and are generally the holders of County Council and other scholarships. If the early methods of these boys are not up to date there is waste all the way round-waste that can be prevented if those in authority will see to it.-Yours faithfully,
T. C. Philpott.

Queen Mary's School, Basingstoke.

THE PILLORY.

Dear Sir,-I send the following question from the last Responsions Arithmetic paper. You may find it worth printing in the "pillory."

The hands of a clock are together at 22 minutes past 4 . Is the clock slow or fast, and how much does it lose or gain in an hour of true time? The italics are mine.-Yours faithfully,
G. P. Blake.

Bradfield College.

ANSWER TO QUERY.

[67, p. 330, vol. v.] This theorem is due to Mr. V. Ramaswami Aiyar. It appears in an article contributed to the Proc. Ed. M. Soc., 1896-7.

My proof of the theorem is given in the Ed. Times Reprint, Vol. 17, June 1910. It depends on the fact that the common pedal circle of F, F^{\prime} (the auxiliary circle of the in-conic) cuts the medial or N.P. circle in ω, ω^{\prime}, the orthopoles of $O F^{\prime}, O F^{\prime}$; i.e. the points whose Simson lines (in the medial circle) are parallel to $O F, O F^{\prime}$. When ω^{\prime} coincides with ω, then $O F^{\prime}$ falls on $O F$, and hence the well-known theorem: If $F F^{\prime}$ passes through O, the pedal circle of $F F^{\prime}$ touches the medial circle.

Feuerbach's theorem is, of course, a particular case.
May I be permitted to state what is known at present of this very curious and interesting 'orthopole'?
(The initial N. stands for Professor J. Neuberg ; G. for the present writer.)

1. If $A p, B q, C r$ be \perp rs on a given line L, then the \perp rs from p, q, r on $B C, C A, A B$ respectively are concurrent at a point ω called the orthopole of L. (N.)
2. L being $p x+q y+r z=0$ (in barycentric coordinates), ω is given by

$$
2 \Delta x=q(r-p) c a \cos B-r(p-q) a b \cos C+a^{2} b c \cos B \cos C . \quad \text { (G.) }
$$

3. If L cuts the circle $A B C$ in T, T^{\prime}, then ω is the point of intersection of the Simson lines of T, T^{\prime}. (N.)

If $\theta_{1}, \theta_{2}, \theta_{3} ; \lambda, \mu, \nu ; \lambda^{\prime}, \mu^{\prime}, \nu^{\prime}$ are the direction angles of $T T^{\prime}$ and the Simson lines, then for ω,

$$
\begin{equation*}
\alpha=2 R \cos \theta \sin \lambda \sin \lambda^{\prime}, \text { etc. } \tag{G.}
\end{equation*}
$$

4. For the quadrilateral formed by L and the sides of $A B C$, the common R.A. of the three diameter circles passes through ω. (N.)

The power of ω for these three circles $=2 d \delta$, where d, δ are \perp rs from O and ω on L; also $\delta=2 R \cos \theta \cos \theta_{2} \cos \theta_{3}$. (G.)
5. The most remarkable of all the properties of the orthopole is that discovered by M. T. Lemoyne.

Lemoyne's Theorem. The power of ω for the pedal circle of every point F on L is constant. The three diameter circles are pedal circles, so that this common power $=2 d \delta$.
6. Another noteworthy property has been recently published by Prof. Neuberg.

Neuberg's Theorem. If parallel forces $\cos \theta_{2} \cos \theta_{3} \sin A$, etc., be applied at the vertices of the pedal triangle of any point F on L, then their centre is a fixed point, the orthopole.

