
3
Resonances

3.1 How to examine unphysical sheets of the amplitude

In the previous lecture we have discussed in detail that owing to unitarity,
analyticity and crossing symmetry – the general properties of the theory –
all the physics of hadron interactions is determined, in principle, by the
spectrum of real particles.

We saw that the interaction constant – the measure of the interaction
strength – entered only as a residue in the pole of the scattering amplitude.
Can it be true that the plethora of phenomena in the hadron world is
described by a single quantitative characteristic – the residue?

This situation looks strange and profoundly unsatisfactory from a theo-
retical point of view. It makes one wonder whether there is not something
hidden beyond the mass spectrum that we have introduced.

Philosophy aside, it is important to know how the amplitude behaves
in the vicinity of the cut. We cannot say a priori that it changes smoothly
there, since the question of smoothness of a multi-valued function is a
delicate one.

If we position ourselves near the cut on the physical sheet then, rather
close in the energy variable, we have an unphysical sheet about which
nothing had been said so far. If there is a singularity (for example, a pole)
on the unphysical sheet close to the physical one, the amplitude on the
physical sheet would be changing fast.

Thus, knowing the analytic structure of the physical sheet alone turns
out to be insufficient. We need information about what is happening on
the other sheets of the scattering amplitude, what sort of singularities
could be there.

73
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74 Resonances

We have to find means to extend – to continue – our knowledge of the
amplitude ‘under the cut ’. It is clear that perturbation theory would be
of no help here. Nevertheless, there is a way to get under the cut.

Let us recall the unitarity condition:

− = i ,

A(s + iε, t) −A(s− iε, t) = i

∫
d4k

(2π)2
δ
(
m2

3 − k2
)
δ
(
m2

4 − (p1 + p2 − k)2
)

·A(p1, p2, k)A∗(p5, p6, k). (3.1)

Since each of the block amplitudes A, A∗ depends in fact on two invariants,
it is convenient to rewrite the integral in terms of the Lorentz invariant
momentum transfers,

A(s + iε, t) − A(s− iε, t)

=
∫ ∫

dt1 dt2K(s, t1, t2) ·A(s + iε, t1)A(s− iε, t2), (3.2)

where we have introduced K as the corresponding Jacobian transforma-
tion factor.

Now take A(s− iε) to the r.h.s. and try to look upon (3.2) as an integral
equation for A(s + iε, t) with the kernel

∫
dt2K(s, t1, t2)A(s− iε, t2) and

an inhomogeneity A(s− iε, t). Imagine that we learned how to calculate
the integrals and managed to solve the equation. What would have been
the gain? We would have expressed the analytic function on the upper
side of the cut, A(+), in terms of that on the lower side of the cut:

A(s + iε) = F (A(s− iε))
+

−A

A
(3.3)

Till now we kept s real and used iε to separate the points at the two
sides of the cut. Let us now give an imaginary part to s itself, a negative
one to be definite. Then the argument of A(s− iε) would simply move
onto the lower half-plane of the physical sheet, while the ‘upper’ function
A(s + iε) whose argument is tightly linked with that of A(s− iε), will
cross the cut and occur on the lower half-plane too, but on another –
unphysical – sheet!

Under such continuation the relation (3.3) has acquired a new mean-
ing: the value of the amplitude at a given point on the unphysical sheet is
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3.2 Partial waves and two-particle unitarity 75

now (functionally) determined by the value of the physical amplitude.
Along this way we would have solved a remarkable problem, namely,
with the help of the unitarity condition we would have examined the
content of the unphysical sheet and, in particular, found the singular-
ities of the amplitude there (which is what concerns us in the first
place).

3.2 Partial waves and two-particle unitarity

The programme that we have described is easy to carry out for the first
unphysical sheet related to the two-particle unitarity condition (which
holds for 4μ2 < s < 9μ2).

Recall the partial wave expansion

A(s, t) =
∞∑
�=0

(2� + 1)f�(s)P�(cos Θ) . (3.4)

It is clear that in these terms the unitarity condition (3.1) will simplify
greatly. Indeed, � – the total angular momentum in the cms – is a con-
served quantity. Therefore, if we choose an initial state with a given �,
the intermediate state will be uniquely determined and the integration
on the r.h.s. of (3.1) will have to disappear. Let us see how it actually
happens.

First we attend to the momentum integration in (3.1):

d4k = |k|2 d|k| dk0 dΩ =
1
2
|k| dk2 dk0 dΩ , δ

(
m2

3 − k2
)
dk2 = 1 .

In the cms we have p1 + p2 = 0, p10 + p20 =
√
s, so that

δ
(
m2

4 − (p1 + p2 − k)2
)

= δ
(
m2

4 −m2
3 − s + 2k0

√
s
)
.

Taking off the integration over k0 we arrive at

ImA(s, t) =
1
2

∫
dΩ

(2π)2
· 1
2
|k| · 1

2
√
s
A(s, t1)A∗(s, t2)

=
|k|

8π
√
s

∫
dΩ
4π

A(s, cos Θ1)A∗(s, cos Θ2). (3.5)

https://doi.org/10.1017/9781009290227.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.004


76 Resonances

The modulus of the intermediate state momen-
tum k is fixed by the on-mass-shell conditions.
The partial wave expansion will help us to per-
form the remaining integration over its direc-
tion angles. Using (3.4) for the amplitudes on
the l.h.s. and r.h.s. of (3.5) we have

θ1 θ2

p1 p5θ

k

ImA(s, t) =
∞∑
�=0

(2� + 1) Im f�(s)P�(cos Θ) =
|k|

8π
√
s

∑
�1,�2

f�1(s)f
∗
�2(s)

×(2�1 + 1)(2�2 + 1)
∫

dΩ
4π

P�1(cos Θ1)P�2(cos Θ2) (3.6)

=
|k|

8π
√
s

∞∑
�1=0

f�1(s)f
∗
�1(s)(2�1 + 1)P�1(cos Θ),

where we used the well-known orthogonality relation for spherical func-
tions (Legendre polynomials),∫

dΩ
4π

Pn(cos Θ1)Pm(cos Θ2) =
δnm

2n + 1
Pn(cos Θ).

Comparing the two sides of the equation, we retrive the unitarity condition
for a partial wave with angular momentum �,

Im f�(s) = τf�(s)f∗
� (s), (3.7a)

τ = τ(s) ≡ kc
8π

√
s

=
1

16π
kc
ωc

, (3.7b)

with kc the modulus of the intermediate state momentum in the cms:

kc ≡ |k| =

√
s2 − 2s(m2

3 + m2
4) + (m2

3 −m2
4)2

2
√
s

, ωc =
√
s

2
. (3.8a)

For the case of equal masses, m3 = m4 = m,

kc =
√
s− 4m2

2
. (3.8b)

The solution of the elastic unitarity condition (3.7a) reads

f�(s) =
1

2iτ(s)

[
e2iδ� − 1

]
=

sin δ�
τ

eiδ� , (3.9)

with δ� = δ�(s) the scattering phase in a given angular momentum state.
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s 
= 

4m
2

s 
= 

0

u s

t

t = 0

t = 4m2

t = −(s − 4m
2

)

Fig. 3.1 Three integration intervals on the Mandelstam plane. The amplitude
is complex at s > 4m2 and s < 0 (on the thick lines).

3.3 Analytic properties of partial waves and resonances

We are now going to discuss analytic properties of f�(s). We will need the
expression for the partial wave which is complementary to (3.4):

f�(s) =
1
2

∫ 1

−1
d cos Θ P�(cos Θ)A(s, t(cos Θ)) . (3.10)

The cosine of the scattering angle,

cos Θ = 1 +
2 t

s− 4m2
,

varies between −1 and +1. On the Mandelstam plane this corresponds to
integration over t from t = −(s− 4m2) up to t = 0 (Fig. 3.1). For s > 0
the partial wave f�(s) mirrors analytic properties of the amplitude A: it is
real for s < 4m2 (since the integration interval then lies inside the triangle
where A is real) and is complex above the threshold, s > 4m2. For s < 0
f�(s) becomes complex again; this time because of the integration contour
hitting t- and u-channel thresholds.
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78 Resonances

Since f�(s) is real on a finite interval in the s-plane, it assumes complex
conjugated values on the sides of the cut:

(f(s))∗ = f(s∗).

Therefore we can represent (3.7a) in terms of discontinuity as

1
2i

[ f�(s + iε) − f�(s− iε) ] = τ(s)f�(s + iε)f�(s− iε).

The formula

f�(s + iε) =
f�(s− iε)

1 − 2iτ(s)f�(s− iε)
(3.11)

solves the problem of analytic continuation of the amplitude (to be precise,
of each of its partial wave components) onto the first unphysical sheet
related to the two-particle threshold.

So, what are the singularities on the unphysical sheet? Obviously, f�(+)
has the same cuts as f�(−). In addition, it acquires new singularities –
poles – where the denominator in (3.11) vanishes, that is in the points
where

f�(−) =
1

2iτ(s)
. (3.12)

These poles on the unphysical sheet(s) are called resonances. The position
of such a pole depends essentially on the value of the coupling constant. If
the coupling is small, so is the physical scattering amplitude. The ampli-
tude can reach a finite value which is required by the resonance condition
(3.12) only if interaction is strong enough.

We can reverse the statement:

It is the resonance states that bear additional essential information about
interaction that we talked about in the beginning of this lecture.

What is the reason that we have not met singularities more complicated
than simple poles?

To answer the question we return to the integral equation in the general
form of (3.2). The t1, t2 integrations run over finite intervals; moreover,
the kernel of the equation,

φ(s, t, t1) =
∫

dt2K(s, t1, t2)A(s− iε, t2),

is a smooth regular function since it is determined by the amplitude on
the physical sheet where the amplitude is regular. Therefore, our equation
is a standard integral equation of the Fredholm type whose solutions may
have only poles (at the points where the Fredholm determinant vanishes).
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3.4 Three-particle unitarity condition 79

3.4 Three-particle unitarity condition

Producing only poles is an intrinsic property of the simplest – two-
particle – unitarity. The continuation of the three-particle unitarity re-
lation is technically much more involved. We shall outline the main plan
of the corresponding analysis. The sketch that follows will suffice for us
to grasp the qualitative features of the answer.

Below the four-particle threshold the unitarity condition has the fol-
lowing schematic structure:

1
i

− = + . (3.13)

A new object entered namely, the amplitude A2→3. For the latter we have
its proper unitarity equation,

1
i

− = + . (3.14)

The last kernel A3→3(−) contains an irreducible scattering amplitude,

but also various reducible pieces of the type b
c

a
so that

symbolically

= + . (3.15)

If the last contribution were not present, the result would have been sim-
ilar to what we had in the two-particle case. That is, an analytic con-

tinuation of beneath the cut would have produced only poles,

namely the old two-particle and new three-particle resonances. The new
piece, however, is not of the Fredholm type. The corresponding kernel is
singular as it contains δ(pc − p′c) – one of the particles did not scatter.

How would this complicate the answer? To understand the key features
let us keep only the singular term in (3.14) and iterate the equation for
A2→3(+):

∼ + i

= i + i 2 + . . .
(3.16)
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80 Resonances

Comparing the chain of the A2→2(−) blocks in (3.16) with that of the
iterated two-particle unitarity condition,

= + i ,

= + i + i 2 + . . .

we observe that

∼ + i
a
b .
c

(3.17)

In the course of the analytic continuation, the (−) amplitudes stay on the
physical sheet while the amplitude A2→2(+) moves to the first unphysical
sheet where, as we know, it has resonance poles in the pair energy sab.

How will this affect analytic properties of the two-particle scattering
amplitude on the l.h.s. of (3.13)? Let us substitute the resonance pole
term into the r.h.s. of (3.17) and then into the unitarity condition (3.13):

∼ . . . + i2 ∼ .

This is a typical diagram for a threshold branch cut due to the exchange
of two poles, one of which is a normal particle and the other – a resonance.

Thus, on the second unphysical sheet related to the three-particle cut
9μ2 < s < 16μ2 we find, apart from poles with complex masses, also cuts –
creation thresholds of pairs of a particle with a resonance (from the first
unphysical sheet).

In perturbation theory poles have led to the appearance of threshold
cuts on the physical sheet. Analogously, on the other sheets there emerge
particle–resonance, resonance–resonance, etc. thresholds.

Now we are in a position to formulate the qualitative answer for the
analytic structure of the amplitude:

The full analyticity image is poles – particles and resonances – all other singu-
larities being the unitarity driven consequence of the existence of these poles.

3.5 Properties of resonances

Both theoretically and experimentally resonances are as important as or-
dinary particles. Therefore we need to learn how to describe them, in the
first place.
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3.5 Properties of resonances 81

Let us draw an analogy. A particle is characterized by its mass and
spin. A usual pole amplitude we describe in terms of a diagram

m, σ
(3.18)

Does it make sense to draw an analogous diagram for a resonance?

(3.19)

If the series (3.4) converges,

A(s, t) =
∞∑
�=0

(2� + 1) f�(s) P�(cos Θ), (3.20)

the full amplitude will but repeat all the poles of the partial waves. The
contribution to the amplitude of the resonance in the �-wave,

f�(s) =
r

m2
res − s

, (3.21)

will be

Apol = (2� + 1)
r P�(cos Θ)
m2

res − s
. (3.22)

Now we should check that (3.22) coincides indeed with the Born amplitude
of the s-channel exchange of a particle with spin σ = �.

3.5.1 Angular dependence

How would we write a Feynman diagram for a particle with a given spin
σ? In the case of a scalar, σ = 0, the amplitude

Apol = =
g2

m2 − s

does not depend on angles.
The propagator of a vector particle, σ = 1, contains vector indices and

the exchange diagram takes the form

A = g2 ΓμD
μν(k)Γν ; (3.23)

Dμν(k) =
−gμν + b · kμkν

m2 − k2
. (3.24)
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82 Resonances

In QED we dealt with a vector particle – a photon. There we were allowed
to omit the term b · kμkν . Remember why? Because due to the conserva-
tion of the electromagnetic current the interaction was insensitive to this
piece in the photon Green function. Not so in a general case, and we ought
to determine the coefficient b in (3.24).

A vector particle has three polarization states that are ‘propagated’ by
the propagator

Dμν(k) =
3∑

λ=1

eμλ(k)eνλ(k)
m2 − k2

. (3.25)

How to choose three out of four independent vectors? To this end we have
to invoke an additional condition

kμe
μ
λ = 0 . (3.26)

In the rest frame of the particle this condition turns into me0
λ = 0,

eμλ = (0, eλ) , λ = 1, 2, 3.

These are usual space vectors describing three possible spin projections.
Taking into account the transversality condition (3.26), the Green func-
tion becomes

Dμν(k) =
kμkν

m2 − gμν

m2 − k2
. (3.27)

Now, what to write for the vertex function? Possible vector structures are

Γμ = apμ1 + bpμ2 = α(p1 + p2)μ + β(p1 − p2)μ .

It is clear that the first term will not contribute to the pole. Using (3.27)
we get

(p1 + p2)μDμν(k) ≡ kμD
μν(k) =

kν

m2
· k

2 −m2

m2 − k2
=⇒ finite.

The pole contribution to the amplitude (3.23) takes the form

Apol =
1

2

3

4

σ = 1 = g′2(p1 − p2)μDμν(k)(p3 − p4)ν . (3.28)

To understand the meaning of this expression we go again to the cms of
colliding particles (which we take for simplicity to have equal masses).
Then the vertex functions

(p1 − p2)μ = (0, 2q), (p3 − p4)ν = (0, 2q′)
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turn into three-vectors describing relative momenta of initial and final
state particles, correspondingly:

Apol = g′2
4(q · q′)
m2 − s

.

As compared with the case σ = 0, a scalar product appeared in the nu-
merator,

(q · q′) ∝ cos Θ = P1(cos Θ). (3.29)

It is straightforward to verify that for an arbitrary spin σ the Feynman
diagram describing s-channel particle exchange gives an expression pro-
portional to

Pσ(cos Θcms),

as we have checked for the simplest cases σ = 0, 1.
So, the angular dependence turned out to be the same for particle and

resonance exchanges.

3.5.2 Factorization and unitarity

Now we have to check another very important property of ‘particles’:
factorization. What does it mean? When we draw a Feynman graph, the
initial and final states enter as a product, that is, they are factorized.
If the analogy between resonances and particles is to be preserved, the
residue r in (3.21) should split into the product of two constants each
belonging to the proper vertex,

Ares = a b = ga ·
1

m2 − s
· gb . (3.30)

The fact that it is indeed so is not accidental and is tightly related to
unitarity.

Up to now we have considered elastic scattering and did not differentiate
between initial- and final-state systems (a and b in (3.30)).

It is straightforward to generalize the notion of partial amplitudes for
the case of multi-channel scattering problem by introducing the unitary
scattering matrix

SS† = I ,
∑
c

SacS
†
cb = Iab,
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where a, b, c mark different channels of the reaction. The generalized ex-
pression for the partial wave amplitude describing a → b transition reads∗

fab =
1

2i
√
τaτb

[Sab − 1 ] . (3.31)

The scattering matrix S can be diagonalized with the help of a unitary
tranformation U ,

Sab = U †
acScdUdb,

with S a diagonal unitary matrix

Scd = ScIcd , Sc = exp(2iδc).

Our resonance is a pole in one of its eigenvalues at some complex value

s = M2 = M2
1 − iM2

2 .

Let it be the first element S1; we may write in the pole approximation

S1 =
M∗2 − s

M2 − s
e2iβ =

−2i ImM2

M2 − s
e2iβ + regular.

Here 2β describes the scattering phase away from the resonance:

S1 � e2iβ for
∣∣s−M2

1

∣∣ � M2
2 .

The pole contribution to the full scattering matrix becomes

Sab � Ua1

[ −2i ImM2

M2 − s
e2iβ

]
U †

1b = Ua1
2iM2

2

M2 − s
e2iβ U∗

b1; (3.32a)

fab � Ua1√
τa

M2
2

M2 − s
e2iβ U∗

b1√
τb

=
ga g

∗
b

M2 − s
e2iβ , (3.32b)

where we have introduced the constants

ga ≡ Ua1 ·
M2√
τa

(3.32c)

that measure coupling of the resonance to different particle states a and
play the rôle of (complex) interaction constants. In fact ga can be taken
to be real. This follows from the invariance of the scattering martix with
respect to time reversal. Indeed, in this case the S-matrix is symmetric,
Sab = Sba. This gives Ua1U

∗
b1 = U∗

a1Ub1 so that Ua1 and Ub1 have equal

∗ We don’t write � implying that the total angular momentum is included in the channel
indices a, b (ed.).
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phases which cancel in (3.32a), (3.32b) and, consequently, we can redefine

ga =⇒ |Ua1| ·
M2√
τa

. (3.33)

The resonance contribution to the full amplitude takes the form very
similar to the Born diagram for spin-� particle exchange:

Ares =
ga(2� + 1)P�(z) gb

M2 − s
e2iβ . (3.34)

We see that the resonance appears in all channels, a → a, a → b, b → b
etc., and that the transition amplitudes between various channels are
factorized. This property followed directly from unitarity.

Thus we have checked that both properties of normal particles – the
angular dependence of the amplitude and factorization – hold for complex
poles as well.

3.5.3 Width of the resonance

For resonances, however, there is one more statement which makes no
sense for ordinary particles, namely, the relation between ImM2 and the
coupling constants that also follows from unitarity. Recalling that the
matrix U is unitary, ∑

a

U∗
a1Ua1 = 1 ,

and expressing Ua1 via (3.33) one relates the set of ga with the full width
of the resonance:

∑
a

τag
2
a =

∑
a

a = M2
2 ≡ M1Γ. (3.35)

The constant ga is the transition amplitude between the resonance and
ordinary particles with τa their phase space. Thus the amount by which
the pole is shifted from the real energy axis is determined by the total
probability of the resonance decay into real particles.

3.6 A resonance or a particle?

How to establish a generic link between particles and resonances? Let us
discuss a simple example of how a resonance emerges.

https://doi.org/10.1017/9781009290227.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.004


86 Resonances

Imagine that in some reaction a π0 meson appears as a pole:

π0

Now we switch on the electromagnetic interaction with a very small in-
teraction constant. Then a new transition will emerge, π0 → γγ. How will
this small correction to strong dynamics affect the propagation of π0?

Pion self-energy is determined (in the hadronic language) by a variety
of possible intermediate states such as 3π, NN̄ , etc.:

Σ h =
π0

π

π

π
+

π0

N
N + . . . (3.36)

The point in k2 where the denominator of the Green function

G(k) =
1

m2
0 − k2 − Σ(k2)

turns into zero determines the renormalized pion mass:

m2
π = m2

0 − Σ
(
m2

π

)
. (3.37)

For (3.37) to have a real solution, Σ has to be real. We know that the
graphs of (3.36) become complex at k2 > (3mπ)2 and k2 > (2MN )2, re-
spectively, which scales are significantly higher than m2

π. That was the
case before we turned QED on. Now, however, we shall also have the
graph

Σe.m. = π0 γ γ , Σ(k2) = Σh(k2) + Σe.m.(k2), (3.38)

which has a threshold (and therefore a branch cut) at k2 = (2mγ)2 = 0.
As a result, (3.37) will have no real solution and the π0 Green function
will acquire a ‘resonance’ form

G(k2) =
1

m2 − k2 − im2
2

,

m2
2 = Im Σe.m.(m2) = = g2

π0→γγ · τγγ . (3.39)

What happened? After the introduction of a small-mass intermediate
state the pion pole occurred right on the cut! This, however, would have
contradicted the unitarity condition. Therefore the pole (together with all
multi-state cuts that it generates) moves under the two-photon cut onto
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the unphysical sheet:

m2 9m2 m2 9m
.

2

This analysis tells us that the difference between particles and reso-
nances is elusive. If we believe that electromagnetic interaction has no
major effect on the basic properties of pions as strongly interacting par-
ticles, then it becomes insignificant whether a π-meson is a particle or a
resonance, whether the corresponding pole lies on the real axis or slightly
below.

Concluding, we have proved that a resonance as a contribution to the
scattering amplitude is identical to a particle with definite quantum num-
bers and possesses the usual factorization properties that are characteris-
tic for particle exchange. Therefore we can describe resonances with the
help of Feynman diagrams as we did for particles, the only difference be-
ing a complex mass whose imaginary part is related to the total decay
probability of the resonance into stable particles.

3.7 Observation of resonances

This is the last question that we need to address in this lecture. Imagine
that a beam hits a target and some particles are produced. The probability
amplitude to observe one of these particles a at a given point r at time t,

y xp

pi

a
x = (t, r),

is given by the expression

A =
∫

d4k

(2π)4 i
e−ikμ(x−y)μ

m2 − k2 − iε
f(y, p, pi, . . .), (3.40)

where we have explicitly written the propagator of our particle a.
In a real experiment the observation time t is macroscopically large,

t− y0 � m−1. Therefore the phase factor in (3.40) is oscillating fast with
k, and the integral would be exponentially small if not for the singularity
of the propagator function. Since t− y0 > 0, we can close the integration
contour in k0 around the pole at k0(k) =

√
m2 + k2, that is to put particle
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a on mass shell:

A =
∫

d3k
2k0(k)(2π)3

e−ik0(k)(t−y0)+i(k·(r−y))f. (3.41)

At t → ∞ plane waves in this sum cancel each other everywhere but on
a classical trajectory where r is linearly increasing with t:

∇k[ k0(k)(t− y0) − (k · (r − y)) ] = 0 ⇒ r = vt + r0, v ≡ dk0(k)
dk

=
k
k0

.

It is easy to verify that the probability of observing the particle at r falls
with the distance as

w ∝ |A|2 ∝ 1
r2

,

which is in accord with the increasing size of the surface of the observation
sphere.

If we were to register two particles a and b at the same point,

a
b

x
,

the probability would fall faster with |r| because two particles prefer to
separate at large distances.

Consider now the general case of the observation of two particles.

b

x
x

1

2

a
. (3.42)

Repeating literally the above analysis we will obtain that the observation
probability is concentrated along the trajectories

r1 = v1t + r10, r2 = v2t + r20.

By measuring the directions of particle momenta we can determine, within
the Heisenberg uncertainty, classical trajectories, and verify that the par-
ticles indeed originate from the interaction region.

Suppose now that a and b may combine into a resonance state:

x
x

1

2b

a
. (3.43)

How does this graph differ from the usual particle creation in (3.42)? In the
case of a complex pole with a small imaginary part ImM2 = M2

2 
 M2
1
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we have

k0 =
√

M2 + k2 �
√

M2
1 + k2 − iM2

2

2
√

M2
1 + k2

≡ E − iM2
2

2E
. (3.44)

The amplitude then falls exponentially at large times,

A ∝ e−ik0t ∝ exp
{
−1

2
M2

2

E
t

}
≡ exp

{
−Γ

2
· M1

E
t

}
, (3.45)

and the probability decreases as

|A|2 ∝ exp
{
−Γ t · M1

E

}
. (3.46)

Here the ratio M1/E is the usual Lorentz time dilatation factor. Intro-
ducing the proper life-time τ of the resonance,

τ−1 ≡ Γ =
M2

2

M1
, (3.47)

we conclude that for finite times t ∼ τ · E/M1 our resonance state may
propagate as a whole. Therefore, restoring trajectories of its decay pro-
ducts we will see that a and b originate not from the target but fly away
from a point at some finite distance from the interaction region. This
distance will vary event by event. It is clear, however, that the probability
of a large displacement is exponentially small.

3.7.1 Non-exponential decay?

Sometimes people talk about the ‘non-exponentiality’ of a decay. Cal-
culating concrete integrals I will always find contributions that fall as a
power of t (most often as t−3/2) in addition to the resonance exponent.
Does this imply that the decay law (3.46) is inaccurate?

We register a resonance by observing its decay products. Therefore
there will always be a background due to production of particles a and b
directly off the target. Let us switch on our measuring devices one hour
after irradiating the target; some extremely slow particles could have been
produced that crawl and hit the detectors after this immense time is
elapsed. This power-behaving ‘tail’ has nothing to do with the decay of
the resonance.

3.7.2 Resonance in the invariant mass distribution

Till now we were considering resonances with a small width Γ. For res-
onances that decay relatively fast (large Γ) a direct visual observation
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of the resonance path becomes impossible. In this case resonances are
extracted by examining energetic characteristics of the process.

p1
p4

p5p3
p2

= f(p1, p2, p3)
1

M2 − (p4 + p5)2
g(p4, p5). (3.48)

The resonance propagator in (3.48) introduces a peak in the distribution
over the invariant mass s45 of the pair of particles 4 and 5:

dσ

ds45
∝ |A|2 ∝ 1

(s45 −M2
1 )2 + M4

2

. (3.49)

Let us remark that instead of observing decay products it suffices to
measure the recoil momentum p3, since due to momentum conservation
s45 = (p4 + p5)2 = (p1 + p2 − p3)2.

This method works only when the value of the resonance production
amplitude f is sufficiently large. It may turn out, however, that in reac-
tions that are available to experimenters the resonance is produced with
a small probability.

3.7.3 Phase analysis

In addition to the invariant mass spectrum there is another method
(though less unambiguous) of extracting resonances right from elastic
scattering – the phase analysis. Recall the general expression for the par-
tial wave amplitude describing elastic ab scattering

f�(s) =
1

2iτ(s)

[
η(s) e2iδ�(s) − 1

]
. (3.50)

The scattering phase factor near the resonance is

e2iδ� =
M2

1 − s + iM2
2

M2
1 − s − iM2

2

e2iβ� . (3.51)

If the amplitude away from the resonance is small (as, for example, for
e+e− scattering), then η � 1, β� � 0. In such a case the resonance is im-
possible to miss since the amplitude at the peak hits the maximal value
allowed by unitarity,

f� =
i

τ
= fmax

� for s = M2
1 (η = 1, β� = 0). (3.52)

What to do if the non-resonant scattering is large and the peak does not
stick out from the background?

By measuring the shape of the angular distribution, one can extract a
few first partial waves by fitting the cross section with an approximate
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Fig. 3.2 Example of an Argand plot.

expression for the amplitude

A(s, cos Θ) �
�0∑
�=0

(2� + 1)f�(s)P�(cos Θ).

The following remarkable property of f�(s) then comes onto the stage.
The resonant factor in (3.51),

M2
1 − s + iM2

2

M2
1 − s − iM2

2

� (Mres − E) + iΓ/2
(Mres − E) − iΓ/2

,

equals 1 on both sides of the resonance, |E −Mres| � Γ, but changes fast
in a relatively small energy interval |E −Mres| ∼ Γ. If we put a point on
a complex plane to mark the value of the amplitude f� at a given energy,
this point will make a full circle when the energy variable crosses the
mass of the resonance (provided η, β, τ do not change essentially inside
the interval of the order Γ), see Fig. 3.2.

Combining the three methods that we have described here, a plethora
of hadronic resonances has been established.

The studies of the spectrum of hadrons tells us that the fact of stability/
instability of a hadron under consideration, whether it is a particle or a
resonance, is not of major importance for strong interaction dynamics. It
often looks accidental, depending on an interplay of factors that we rather
consider insignificant today.
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