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A Gorenstein Ring
with Larger Dilworth Number
than Sperner Number

James S. Okon and J. Paul Vicknair

Abstract. A counterexample is given to a conjecture of Ikeda by finding a class of Gorenstein rings of embed-
ding dimension 3 with larger Dilworth number than Sperner number. The Dilworth number of A[Z/pZ ⊕
Z/pZ] is computed when A is an unramified principal Artin local ring.

Let A be a commutative ring with identity. Let µ(I) denote the minimal number of
elements required to generate the ideal I. If µ(I) ≤ n then we say that I is n-generated,
and if every ideal of A is n-generated then we say that A has the n-generator property.
The Dilworth number d(A) of an Artin local ring (A,m) was introduced by Watanabe in
[11] and is defined as max{µ(I) | I an ideal of A}. The Sperner number of A is sp(A) =
max{µ(mi) | i ≥ 0}. If G is an abelian group then the group ring associated to A and
G, denoted A[G], is the ring of elements of the form

∑
g∈G agxg , where {ag | g ∈ G} is a

family of elements of A which are almost all zero. We refer to [5] for elementary properties
of semigroup and group rings.

Several recent papers have studied semigroup and group rings with n-generated ideals.
Semigroup rings with the 2-generator property are of special interest because of their re-
lationship to the problem of when finitely generated torsion-free modules are isomorphic
to direct sums of ideals (For example see [9], [10] and the references listed there). An im-
portant tool in the study of such rings is the ability to relate the number of generators of
an arbitrary ideal to the number of generators of powers of the maximal ideal. A theorem
of Watanabe [6, Theorem 4.2] says that if (A,m) is an Artin local ring of embedding di-
mension at most two, i.e., µ(m) ≤ 2 then d(A) = sp(A). This theorem makes it possible
to compute the Dilworth and Sperner number of A[G] where G is a finite cyclic p-group
and A is a principal Artin local ring [12, Proposition 2.5] and [3, Theorem 1]). When G is
not cyclic the Dilworth number of A[G] has only been determined in the case where A is a
field. The Dilworth and Sperner numbers of A[Z/pZ ⊕ Z/pZ] where (A,m) is a principal
Artin local ring and p ∈ m \ m2 were computed for the cases p = 2 and p = 3 in [1] and
[2]. In Theorem 1(a), (b) we compute these numbers for general p.

In [6] examples are given to show that Watanabe’s theorem is not true for µ(m) ≥ 4
even if A is Gorenstein. Ikeda also makes the following conjecture:

Conjecture Let (A,m) be a Gorenstein Artin local ring of embedding dimension at most
three. Then d(A) = sp(A).
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In Theorem 1(c), we give a class of such rings R for which d(R) > sp(R). One example
of such a ring is R = (Z/piZ)[Z/pZ ⊕ Z/pZ]. Corollary 9 of [4] states that if G is a finite
group (not necessarily abelian) and K is a commutative ring then K is Gorenstein if and
only if K[G] is Gorenstein. For abelian groups, Lantz [7, Theorem, p. 196] generalizes this
result to groups of finite torsion-free rank. Thus R provides a counterexample to Ikeda’s
conjecture.

In Theorem 1 we compute the Sperner and Dilworth numbers of the group rings
A[Z/pZ ⊕ Z/pZ] where (A,m) is a principal Artin local ring and p ∈ m \ m2. When
m2 	= 0 and mp = 0 we will show the Sperner number is strictly less than the Dilworth
number.

Theorem 1 Let (A,m) be a principal Artin local ring, p ∈ m \ m2 be a rational prime,
G = Z/pZ ⊕ Z/pZ and R = A[G]. Then

(a) sp(R) =




p + 2 if mp 	= 0

p + 1 if m 	= 0 and mp = 0

p if m = 0

.

(b) d(R) =




p + 2 if m2 	= 0

p + 1 if m 	= 0 and m2 = 0

p if m = 0

.

(c) If p > 2,m2 	= 0 and mp = 0 then p + 2 = d(R) > sp(R) = p + 1.

If the maximal ideal m of a local ring A is generated by two elements then the k-th
power of the maximal ideal has k + 1 natural generators. The next lemma, due to Hassani
and Kabbaj, shows that if n is the first power for which one of these natural generators is
not required to generate mn then we get a bound on the number of generators of I in terms
of the number of generators of I + mn−1. In particular, when I is a power of m, we get the
Sperner number of R is less than or equal to n.

Lemma 2 [2, Lemma 4] Let (A,m) be a local ring such that mn is n-generated, where n is a
positive integer. Then for each ideal I of A, µ(I) ≤ µ(I + mn−1).

When A is a local ring with embedding dimension 2, Watanabe’s theorem and Lemma 2
combine to give a bound on the Dilworth number in terms of a specific power of the max-
imal ideal.

Lemma 3 [3, Lemma 3] Let (A,m) be an Artin local ring with µ(m) ≤ 2. Then d(A) ≤ n if
and only if mn is n-generated.

Proof If mn is n-generated, µ(I) ≤ µ(I + mn−1) for each ideal I of A by Lemma 2. Thus
sp(A) ≤ n. Since µ(m) ≤ 2, d(A) = sp(A) by Watanabe’s Theorem [6, Theorem 4.2].
Thus d(A) ≤ n and the converse is obvious.

The proof of Theorem 1 uses the isomorphism A[Z/pZ ⊕ Z/pZ] ∼= A[x, y]/
(1 − xp, 1 − y p) to represent elements of the group ring. In the proof it is shown that
p(1− x) is a unit times (1− x)p . Likewise for p(1 − y). Therefore every monomial in the
generators of the maximal ideal pa(1−x)b(1− y)c of A[Z/pZ⊕Z/pZ] can be rewritten in
one of three ways: (1) a = 0, b > 0 and c < p, (2) a = b = 0 or (3) b = c = 0. We define
the value of f = pa(1−x)b(1− y)c , denoted v( f ), to be (p−1)a + b + c and define an order

https://doi.org/10.4153/CMB-2000-015-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-015-2


102 J. S. Okon and J. P. Vicknair

on monomials by first comparing values, then b + c and finally powers of (1− x). Though,
in general, order is not preserved the next lemma shows that multiplication by monomials
preserves order in certain cases.

Lemma 4 Let f1 = pa1 (1 − x)b1 (1 − y)c1 , f2 = pa2 (1 − x)b2 (1 − y)c2 be monomials in
A[Z/pZ ⊕ Z/pZ] with f1 < f2.

(a) If a1 = 0, c1 < p and g = (1− x)v then f1g < f2g.
(b) If a1 = b1 = 0 and g = (1− y)w then f1g < f2g.
(c) If b1 = c1 = 0 and g = pu then f1g < f2g.
(d) If b1 = c1 = 0, a2 = 0, b2 ≥ 1 and g = (1− y)w then f1g < f2g.

Proof If v( f1) < v( f2) then v( f1g) < v( f2g) and we are done. So assume that v( f1) = v( f2).
(a) Since v( f1) = v( f2) and f1 < f2 we have a2 = 0, b1 + c1 = b2 + c2 and b2 > b1. Then

f1g = (1−x)b1+v(1− y)c1 < (1−x)b2+v(1− y)c2 = f2g. For (b) we have a2 = 0, c1 = b2 + c2

and b2 > 0. Thus f1g = (1− y)c1+w < (1− x)b2 (1− y)c2+w = f2g. In case (c), b1 = c1 = 0
and f1 < f2 implies a2 = 0. Therefore f1g = pa1+u < pu(1 − x)b2 (1 − y)c2 = f2g. For (d)
we have f1g = pa1 (1− y)w = (1− y)(p−1)a1+w < (1− x)b2 (1− y)c2+w = f2g.

Since A[Z/pZ⊕Z/pZ] is an Artin local ring with maximal ideal M = (p, 1− x, 1− y),
every element f ∈ A[Z/pZ ⊕ Z/pZ] can be written in the form f = a0 + a1v1 + · · · + anvn

where vi = pa(1 − x)b(1 − y)c , v1 < v2 < · · · < vn, vn is the largest non-zero monomial
in A[Z/pZ ⊕ Z/pZ] and each ai is zero or a unit in A. If akvk is the first non-zero term
of f we say akvk is the leading monomial of f , v( f ) = v(vk) and depth( f ) = n + 1 − k. If
B = { f1, . . . , fr} then depth(B) =

∑
depth( fi).

Proof of Theorem 1 Let M = (p,MG) be the maximal ideal of R where MG = (1−x, 1−y).
Then

(1− x + x)p =

p∑
k=0

(
p

k

)
(1− x)kxp−k.

Since xp = 1,

(1− x)p = −

p−1∑
k=1

(
p

k

)
(1− x)kxp−k

= −p(1− x)(1 + v)

where v ∈ (1 − x) ⊆ M. Since 1 + v is a unit in R, p(1 − x) ∈
(
(1 − x)p

)
and hence

Mk = (pk) + Mk
G for all k ≥ 1. Furthermore we have

M p = (pp) + pMG +
(
(1− x)p−1(1− y), . . . , (1− x)(1− y)p−1

)
M p+1 = (pp+1) + pM2

G +
(
(1− x)p−1(1− y)2, . . . , (1− x)2(1− y)p−1

)
M p+2 = (pp+2) + pM3

G +
(
(1− x)p−1(1− y)3, . . . , (1− x)3(1− y)p−1

)

which means µ(M p+2) ≤ p + 2 and, if mp = 0, then µ(M p+1) ≤ p + 1.
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(a) By Lemma 2, µ(Mk) ≤ µ(Mk + M p+1) for all k ≥ 1. Therefore

sp(R) = max{µ(M), . . . , µ(M p+1)} ≤ p + 2.

If pp 	= 0 then we claim that {pp, (1− x)p, (1− x)p−1(1− y), . . . , (1− y)p} is a minimal
generating set for M p. Indeed, it is clear that pp, (1 − x)p, (1 − y)p cannot be omitted as
generators. If (1− x)k(1− y)p−k is not required as a generator of M p for 1 ≤ k ≤ p− 1 we
pass to the ring R/(p) ∼=

(
A/(p)

)
[X,Y ]/(Xp,Y p) where X,Y are indeterminates to get that

X̄kȲ p−k is not required as a generator of (X̄, Ȳ )p, a contradiction. Therefore sp(R) = p + 2
if mp 	= 0.

If m 	= 0 and mp = 0 then pp = 0. Thus µ(M p+1) ≤ p + 1 and sp(R) =
max{µ(M), . . . , µ(M p)} ≤ p + 1. As before {(1 − x)p, (1 − x)p−1(1 − y), . . . , (1 − y)p}
is a minimal generating set for M p. Therefore sp(R) = p + 1.

Finally, if A is a field of characteristic p, then sp(R) = d(R) = p by [8, Theorem 1.2].
(b) Let I be a proper ideal in R and let { f1, . . . , fr} be a set of generators of I of minimal

depth. Let E = {(a, b, c) | pa(1 − x)b(1 − y)c is a leading monomial of fi for some i}. Let
E+ = {(0, b, c) | (0, b, c) ∈ E and c < p}, let Ey = {(0, 0, c) ∈ E} and Ep = {(a, 0, 0) ∈ E}.
Let E+ = {(0, b1, c1), . . . , (0, bm, cm)}where 0 ≤ c1 ≤ c2 ≤ · · · ≤ cm ≤ p−1. If ci = c j and
say bi ≥ b j for some i 	= j then, if fi and f j are the generators whose leading monomials are
(1−x)bi (1− y)ci and (1−x)b j (1− y)c j respectively, replace fi with f ′i = fi− (1−x)bi−b j f j .
Since f ′i > fi , { f1, . . . , f ′i , . . . , fr} is a generating set with smaller depth, a contradiction.
Therefore 0 ≤ c1 < c2 < · · · < cm ≤ p − 1. Since c1, . . . , cm are distinct, E+ has at most
p elements. If Ey has more that one element, say (0, 0, d1) and (0, 0, d2) with d1 ≤ d2 then
we multiply the generator with the smaller leading monomial by (1− y)d2−d1 and subtract
to get a generating set of lower depth. We similarly have that Ep has at most one element.
Therefore d(R) ≤ p + 2.

Next we assume that m2 	= 0 and show d(R) ≥ p + 2. For this consider the ideal
I = (p2) + M p

G. We claim the set

{p2, p(1− x), p(1− y), (1− x)p−1(1− y), . . . , (1− x)(1− y)p−1}

is a minimal set of generators for I. If p2 can be expressed in terms of the other generators,
we apply the augmentation map to get p2 = 0. If, say p(1 − x), can be expressed in terms
of the other generators, we apply the map sending y → 1 to get p ∈ (p2), a contradiction.
We use a similar argument for p(1 − y). If any of the other generators can be omitted we
pass to

(
A/(p)

)
[Zp ⊕ Zp] to get a contradiction as before. Thus d(R) ≥ p + 2. This shows

d(R) = p + 2.
The case m = 0 was considered in part (a). Therefore assume m 	= 0, but m2 = 0.

From (a) we have p + 1 = sp(R) ≤ d(R). If E+ has less than p elements then d(R) ≤ p + 1
and we are done. So assume the cardinality of E+ is p. If both Ep = {(1, 0, 0)} and Ey =
{(0, 0, c)} are non-empty then we consider two cases, c ≥ p and c < p. If c ≥ p then let
f = (1− x)b(1− y)p−1 + · · · be the generator corresponding to (0, b, p − 1) ∈ E+. If the
generator with leading term p has the form fp = p + a(1 − y)p−1 + · · · with a 	= 0 then
multiply fp by a−1(1− x)b and subtract from f . Lemma 4(a) and the relation p(1− x)b =
(1 − x)p−1+b > (1 − x)b(1 − y)p−1 show that we get a generating set of lower depth. If
a = 0 then we multiply fp by (1− y)c−p+1 and subtract from the generator (1− y)c + · · ·
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to get a generating set of lower depth. If c < p then there exists an element of the form
(0, b, c) ∈ E+. Now multiply the generator (1− y)c + · · · by (1− x)b and subtract from the
generator (1 − x)b(1 − y)c + · · · to get a generating set of lower depth. Therefore in both
cases either Ep or Ey is empty and d(R) ≤ p + 1.

(c) Finally, assume p > 2,m2 	= 0 and mp = 0. From parts (a) and (b) we have
p + 2 = d(R) > sp(R) = p + 1.
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