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On Gâteaux Differentiability of Convex
Functions in WCG Spaces

Jan Rychtář

Abstract. It is shown, using the Borwein–Preiss variational principle that for every continuous convex

function f on a weakly compactly generated space X, every x0 ∈ X and every weakly compact convex

symmetric set K such that span K = X, there is a point of Gâteaux differentiability of f in x0 + K. This

extends a Klee’s result for separable spaces.

The well-known Mazur’s theorem says that a continuous convex function f on
a separable Banach space X is Gâteaux differentiable on a dense Gδ set, [4, Theorem
8.14]. A function f on X is said to be Gâteaux differentiable at x ∈ X if there is F ∈ X∗

such that

lim
t→0

f (x + th) − f (x)

t
= F(h),

for all h ∈ X. A Banach space is called a weak Asplund space if every continuous
convex function f on it is Gâteaux differentiable at the points of a dense Gδ set.

It is known that weakly compactly generated spaces are weak Asplund spaces, [3,
Theorem 1.3.4]. Recall that a Banach space X is called weakly compactly generated

(WCG) if there is a weakly compact set K ⊂ X such that span K = X.

It is proved in [5] that, for a separable Banach space X, the set of points of Gâteaux
differentiability of a convex continuous function f is even bigger than dense in the
following sense. If K ⊂ X is a norm compact convex symmetric set such that

span K = X and x0 ∈ X, then there is x ∈ x0 + K, a point of Gâteaux differen-
tiability of f . A set C ⊂ X is called symmetric if −C = C . We will extend the above
result to weakly compact set in WCG spaces.

Theorem 1 Let X be a WCG space and K be a weakly compact convex symmetric set

such that span K = X. Let f be a continuous convex function on X and x0 ∈ X. Then

there is x ∈ x0 + K such that f is Gâteaux differentiable at x.

Let us define terms used in the proof. For a closed convex symmetric set C let µC

denote a Minkowski functional of C defined by

µC (x) = inf{λ > 0 ; x ∈ λC}.
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It is known that µC : X → R ∪ {∞} is a convex lower semicontinuous function. A
function f : X → R ∪ {∞} is said to be lower semicontinuous if its level sets {x ∈ X ;

f (x) ≤ r} are closed for every r ∈ R. This is equivalent to saying that the epigraph of
f ,

epi( f ) = {(x, r) ∈ X × R ; f (x) ≤ r},

is closed in X × R. Thus the epigraph of a convex lower semicontinuous function is
a closed convex set. The subdifferential, ∂ f (x), of f at x ∈ X is the set of all ϕ ∈ X∗

such that

ϕ(y − x) ≤ f (y) − f (x),

for all y ∈ X. A functional ϕ ∈ X∗ is called a supporting functional for a set K at a
point k0 ∈ K if

ϕ(k0) = sup{ϕ(k); k ∈ K}.

A function f : X → R is called a Gâteaux smooth bump if it is a Gâteaux differen-
tiable function with a bounded support. A system {xγ , x

∗

γ}γ∈Γ ⊂ X × X∗ is called
a Markushevich basis for X if x∗β(xγ) = δβγ (the Kronecker delta) for all β, γ ∈ Γ,

span{xγ ; γ ∈ Γ} = X, and if for every 0 6= x ∈ X there is γ ∈ Γ such that x∗γ (x) 6= 0.
A norm ‖ · ‖ on X is called strictly convex, if x = y whenever

2‖x‖ = 2‖y‖ = ‖x + y‖.

Proof of Theorem 1 The proof will be divided into three steps. First we will show
that there is a “smooth” weakly compact set L ⊂ K.

Lemma 2 There is a weakly compact convex symmetric set L ⊂ 2−1K such that if

ϕ, ψ ∈ X∗ are supporting functionals of L at a point l ∈ L such that ϕ(l) = ψ(l), then

ϕ = ψ.

Second, we will use a variational principle to touch the graph of f by a “smooth”
function. We may assume that f (x0) = −1. By the continuity of f , we may assume

that | f (x) − f (x0)| < 1, for ‖x − x0‖ ≤ 1. Let g be a function on X defined by

g(x) =

{

− f (x) for ‖x − x0‖ ≤ 1,

∞ for ‖x − x0‖ > 1.

Then g is lower semicontinuous and g > 0. Set uL(x) = µL(x − x0).

Lemma 3 There is a Gâteaux smooth function v : X → R and a point x ∈ X such

that x ∈ x0 + 2L ⊂ x0 + K, 0 < ‖x − x0‖ < 1 and g + uL − v attains its minimum at x.

Finally, we will show that f is Gâteaux differentiable at x.

Lemma 4 Let V denote a Gâteaux derivative of v at x. Then there is α ∈ R \ {0}
such that ϕ+V is a supporting functional for x0 +αL, for all ϕ ∈ ∂ f (x). Consequently,

f is Gâteaux differentiable at x.
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Proof of Lemma 2 Let {xγ , fγ}γ∈Γ ⊂ K × X∗ be a Markushevich basis of X, see [4,
Theorem 11.12]. Then there is a one-to-one operator T : X∗ → c0(Γ) defined by

T(x∗) = (x∗(xγ))γ∈Γ.

Let {eγ}γ∈Γ denote the standard unit vector basis of ℓ1(Γ). The dual operator
T∗ : ℓ1(Γ) → X∗∗ satisfies

T∗(eγ)(x∗) = eγ(Tx∗) = x∗(xγ),

for all γ ∈ Γ. Thus T∗(eγ) = xγ and T∗(Bℓ1(Γ)) ⊂ K. Moreover T∗ is a weak∗-weak
continuous operator from c0(Γ)∗ to X.

Let a norm ‖ · ‖ on c0(Γ) be (a strictly convex) Day’s norm (see [2, Theorem

II.7.3]) and let B ⊂ ℓ1(Γ) be its dual unit ball. Put L = T∗(B). We may assume
that ‖ · ‖ is small enough to have 2L ⊂ K. Clearly L is a symmetric convex set. As
T∗ is weak∗-weak continuous, L is weakly compact. Now assume that ϕ, ψ ∈ X∗ are
supporting functionals of L at l ∈ L such that ϕ(l) = ψ(l). We claim that ϕ = ψ.

Pick b0 ∈ B such that T∗(b0) = l and put x = T(ϕ) and y = T(ψ). Then for all
b ∈ B

b(x) = b(T(ϕ)) = ϕ(T∗(b)) ≤ ϕ(l) = b0(x).

Thus x, y ∈ c0(Γ) are supporting functionals of B at b0. Moreover

‖x‖ = sup{b(x) ; b ∈ B} = b0(x) = b0(y) = ‖y‖,

and

2‖x‖ = ‖x‖ + ‖y‖ = b0(x + y) ≤ ‖x + y‖ ≤ ‖x‖ + ‖y‖.

Thus x = y, as the norm ‖ · ‖ is strictly convex. Hence, as T is one-to-one, ϕ = ψ.

Proof of Lemma 3 We will use the Deville–Godefroy–Zizler version of the Borwein–
Preiss smooth variational principle, see [1] and [2, Theorem 2.3].

Theorem 5 Let X be a Banach space that admits a Lipschitzian bump function which is

Gâteaux differentiable. Then for every lower semicontinuous bounded bellow function F

on X and every ε > 0, there exist x ∈ X and a function G : X → R, which is Lipschitzian

and Gâteaux differentiable on X and such that ‖G‖ = sup{|G(x)| ; x ∈ X} < ε,

‖G ′‖ < ε and F + G attains its minimum on X.

We can use it, as X admits a Gâteaux smooth norm [4, Theorem 11.20] and thus it
admits a Lipschitzian Gâteaux smooth bump. Let us fix ε ∈ (0, 1/4). To assure that
a point x we get by the variational principle is different from x0, we will first modify

the function g + uL. Let x1 ∈ X be such that

(g + uL)(x1) < (g + uL)(x0) + ε/4.
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Let v1 : X → R be a continuous Gâteaux smooth bump function such that ‖v1‖ <
ε/2 and

(g + uL − v1)(x1) < (g + uL − v1)(x0) − ε/4.

By applying the variational principle with ε ′ = ε/8 on g+uL−v1, we get a Gâteaux
smooth function v2, ‖v2‖ < ε/8 and a point x ∈ X, such that g +uL−(v1 +v2) attains
its minimum at x. Thus

(g + uL − v1 − v2)(x) ≤ (g + ul − v1)(x1) − v2(x1)

< (g + uL − v1 − v2)(x0) <∞.

It means that x 6= x0, g(x) < ∞, and thus 0 < ‖x − x0‖ < 1. Put v = v1 + v2. Then
‖v‖ < ε and thus g(x) − v(x) > −ε. We claim that uL(x) < 1 + 3ε < 2. Really, if we
assume a contrary, then

1 + 2ε ≤ uL(x) − ε < (g + uL − v)(x) ≤ (g + uL − v)(x0) ≤ 1 + ε,

a contradiction. Thus x ∈ x0 + 2L ⊂ x0 + K.

Proof of Lemma 4 As f is a continuous convex function, ∂ f (x) 6= ∅ and we only

need to show that there is only one ϕ ∈ ∂ f (x), see [6]. For the rest of the proof we
will assume, without loss of generality, that g + uL − v = g − (v − uL) attains its
minimum at x = 0, g(0) = 0 and g(0)− (v−uL)(0) = 0. In particular, 0 < ‖x0‖ < 1
and uL(0) = v(0).

Pick any ϕ ∈ ∂ f (0). Let δ > 0 be small enough to have g(t y) = − f (t y) <∞ for
y ∈ SX, |t| < δ. Then

−ϕ(t y) ≥ − f (t y) = g(t y) ≥ (v − uL)(t y).

Let V be a Gâteaux derivative of v at 0. Then

v(t y) = v(0) + V (t y) + oy(t), t → 0,

for all y ∈ SX, |t| < δ, where oy(t) is a function (depending on y), such that
oy(t)/t → 0, as t → 0. Thus

(1) (ϕ + V )(t y) + oy(t) ≤ uL(t y) − v(0), t → 0.

From that it follows that

(2) (ϕ + V )(t y) ≤ uL(t y) − v(0) = uL(t y) − uL(0),

for all y ∈ SX and all t ∈ R. Indeed, if (2) does not hold, then there is y0 ∈ SX ,

0 6= t0 ∈ R and ε0 > 0 such that

(ϕ + V )(t0 y0) − ε0 > uL(t0 y0) − v(0).
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By convexity of uL, we may assume that 0 < |t0| < δ. Because

(3) (ϕ + V )(0) = 0 = (uL − v)(0),

one has that for all t ∈ (0, |t0|]

uL(t y0) − v(0) ≤ t
uL(t0 y0) − v(0)

t0

< t
(ϕ + V )(t0 y0) − ε0

t0

,

a contradiction with (1).
Notice that (2) says that (ϕ + V ) ∈ ∂uL(0), and thus (ϕ + V )(x0) = uL(0), as uL is

linear on lines going from x0.
Thus, by (2) and (3), (ϕ + V ) is a support functional of x0 + v(0)L at the point

x = 0. Indeed, by an assumption uL(0) = v(0), and thus 0 ∈ x0 + v(0)L. Moreover
(ϕ + V )(0) = 0, and by (2),

(ϕ + V )(z) ≤ uL(z) − v(0) ≤ 0,

for all z ∈ x0 + v(0)L. Equivalently, (ϕ + V ) is a support functional of v(0)L at −x0

with (ϕ + V )(−x0) = −uL(0). Because x0 6= 0, v(0) = uL(0) 6= 0, by Lemma 2,
there is only one support functional ψ of v(0)L at −x0 with ψ(0) = −uL(0). Thus

there is only one ϕ ∈ ∂ f (0). This concludes the proof of Lemma 4 and the proof of
Theorem 1.
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