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An Extension of the Dirichlet Density
for Sets of Gaussian Integers

L. C. Rêgo and R. J. Cintra

Abstract. Several measures for the density of sets of integers have been proposed, such as the asymp-

totic density, the Schnirelmann density, and the Dirichlet density. There has been some work in the

literature on extending some of these concepts of density to higher dimensional sets of integers. In this

work, we propose an extension of the Dirichlet density for sets of Gaussian integers and investigate

some of its properties.

1 Introduction

Several measures for the density of sets of integers have been discussed in the lit-

erature [23], [6], [9], [10], [11], [8], [2]. Presumably the most employed of such

measures is the asymptotic density, also referred to as natural density [20], [23]. For

a given set of integers A, its asymptotic density is expressed by

d(A) = lim
n→∞

‖A ∩ {1, 2, 3, . . . , n}‖

n
,

provided that such a limit does exist. The symbol ‖ · ‖ returns the cardinality of its

argument.

In [6], Bell and Burris provide a good exposition on the Dirichlet density, which

is defined as follows.

Definition 1.1 The Dirichlet density of a subset A of the positive integers is given

by

∂(A) , lim
s↓1

∑

n∈A
1
ns

ζ(s)
,

if the limit does exist, for real s > 1. The quantity ζ( · ) denotes the Riemann zeta

function [16].

If the asymptotic density is well defined, then the Dirichlet density does also ex-

ist and assumes the same value [5, p. 10]. Since the converse is not always true,

the Dirichlet density is a more encompassing tool when compared to the asymptotic
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density [5, p. 11]. Dirichlet density also admits lower and upper versions, which have

been explored along with other densities to characterize primitive sets [1], [3], [4].

Gaussian integers are simply complex numbers of the form m + in, where m and

n are integers. Despite the considerable amount of development addressing densities

for sets of positive integers [15], densities for sets of Gaussian integers appear to be

an overlooked topic. However, a seminal paper by Cheo [7] investigated the ques-

tion, suggesting an extension of the Schnirelmann density [9], [10]. Such extended

definition applies to subsets of the nonzero Gaussian integers inclusively confined in

the first quadrant of the complex plane.

Generalizations of Schnirelmann density for the n-dimensional case were pro-

posed in [18], [19]. Additionally, a modified Schnirelmann density was introduced

in [22] and was generalized in [13] years later. In a comparable venue, Freedman

[12], [14] advanced the concept of asymptotic density to higher dimensions.

In this context, the aim of the present work is to advance a method for evaluating

the density of sets of Gaussian integers. To address this problem, a density based on

Dirichlet generating functions is proposed.

For ease of notation, henceforth we identify a Gaussian integer m + in with the

pair of integers (m, n). All considered Gaussian integers and their sets are defined in

P
2, where P is the set of strictly positive integers.

2 Definition and General Properties

The Gaussian integers can be realized as points over a square lattice in the complex

plane. The square lattice is composed by an infinite array of Gaussian integers, set

up in rows and columns. In addition, each lattice row or column can furnish sets of

integers according to the following constructions: A∗,n = {m ∈ P : (m, n) ∈ A} and

Am,∗ = {n ∈ P : (m, n) ∈ A}.

Our goal is to investigate the properties of the following density for Gaussian inte-

gers, which we show to be a generalization of the Dirichlet density for sets of integers.

Definition 2.1 Let A be a set of Gaussian integers. Admit IA∗,n
( · ) and IAm,∗

( · ) to

be the indicator functions of the sets A∗,n and Am,∗, for m, n ∈ P, respectively. The

proposed density for A is given by

dens(A) , lim
s↓1

1

ζ2(s)

∞
∑

m=1

∞
∑

n=1

IA∗,n
(m)IAm,∗

(n)

(mn)s
,

provided that the limit exists.

From now on, we only consider sets whose referred densities are well-defined, i.e.,

the implied limits exist. Thus, we restrict ourselves to indicating in every instance

that the results are valid only when the discussed limits exist. On account of the

proposed definition, a series of consequences is listed below.

Proposition 2.2 Let A and B be two sets of Gaussian integers. The following assertions

hold true:
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(i) dens(A) ≥ 0,

(ii) dens(P
2) = 1,

(iii) if A ∩ B = ∅, then dens(A ∪ B) = dens(A) + dens(B),

(iv) dens(∅) = 0,

(v) dens(B − A) = dens(B) − dens(A ∩ B), where B − A is the relative complement

of A in B.

(vi) dens(Ac) = 1 − dens(A), where Ac is the complement of A,

(vii) if A ⊂ B, then dens(A) ≤ dens(B),

(viii) dens(A ∪ B) = dens(A) + dens(B) − dens(A ∩ B).

Proof The proof follows directly from the definition.

The first three properties stated in the previous proposition are the same con-

ditions that form an axiomatic definition of a probability measure, except for the

σ-additivity axiom.

Proposition 2.3 (Cartesian Product) Let A and B be two subsets of P. Then the

density of the Cartesian product A × B satisfies

dens(A × B) = ∂(A) ∂(B).

Proof We have that

dens(A × B) = lim
s↓1

∑

(m,n)∈A×B
1

(mn)s

ζ2(s)

= lim
s↓1

∑

m∈A
1

ms

∑

n∈B
1
ns

ζ2(s)

= ∂(A) ∂(B).

Corollary 2.4 (Dirichlet Density) For a set A of positive integers, dens(A × P) =

∂(A).

Proof This result is a direct consequence of the fact that ∂(P) = 1 [15].

Given any set A of Gaussian integers, let the horizontal and vertical axis sections

be denoted by suph(A) =
⋃∞

n=1 A∗,n and supv(A) =
⋃∞

m=1 Am,∗, respectively.

Proposition 2.5 Let A be a set of Gaussian integers. If

∂
(

suph(A)
)

= 0 or ∂
(

supv(A)
)

= 0,

then dens(A) = 0.

Proof For instance, assume that ∂
(

suph(A)
)

= 0. Note that A ⊂ suph(A)×P. Due

to the monotonicity property, it follows that dens(A) ≤ dens
(

suph(A) × P
)

. More-

over, the property of the density of Cartesian products allows us to write dens(A) ≤
∂
(

suph(A)
)

∂(P). Applying the hypothesis, the result follows. The proof would be

analogous in the case that ∂
(

supv(A)
)

= 0.
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Corollary 2.6 (Finite Axis Section) If a set A of Gaussian integers has a finite axis

section, then dens(A) = 0.

Proof It is enough to observe that any finite set of integers has null Dirichlet den-

sity [15].

As a consequence, a finite set of Gaussian integers has null density, since both of

its axis sections are finite. In particular, the density of a singleton is zero. On the

other hand, nonzero density subsets must have infinite axis sections.

Let
Um0,n0

= {(m, n) ∈ P
2 : m ≥ m0 and n ≥ n0}

Lm0,n0
= {(m, n) ∈ P

2 : m < m0 and n < n0}.

The next proposition states that, for density evaluation, the only relevant set elements

are those located in the region defined by Um0,n0
for any choice of m0 and n0.

This means that the “weight” of the set is located on its “tail”. Nevertheless, we

need the result of the following lemma first.

Lemma 2.7 The set Um0,n0
has unit density.

Proof Let U c
m0,n0

be the complement of Um0,n0
. Therefore, the set P

2 can be par-

titioned into P
2 = Um0,n0

∪ U c
m0,n0

. Then dens(Um0,n0
) = 1 − dens(U c

m0,n0
). No-

tice also that U c
m0,n0

= Lm0,∞ ∪ L∞,n0
. The union property allows us to state that

dens(U c
m0,n0

) = dens(Lm0,∞) + dens(L∞,n0
) − dens(Lm0,n0

). Since Lm0,∞, L∞,n0
, and

Lm0,n0
have each at least one finite axis section, it follows that dens(U c

m0,n0
) = 0.

Proposition 2.8 (Heavy Tail) Let A be a set of Gaussian integers. Then for any two

given nonnegative integers m0 and n0, we have

dens(A) = dens(A ∩Um0,n0
).

Proof Observe that A = A∩(Um0,n0
∪U c

m0,n0
) = (A∩Um0,n0

)∪(A∩U c
m0,n0

). Since we

have a partition of A, it follows that dens(A) = dens(A ∩Um0,n0
) + dens(A ∩U c

m0,n0
).

But, A ∩U c
m0,n0

⊂ U c
m0,n0

, then dens(A ∩U c
m0,n0

) ≤ dens(U c
m0,n0

) = 0.

Proposition 2.9 (Axis Independence) If there is a pair (m0, n0) such that, for every

m ≥ m0 and n ≥ n0, the functions IAm,∗
(n) and IA∗,n

(m) are independent of m and n,

respectively, then

dens(A) = ∂(Am0,∗) ∂(A∗,n0
).

Proof Because of the assumed independence, we can write IAm,∗
(n) = IAm0 ,∗

(n) and

IA∗,n
(m) = IA∗,n0

(m), for m ≥ m0 and n ≥ n0, respectively. Thus, for m ≥ m0 and

n ≥ n0, the set A is indistinguishable of Am0,∗ × A∗,n0
. But the heavy tail property

implies that

dens(A) = dens(A ∩Um0,n0
)

= dens
(

(Am0,∗ × A∗,n0
) ∩Um0,n0

)

= dens(Am0,∗ × A∗,n0
)

= ∂(Am0,∗) ∂(A∗,n0
).
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Given a set A of Gaussian integers and a Gaussian integer (m0, n0), let

A ⊕ (m0, n0) , {(m + m0, n + n0) | (m, n) ∈ A}.

This process is called a translation of A by (m0, n0) units [21, p. 49]. Now our goal is

to show that the proposed density is translation invariant, i.e., dens
(

A⊕ (m0, n0)
)

=

dens(A), m0 ≥ 0 and n0 ≥ 0. However, the proof that we will supply requires the

following lemma.

Lemma 2.10 (Unitary Translation) Let A be a set of Gaussian integers, such that

dens(A) > 0. Then

dens
(

A ⊕ (1, 0)
)

= dens
(

A ⊕ (0, 1)
)

= dens(A).

Proof It suffices to show that dens
(

A ⊕ (1, 0)
)

= dens(A), being the other case

analogous. First, note that since

∑

(m,n)∈A

1

(mn)s
−

∑

(m,n)∈A

1
(

(m + 1)n
) s ≥ 0,

it follows that dens(A) − dens
(

A ⊕ (1, 0)
)

≥ 0. Also observe that

s

ms+1
≥

∫ m+1

m

s

xs+1
dx =

1

ms
−

1

(m + 1)s
≥ 0.

Thus, we have that

∑

(m,n)∈A

1

(mn)s
−

∑

(m,n)∈A

1
(

(m + 1)n
) s =

∑

(m,n)∈A

1

ns

( 1

ms
−

1

(m + 1)s

)

≤
∑

(m,n)∈A

1

ns

s

ms+1

≤
∑

n∈P

1

ns

∑

m∈suph(A)

s

ms+1
.

Dividing both sides by ζ2(s) and letting s ↓ 1, since the last series is convergent as

s ↓ 1, yields

dens(A) − dens
(

A ⊕ (1, 0)
)

≤ 0.

Proposition 2.11 (Translation Invariance) Let A be a set of Gaussian integers. Then

dens
(

A ⊕ (m, n)
)

= dens(A),

where m and n are nonnegative integers.
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Proof We have already proven that dens
(

A⊕(1, 0)
)

= dens
(

A⊕(0, 1)
)

= dens(A).

Therefore, we have that

dens
(

A ⊕ (m + 1, n + 1)
)

= dens

(

(

(

A ⊕ (m, n)
)

⊕ (1, 0)
)

⊕ (0, 1)

)

= dens
(

(

A ⊕ (m, n)
)

⊕ (1, 0)
)

= dens
(

A ⊕ (m, n)
)

= dens(A).

Corollary 2.12 The proposed density is not σ-additive.

Proof This result follows directly from Propositions 2.2 and 2.11.

Now consider the set operation defined by

(a, b) ⊗ A , {(am, bn) | (m, n) ∈ A},

where (a, b) is a Gaussian integer. This construction can be interpreted as a dila-

tion on the elements of A. The following proposition relates the density of a set of

Gaussian integers with the density of its dilated form.

Proposition 2.13 (Dilation) Let A be a set of Gaussian integers and let (a, b) be any

Gaussian integer. Then

dens
(

(a, b) ⊗ A
)

=
1

ab
dens(A).

Proof This result follows directly from the definition of the proposed density:

dens
(

(a, b) ⊗ A
)

= lim
s↓1

∑

(m,n)∈A
1

(ambn)s

ζ2(s)

= lim
s↓1

1
(ab)s

∑

(m,n)∈A
1

(mn)s

ζ2(s)

=
1

ab
dens(A).

3 Density of Particular Sets

In this section, we evaluate the density of some particular sets of Gaussian integers.

3.1 Cartesian Product of Arithmetic Progressions

Let p be an integer. The set Mp = {m ∈ P : m ≡ 0 (mod p)} constitutes an arith-

metic progression with Dirichlet density ∂(Mp) = 1/p. Furthermore, the Cartesian

product of two arithmetic progressions generates a rectangular lattice denoted by

M(p,q) , Mp × Mq, where p and q are positive integers. Then it follows from Propo-

sition 2.3 that dens(M(p,q)) = ∂(Mp) ∂(Mq). Let us investigate the density of sets that

are intersections of particular Cartesian products of arithmetic progressions.
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Proposition 3.1 (Intersection) For any positive integers p, q, s and t, we have that

dens(M(p,q) ∩ M(s,t)) = dens(M(lcm(p,s),lcm(q,t))) =
1

lcm(p, s) lcm(q, t)
,

where lcm( · , · ) denotes the least common multiple of its arguments.

Proof First, note that M(p,q) = (p, q) ⊗ P
2. Therefore,

M(p,q) ∩ M(s,t) =
(

(p, q) ⊗ P
2
)

∩
(

(s, t) ⊗ P
2
)

=
(

lcm(p, s), lcm(q, t)
)

⊗ P
2.

Applying dens( · ) on both sides of above equation and invoking the dilation property,

we obtain the desired result.

Corollary 3.2 Let (m, n) be a Gaussian integer. Admit also that gcd(p, s) = 1 and

gcd(q, t) = 1, where gcd( · , · ) returns the greatest common divisor of its arguments.

Then

dens(M(mp,nq) ∩ M(ms,nt)) =
1

mn
dens(M(p,q) ∩ M(s,t)).

Proof Follows directly from Proposition 3.1.

3.2 Sets Delimited by Functions

Let us consider a set of Gaussian integers defined as C = {(m, n) ∈ P
2 : f (m) ≤

n ≤ g(m)}, where f ( · ) and g( · ) are functions such that g(m) ≥ f (m) ≥ 1 for every

integer m. Functions f and g delimit the set C , confining the set elements in between.

Figure 1 illustrates a possible configuration for the set C . By definition, the proposed

density of C is given by

dens(C) = lim
s↓1

1

ζ2(s)

∞
∑

m=1

1

ms

⌊g(m)⌋
∑

n=⌈ f (m)⌉

1

ns
,

where ⌈·⌉ and ⌊·⌋ represent the usual ceiling and floor functions, respectively.

Let us establish upper and lower bounds for the double summation. Initially,

notice that the inner summation satisfies the following bounds:

⌊g(m)⌋
∑

n=⌈ f (m)⌉

1

ns
=

1

⌈ f (m)⌉s
+

⌊g(m)⌋
∑

n=⌈ f (m)⌉+1

1

ns

≤ 1 +

∫ ⌊g(m)⌋

⌈ f (m)⌉

1

xs
dx

≤ 1 +

∫ g(m)

f (m)

1

xs
dx

= 1 +
1

−s + 1

(

g(m)−s+1 − f (m)−s+1
)

.
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n

m

g(m)

f (m)

Figure 1: A set upper and lower bounded by two functions.

Thus, an upper bound for the double summation is expressed by

∞
∑

m=1

1

ms

⌊g(m)⌋
∑

n=⌈ f (m)⌉

1

ns
≤

∞
∑

m=1

1

ms

(

1 +
1

−s + 1

(

g(m)−s+1 − f (m)−s+1
)

)

= ζ(s) +
1

−s + 1

∞
∑

m=1

1

ms

(

g(m)−s+1 − f (m)−s+1
)

.

Performing analogous manipulations, we obtain the following lower bound for the

inner summation:

⌊g(m)⌋
∑

n=⌈ f (m)⌉

1

ns
≥ −

1
(

⌈ f (m)⌉ − 1
) s +

∫ ⌊g(m)⌋+1

⌈ f (m)⌉−1

1

xs
dx

≥ −1 +

∫ g(m)

f (m)

1

xs
dx

= −1 +
1

−s + 1

(

g(m)−s+1 − f (m)−s+1
)

.

This implies that the double summation is lower bounded by

∞
∑

m=1

1

ms

⌊g(m)⌋
∑

n=⌈ f (m)⌉

1

ns
≥

∞
∑

m=1

1

ms

(

−1 +
1

−s + 1

(

g(m)−s+1 − f (m)−s+1
)

)

= −ζ(s) +
1

−s + 1

∞
∑

m=1

1

ms

(

g(m)−s+1 − f (m)−s+1
)

.
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The upper and lower bounds present similar formulations, inviting an application

of the squeeze theorem. Thus, after dividing both expressions by ζ2(s) and taking the

limit as s ↓ 1, minor manipulations furnish

dens(C) = lim
s↓1

1

ζ(s)

∞
∑

m=1

1

ms

(

f (m)−s+1 − g(m)−s+1
)

.

Now let us analyze the density of a set C in the light of the asymptotic behavior of

the delimiting functions.

Proposition 3.3 (Asymptotics) Let u(m) and v(m) be delimiting functions that are

always greater or equal to one. If f (m) = Θ
(

u(m)
)

and g(m) = Θ
(

v(m)
)

, then

(3.1) dens(C) = lim
s↓1

1

ζ(s)

∞
∑

m=1

1

ms

(

u(m)−s+1 − v(m)−s+1
)

.

Proof By the definition of the Θ-notation [17, p. 434], there exists a quantity m0

such that, for every m ≥ m0, both functions f and g satisfy:

c1u(m) ≤ f (m) ≤ c2u(m),

c3v(m) ≤ g(m) ≤ c4v(m),

where c1, c2, c3, and c4 are positive constants. Moreover, notice that

dens(C) = lim
s↓1

1

ζ(s)

∞
∑

m=1

1

ms

(

f (m)−s+1 − g(m)−s+1
)

= lim
s↓1

1

ζ(s)

[

m0−1
∑

m=1

1

ms

(

f (m)−s+1 − g(m)−s+1
)

]

+ lim
s↓1

1

ζ(s)

[

∞
∑

m=m0

1

ms

(

f (m)−s+1 − g(m)−s+1
)

]

= lim
s↓1

1

ζ(s)

∞
∑

m=m0

1

ms

(

f (m)−s+1 − g(m)−s+1
)

.

Thus, for m ≥ m0, we have that

∞
∑

m=m0

1

ms

(

(

c2u(m)
)−s+1

−
(

c3v(m)
)−s+1

)

≤
∞
∑

m=m0

1

ms

(

f (m)−s+1 − g(m)−s+1
)

≤
∞
∑

m=m0

1

ms

(

(

c1u(m)
)−s+1

−
(

c4v(m)
)−s+1

)

.
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Now we show that after dividing by ζ(s) and letting s ↓ 1, both upper and lower

bounds above have the same limit. Since u(m) ≥ 1 and v(m) ≥ 1, it follows that for

arbitrary positive constants k1 and k2

∞
∑

m=m0

1

ms

(

(

k1u(m)
)−s+1

−
(

k2v(m)
)−s+1

)

= k−s+1
1

∞
∑

m=m0

1

ms
u(m)−s+1 − k−s+1

2

∞
∑

m=m0

1

ms
v(m)−s+1.

Thus, since both k−s+1
1 and k−s+1

2 tend to one as s ↓ 1, we have that

lim
s↓1

1

ζ(s)

∞
∑

m=m0

1

ms

(

(

k1u(m)
)−s+1

−
(

k2v(m)
)−s+1

)

= lim
s↓1

1

ζ(s)

∞
∑

m=m0

1

ms

(

u(m)−s+1 − v(m)−s+1
)

.

Therefore, we maintain that

lim
s↓1

1

ζ(s)

∞
∑

m=m0

1

ms

(

f (m)−s+1 − g(m)−s+1
)

= lim
s↓1

1

ζ(s)

∞
∑

m=m0

1

ms

(

u(m)−s+1 − v(m)−s+1
)

.

Finally, since

lim
s↓1

1

ζ(s)

m0−1
∑

m=1

1

ms

(

u(m)−s+1 − v(m)−s+1
)

= 0,

the proposition is proven.

We now supply two examples. But first, a simple lemma is needed.

Lemma 3.4 For α ≥ 0, lims↓1 ζ
(

(α + 1)s − α
)

(s − 1) = (1 + α)−1.

Proof Taking into account the substitution t = (α + 1)s − α, it follows that:

lim
s↓1

ζ
(

(α + 1)s − α
)

(s − 1) = lim
t↓1

ζ(t)
( t + α

1 + α
− 1

)

= lim
t↓1

ζ(t)
t − 1

1 + α

=
1

1 + α
.
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Example 3.5 Let us examine the density of the set Cpow = {(m, n) ∈ P
2 : f (m) ≤

n ≤ g(m)}, where g(m) = Θ(mβ) and f (m) = Θ(mα), for real quantities β ≥ α >
0. In order to compute such density we need the previous lemma. Thus, invoking

equation (3.1), it follows that the sought density is given by

dens(Cpow) = lim
s↓1

1

ζ(s)

∞
∑

m=1

1

ms

(

(mα)(−s+1) − (mβ)(−s+1)
)

= lim
s↓1

1

ζ(s)

(

ζ
(

(α + 1)s − α
)

− ζ
(

(β + 1)s − β
)

)

=
1

1 + α
−

1

1 + β
.

In particular, if αβ = 1, we have dens(Cpow) = β−1
β+1

.

Example 3.6 Consider the set Cexp = {(m, n) ∈ P
2 : n ≤ g(m)}, where g(m) =

Θ(am), for a > 1. Thus, by equation (3.1),

dens(Cexp) = lim
s↓1

1

ζ(s)

(

ζ(s) −
∞
∑

m=1

(am)−s+1

ms

)

.

Then note that for each β > 0, there is a quantity M such that m ≥ M implies that

am ≥ mβ . By Example 1, we know that

lim
s↓1

1

ζ(s)

∞
∑

m=1

(mβ)−s+1

ms
=

1

1 + β
.

Moreover, since lims↓1
1

ζ(s)

∑M−1
m=1

(mβ)−s+1

ms = 0, it follows that

lim
s↓1

1

ζ(s)

∞
∑

m=M

(mβ)−s+1

ms
=

1

1 + β
.

Thus,

dens(Cexp) ≥ lim
s↓1

1

ζ(s)

(

ζ(s) −
(

M−1
∑

m=1

(am)−s+1

ms
+

∞
∑

m=M

(mβ)−s+1

ms

)

)

= 1 −
(

0 +
1

1 + β

)

=
β

β + 1
.

Finally, letting β → ∞ yields dens(Cexp) = 1.
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