thus a function N(x) satisfying
(i)', (ii)', (iii)' and (iv)' above belongs to EJ(*.

Now suppose that, for some A 5: 2, M(x) is non-decreasing and
M(x)/x is non-increasing for all x S A, and M(A) > 0. Let v S; 0 be a
constant, and define Nv(x) = x"M(x) for all x S A. It is clear that (i)'
and (ii)' above are satisfied by Nv(x). Further, if x ^ A and y ^ A,

Nv(x+y)
Nv{x)Nv{y) ~ x'yv ' M(x)M(y) \ x+y

But, since M{x)\x is non-increasing,

iMi^y)^

so that
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Nv(x)Nv(y) = \x + y) \M(x) + M(y)i

— M(A)

since x ^ A, y ^ A. Thus N(x) satisfies (iii)' above. Finally, for a; 5: A,

Nv(2x) ^ 2

Nv(x) M(x)

x (M(2x
~ M(x) \ 2x

< 2C+» -JL_ [MipC)\
M(x)\ x I'

Thus Nv(x) also satisfies (iv)' and so belongs to E<Jf* and there will be a
function Mv(x) e^#* which represents Nv(x). We shall make frequent use
of these functions Mv{x).

With these preliminaries set aside we can now prove the following.

LEMMA 2.1. Let k ^ 1 be an integer and let M(x) tJ(. Suppose Xlt

X2, . . ., Xk are independent and identically distributed random variables and
write Sf = X x + . . . +X,- for j =1,2, . . ., k. Then £M(\Sh\) < oo if and
onlyif £M{\XX\) < oo.

PROOF. Clearly M(\Sk\) ^ M(2* \X}\), and so, by a property of func-
tions in ^#,

3 = 1

Therefore
*M(\Sk\) ^

and part of the lemma is proved.
If P{XX ^ 0} = 1, or if P{XX ^ 0} = 1 the rest of the proof is trivial.

Suppose therefore that both P{XX ^ 0} > 0 and P{X1 < 0} > 0. Then
both PiS,:^ ^ 0} > 0 and P{Sk_1 < 0} > 0. The finiteness of £M(\Sk\)
then implies that, for example,

is also finite. However, if both Sk_± and Xk are negative then \Xk\ < \Sk\
and so

^{M(\Xk\)\S]e_1<0;Xk<0}

must be finite. But Xk and Sk_x are independent. Thus £{M(\Xk\)\Xk < 0}
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is finite. Similarly one can deal with £{M(\Xk\)\Xk ^ 0}, and the lemma
follows.

LEMMA 2.2. // , for large x,L{x) is non-increasing and xL(x) is non-
decreasing, then

lim lim sup

and
. L(T+7n)

lim lim mi ———-— = 1.
eio+ n->«> L(n)

PROOF. If we set M(x) = xL(x), then

M{l+sn) >

M(n) = '
which implies that for all n

Lll+en) 1

- L(n) ~ l+e

The lemma follows at once from these inequalities.

3. Proof of Theorem 2

Let us first assume that 0 < fi < oo, and postpone discussion of the
case fi = oo.

Let us write Mv{x), v > 0, for any member of JK* such that
Mv{x)^ixvM(x) as x-^ oo. Suppose that the integer v 5: 1. Then we can
find a Kx > 0, K2 > 0, such that, for all large x,

1 ' ' ^

For large R > 0 and small E > 0, define events

An{e)={\Snjn-ii\ ^e}
Bn(R) = {ISJn-^l > R}.

Further, for n = 1, 2, • • •, let

Then
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by symmetry and the inequality \Sn\ :£ |-X"il+ • • • +|XB|. But

by a defining property of ^#*. Hence we have

MR, n) <£ g- f M,(|XJ)

M), say.

Because XB and 5n_j are independent we have

K\ jxMv_x(nix)

using the fact that X1 and Xn are identically distributed. In a similar way
we find

For integer A ^ 0, let J^A be the hypothesis that the following two
statements are true:

(i) «?MA(|SJ) = 0(M
(ii) For all sufficiently large R, AX(R, n) -> 0, as n -> oo.

The inequalities (3.2), (3.3) and (3.4) show that if S'M^X^) is finite
and if ^f(v_Xi is true, then

(3.5) AV(R, n) - ^0 , as n^ oo,

for all large i?. Furthermore,

( 3-6 )

But, for some K4 > 0,

Mv(R+fin)
Mv(im)
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since M{x)jx is non-increasing
From (3.5), (3.6) and (3.7) we see that

£Mv{\Sn\) = 0(Mp(nfi)), as w ^ oo.

Thus Jt„ is true if JF^D is true and £Mv(\Xi\) < oo. Plainly we desire
to show that Jf0 is true, from which it would follow (if &MV{\XX\) < oo)
that J f „ is true.

Let us write M(x) = xL(x), where L(x) is a non-increasing function
of x. Then

\Sn\L(\Sn\

(3.8)
?,») = [

J B
niuL(n/i)

dP

»(«) n
dP.

Let us define, in a familiar way, for n = 1, 2, • • •, X+ = Xn if Xn ^ 0,
Z+ = 0 if Xn < 0. We then have X~ = X+-Xn; fj,+ = SX\ and fi~ =
SX~, both necessarily finite because S\Xn\ < oo; S+ = X\-\ +X+,
and so on. We then have (R S> ft),

(3.9)
J

Bn(R)
dP+ J. dP

By the weak law of large numbers, for any e > 0

P{\Stln-,x+\ ^ «} - • 1,
so that

lim inf f — dP ^ {p+-

But #{S+ln) = fi+, and hence, for > /*++£,

lim sup

The arbitrariness of E tells us that

f -

L

i P - • 0, n -> oo.

A similar argument will deal with the second integral in (3.9) and show that

!=
n

n -> oo.
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This result coupled with the observation that L(R—un) 5S L{jm), for
R^- [i, enables us to deduce from (3.8) that

A0(R, n) -> 0, n -> oo,

for R sufficiently large. The proof that #M(\Sn\) = O(M(nfi)) now follows
easily from our inequality (3.6) with zero substituted for v.

Thus hypothesis Jf0 holds and consequently so does &FV. We shall
now use the weak law of large numbers to infer that, for any e > 0,
P{An(s)} -> 1 as n -> oo. We then have, writing ~ An(s) for the event which
is complementary to An(e).

L i~ n[

\ (iM-l)

by an argument we have already used. Therefore, using the fact that
Ar(R, n) ->• oo as n -> oo, we can infer that

(3.10) «f|Sj"M(jSj) = J^(e) \Sn\»M{\Sn\)dP+o(Mv[np)).

We first deduce from (3.10) that

S\Sn\
vM(\Sn\)(3-11) Hm sup - L i - - i L ^ ,s lim sup

{nu)»M(np)

^ 1,

in view of the arbitrariness of £ and Lemma 2.2. We secondly deduce from
(3.10) that

. <?\Sn\"M(\Sn\)
hm inf

n-«. (nfi)"M(nfi)

^ 1,

by the arbitrariness of e and the weak law of large numbers. The theorem
follows from (3.11) and (3.12).

Finally we must deal with the case v = 0 and SXn = oo. We have, by
the monotonicity of M (x),

M(\Sn\) £.M(\X1\+---+\Xn\)
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But, since M(x)/x may be supposed non-increasing for all x S: 0, we have
inequalities like

iM(\X1\+---+\Xn\
iI l

and thus discover that

M(\Sn\) ^ M(\X1\)+ • • • +M(\Xn\).

Hence, if <sfM flX^) < co, it follows that &M{\Sn\) = 0(«) and the
theorem is complete.

It will be clear from our proof that Corollary 2.1 is also established.

4. Proof of Theorem 3

Let k be the least integer such that ck > 0. Then it follows from the
assumption A e £&(v, M) that Bk e 3)(y, M); in other words, we have

g\Sk\>M(\Sk\) < oo.

From Lemma 2.1 we then have that

{\X\) < oo.

If we may suppose 0 < <§XX < oo, we can now appeal to Theorem 2 and
deduce that

£\Sn\"M(\Sn\) ~ (nfi)"M(n/x), n -> oo.

From this asymptotic relation and the assumption A eSi{v,M) we are
easily led to the conclusion

{nfi)"M(n/i)cn < co.
n = l

The necessity part of the theorem then follows from the easily proved fact
that M (tifi) ^. M (n). It should also be obvious at this stage how to prove
the sufficiency part of the theorem.

Suppose now that v = 0 and fi = SXn = oo; suppose further that we
are given that (1.5) and (1.6) are true. Then, from (1.5),

oo,

and then, from the last part of Theorem 2, we infer that

£M{\Sn\) = 0(»).

We may then conclude from (1.6) that

which is (1.4), the desired result.
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5. Some results on random walks; proof of Theorem 1

We continue the assumption that {Xn} is a sequence of independent
and identically distributed random variables; we write F(x) = P{XX <S x}
for their common d.f. and Sn = Xt-\- • • • -\-Xn, as usual, for the partial
sums. We suppose 0 < S'X1 5S + oo.

The following Theorem A is an easy consequence of Theorem 6 of
Smith (1967). In that paper it is supposed that SXX is finite whereas we
are here making no such assumption. If SXX = +oo, however, a suitable
truncation argument suggests itself readily. It will be interesting to see
how much is a consequence of this Theorem A.

THEOREM A. Let &(x) e^* and suppose

f° \x\0{\x\)dF(x) < oo.
J — OO

//, for any constant y < SXX, we write

n=l n

then /l(0) < oo and

f° 0(\x\)dA(x) < oo.

/ / S'X1 = oo we may take y arbitrarily large.
We note that A (a;) is obviously a non-decreasing function of x 5S 0

and that <P(|a;|) A(x) -*- 0 as x -v — oo. Thus, after an integration by parts,
the conclusion of Theorem A can be rewritten:

f° A{x)\d0{\x\)\ < oo.
J —oo

This means

| i j P{Sn-ny ^ x}\d0(\x\ < 00

so that

| i f P{Sn-ny ^ x}\d0 (|a;| ) | < o o
n=l n J -ny

and a fortiori

(5.1) I ^1=^ ^{5, S „} < oo.
7i=i n

Let Mv(x) represent x"M(x) in J(*, where M(x) is as defined in the
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enunciation of Theorem 1. Then we deduce from Theorem A and (5.1) the
following:

RESULT 1. (1.1) implies (1.2).
Elsewhere in Smith (1967) it is shown that the assumption SXX > 0

implies the existence of constants p > 0, r\ > 0, such that

P{Sn ^ 0} ^ pnP{X1 ^ -w?}.

Thus, if (1.2) holds, we must have
oo

2Mv(2nrj)P{X1 ^ -nrj) < oo,
n=l

since Mv(2nr])zzMv(n) as n -> oo. Therefore

Mv{2rr,)\ P{-(n+l)V < X, ^ -nV} < co.(
n=l l r= l

But, for large n,

r=l

Hence

Xx ^ —WJ;} < 00.
n=l

We have therefore established:

RESULT 2. (1.2) implies (1.1).
Let us now define, for n — 1, 2,

Tn = max {S1; S2, • • •, Sn}

nn = P{Tn ^ 0}

ln = I P{5n 5S 0}.

Then a familiar identity of Spitzer (1956) states that, for 0 ^ s < 1,
OO CO

(5.2) l+2Xs"

From this identity, on comparing coefficients, it is clear that nn ^ Xn for
all n. Thus we have:

RESULT 3. (1.3) implies (1.2).
Finally, suppose again that (1.2) holds. Then we can set

https://doi.org/10.1017/S1446788700007680 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007680


[13] Some results using general moment functions 441

CO

A = 2 K < °°
K = l

and

n=l

will be a probability generating function in the class @(v, M). Further-
more

y(s) = eA{s~v

is the familiar Poisson probability generating function and y(s) is plainly
a member of @(v, M). From Corollary 3.1 we can infer that y(P(s)) is
another member of ^{v, M) if only we can be sure that the "mean' of f](s)
is finite, i.e. that

oo

2 nXn < oo.

This is the same as the statement

(5.3) 2 P{Sn ^ 0} < oo.
n=l

When v 25 1, (5.3) is a consequence of (1.2), which we are assuming true.
Thus, when v ^ 1, we have.

RESULT 4. (1.2) implies (1.3).
Finally, we must also prove Result 4 when v = 0. In this case (5.3) is,

in general, false. However, if we expand the Poisson generating function
y(s) = 2o°cns" ^ is obviously true that 2i°MCn < °°- Thus the case v = 0
of Corollary 3.1 completes the proof of Result 4.

Theorem 1 follows from Results 1, 2, 3, and 4.
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