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The Lighthill–Panton and Lyman–Huggins interpretations of vorticity dynamics are
extended to the dynamics of enstrophy. There exist two competing definitions of the
vorticity current tensor, which describes the flow rate of vorticity in the fluid interior, and
the corresponding boundary vorticity flux, which represents the local vorticity creation
rate on a boundary. It is demonstrated that each definition of the vorticity current tensor
leads to a consistent set of definitions for the enstrophy current, boundary enstrophy flux
and the enstrophy dissipation term. This leads to two alternative interpretations of vorticity
and enstrophy dynamics: the Lighthill–Panton and Lyman–Huggins interpretations.
Although the kinematic evolution of the vorticity and enstrophy fields are the same under
each set of definitions, the dynamical interpretation of the motion generally differs. For
example, we consider the Stokes flow over a rotating sphere, and find that the flow
approaches a steady state where, under the Lyman–Huggins interpretation, there is no
enstrophy creation or dissipation. Under the Lighthill–Panton interpretation, however, the
steady-state flow features a balance between the continuous generation and subsequent
dissipation of enstrophy. Moreover, the Lyman–Huggins interpretation has previously been
shown to offer several benefits in understanding the dynamics of vorticity, and therefore it
is beneficial to extend this interpretation to the dynamics of enstrophy. For example, the
Lyman–Huggins interpretation allows the creation of vorticity, and therefore enstrophy, to
be interpreted as an inviscid process, due to the relative acceleration between the fluid and
the boundary.
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1. Introduction

Vorticity, which is defined as the curl of the velocity field (ω = ∇ × u), is an important
physical quantity in fluid mechanics that represents the local rotation rate of a fluid
element, and often indicates the most dynamically active regions of a fluid flow. Enstrophy,
which is half the square of the magnitude of vorticity (Ω = 1

2ω · ω), measures the local
strength of rotation without considering the direction of the rotation, and the volume
integral of enstrophy measures the total rotational motion contained within a fluid region
(Wu, Ma & Zhou 2015). Enstrophy has been widely used in the analysis of vortical flows,
including turbulence (Kida & Murakami 1987; Chen, Sreenivasan & Nelkin 1997; Kerr
2012), combustion (Kazbekov, Kumashiro & Steinberg 2019; Darragh et al. 2021) and
vortex reconnection (Kida, Takaoka & Hussain 1991; Chatelain, Kivotides & Leonard
2003; Kerr 2018).

The dynamics of enstrophy is closely related to that of vorticity. For example, boundaries
are the source of all vorticity in an incompressible flow (Morton 1984), and the vorticity
creation rate on a boundary is measured by the boundary vorticity flux, σ (Lighthill 1963;
Lyman 1990). Enstrophy is also generated on boundaries, and the boundary enstrophy flux
(FΩ ) is directly related to the boundary vorticity flux, by the expression FΩ = σ · ω (Wu
1995).

Recently, the boundary enstrophy flux has found a new application in the study of
near-wall surface features. The boundary enstrophy flux gives a direct relationship between
the skin-friction vector and the surface pressure (Liu et al. 2016; Chen, Liu & Wang 2021),
which leads to a new formula for the lift and drag force on a solid body in a viscous flow
(Liu, Wang & He 2017; Wu, Liu & Liu 2018; Liu 2021).

There is some ambiguity regarding the dynamics of vorticity. In particular, there are
two alternative definitions of the vorticity current tensor in the fluid interior, as well as
of the boundary vorticity flux (Terrington, Hourigan & Thompson 2021). The traditional
definitions are due to Lighthill (1963) and Panton (1984); however, an alternative definition
of the vorticity current is provided by Huggins (1970, 1971, 1994), while an alternative
definition of the boundary vorticity flux was suggested by Lyman (1990). There is no clear
physical reason to prefer either definition (Terrington et al. 2021), and, in general, one is
free to use either definition. This leads to two alternative, but equally valid, dynamical
interpretations of vorticity dynamics, which we refer to as the Lighthill–Panton (L–P) and
Lyman–Huggins (L–H) interpretations, respectively.

The L–H interpretation of vorticity transport offers several advantages over the L–P
interpretation (Terrington et al. 2021). In particular, it more clearly illustrates the kinematic
relationship between velocity and vorticity; it allows vorticity creation to be interpreted
as an inviscid process; it offers a powerful control-surface analysis of three-dimensional
flows; and it clearly illustrates how the solenoidal property of the vorticity field is
maintained during vortex reconnections. It is therefore of great interest to determine
whether the dynamics of enstrophy can be interpreted in a manner consistent with the
L–H interpretation of vorticity dynamics.

This study extends both the L–P and L–H interpretations of vorticity dynamics to
the dynamics of enstrophy. We demonstrate that each definition of the vorticity current
tensor leads to a consistent set of definitions for the boundary vorticity flux, the boundary
enstrophy flux, the enstrophy current, and the enstrophy dissipation term. Each set of
definitions leads to an alternative dynamical interpretation of vorticity and enstrophy
dynamics, which we call the L–P interpretation and the L–H interpretation, respectively.
Importantly, the kinematic evolution of the enstrophy field is the same under each set of
definitions, and it is only the dynamical interpretation of the motion that differs.
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The Lyman–Huggins interpretation of enstrophy transport

The structure of this article is as follows. First, in § 2, we review the dynamics of
vorticity and enstrophy, and introduce the L–P and L–H interpretations of vorticity
and enstrophy dynamics. Then, in § 3, we examine several example flows under
both interpretations, to highlight the differences between each interpretation. Finally,
concluding remarks are made in § 4.

2. Enstrophy dynamics

In this section, we introduce the L–P and L–H interpretations of vorticity and enstrophy
dynamics. The structure of this section is as follows. First, in §§ 2.1 and 2.2, we review
the dynamics of vorticity under the L–P and L–H definitions. Then, in § 2.3, we extend
the L–P and L–H definitions to the dynamics of enstrophy. Finally, in § 2.4, we discuss the
generation of enstrophy and vorticity on solid boundaries.

2.1. Vorticity dynamics
Consider an incompressible flow of a Newtonian fluid, which is governed by the
momentum and continuity equations:

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν∇2u, (2.1)

∇ · u = 0, (2.2)

where u is the velocity, p is the pressure and ρ and ν are the fluid density and kinematic
viscosity, respectively.

The Helmholtz equation, a transport equation for vorticity, is obtained by taking the curl
of (2.1):

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω. (2.3)

The left-hand side of (2.3) is the material derivative of vorticity, whereas the first term on
the right-hand side describes the effects of vortex stretching and tilting. Finally, the last
term on the right-hand side represents the effects of viscous diffusion.

Equation (2.3) can also be expressed as the divergence of a vorticity current tensor
(Huggins 1970, 1971, 1994; Huggins & Bacon 1980; Kolár 2003; Terrington et al. 2021):

∂ω

∂t
= −∇ · J, (2.4)

where the vorticity current tensor, J, is interpreted as follows: given two arbitrary unit
vectors â and b̂, the term â · J · b̂ describes the local flow rate of b̂ oriented vorticity in the
â direction. We remark that J was previously referred to in Terrington et al. (2021) as the
‘vorticity flux tensor’. However, the term ‘vorticity flux’ can mean two different things.
When referring to the tensor J, ‘vorticity flux’ refers to the rate of transport of vorticity
across a boundary, analogous to the heat flux. However, ‘vorticity flux’ can also refer to
the surface integral of normal vorticity, analogous to the magnetic flux (Greene 1993).
To avoid any confusion, we refer to J as the ‘vorticity current tensor’, following Huggins
(1970, 1971, 1994).

Equation (2.4) shows that vorticity is a conserved quantity, and the total vorticity within
a fluid volume can only change by the transport of vorticity across the outer boundary
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(Brøns et al. 2014; Terrington, Hourigan & Thompson 2020, 2022b). Specifically, for a
stationary volume V , the rate of change of volume-integrated vorticity is given by

d
dt

∫
V

ω dV = −
∮

∂V
n̂ · J dS, (2.5)

where n̂ is the unit normal directed out of the control volume.
The quantity σ = n̂ · J is known as the boundary vorticity flux (Lighthill 1963; Wu &

Wu 1993, 1996; Kolár 2003; Terrington et al. 2021), which represents the rate at which
vorticity is transported across the boundary, per unit area. Of particular importance, when
∂V represents a solid boundary, σ describes the local vorticity creation rate per unit area
on the boundary (Lighthill 1963; Morton 1984; Wu & Wu 1993, 1996; Terrington et al.
2021).

The vorticity current tensor, as well as the boundary vorticity flux, cannot be
unambiguously defined (Lyman 1990; Terrington et al. 2021), and two competing
definitions are often used in the literature. The original definition of the boundary vorticity
flux was given by Lighthill (1963) and Panton (1984) as

σ ′ = −νn̂ · ∇ω, (2.6)

which leads to the following definition of the vorticity current tensor:

J ′ = uω − ωu − ν∇ω. (2.7)

However, Huggins (1970, 1971, 1994) defines the vorticity current tensor as

J = uω − ωu − ν(∇ω − (∇ω)T), (2.8)

whereas Lyman (1990) provides an alternative definition of the boundary vorticity flux,
which is consistent with Huggins’ definition of the vorticity current tensor:

σ = νn̂ × (∇ × ω). (2.9)

Before continuing, we must clarify some of the terminology. In particular, we have
previously referred to the tensor J as the L–H tensor. However, as pointed out by Eyink
(2021), this double attribution is not appropriate, because Huggins introduced the vorticity
current tensor over two decades before Lyman introduced the boundary vorticity flux.
Therefore, the tensor J is referred to as the Huggins vorticity current tensor, whereas the
vector σ is referred to as the Lyman boundary vorticity flux. We refer to the vector σ ′
and tensor J ′ as the L–P boundary vorticity flux and the L–P vorticity current tensor,
respectively.

Each definition of the vorticity current tensor, and the corresponding boundary vorticity
flux, leads to an alternative interpretation of vorticity dynamics: the L–P interpretation,
based on the L–P boundary vorticity flux and vorticity current tensor; and the L–H
interpretation, based on Huggins’ vorticity current tensor and Lyman’s boundary vorticity
flux. The present work extends the L–P and L–H interpretations of vorticity dynamics to
include the dynamics of enstrophy.

2.2. Alternative interpretations of vorticity dynamics
Which of the two competing interpretations (L–P and L–H) should be used to describe
the generation and transport of vorticity has been controversial. In particular, Wu & Wu
(1993, 1998) support the L–P interpretation, whereas Eyink (2008) and Eyink, Gupta &
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The Lyman–Huggins interpretation of enstrophy transport

Zaki (2020) prefer the L–H interpretation. Other authors (Lyman 1990; Kolár 2003) accept
the notion that either definition may be used. We have recently argued that it is appropriate
to use either definition (Terrington et al. 2021), with each definition offering a different,
but equally valid, interpretation of vorticity dynamics. In this section, we summarise some
key points surrounding the controversy over the definition of the boundary vorticity flux.
For further details, readers are referred to our previous discussion (Terrington et al. 2021).

Wu & Wu (1993, 1998) present two arguments as to why the L–H definitions are
inappropriate, and therefore the L–P definitions are the only correct interpretation. First,
Lyman’s definition of the boundary vorticity flux is equal to the viscous acceleration of
a boundary fluid element, and therefore includes viscous stresses applied to this element
from both the fluid and the wall. Hence, Wu & Wu (1993) argue that this cannot represent
a vorticity creation process occurring solely on the boundary. However, both the L–P
and L–H definitions are related to gradients in the shear stress (vorticity gradients) and,
therefore, neither definition can represent the sole action of the boundary on boundary
fluid elements (Terrington et al. 2021). Therefore, this argument provides no reason to
prefer the L–P definition over the L–H interpretation.

Wu & Wu (1998) provide a second argument in support of the L–P definition. They
derive an expression for the rate of change of circulation at an open control surface, which
is related to the L–P definition of the boundary vorticity flux. However, in their derivation,
they neglect a term related to the curvature of vortex lines, assuming the curvature of the
boundary curve C can always be made much greater than the curvature of vortex lines.
However, the curvature of C does not appear in this equation, so the vortex-line curvature
term cannot be neglected (Terrington et al. 2021). When this term is not neglected,
Lyman’s definition, rather than the L–P definition, is obtained.

There does not appear to be a clear physical reason to prefer either the L–P or L–H
interpretations (Terrington et al. 2021). Instead, each definition offers a different, but
equally valid, dynamical interpretation of the evolution of the vorticity field. While at first
this may appear surprising, one must remember that the vorticity field is obtained from the
velocity field by a purely kinematic operation (Lyman 1990). Changes to the velocity field
are governed by the Navier–Stokes equations, which are a statement of the conservation
of linear momentum. Essentially, the redistribution of linear momentum by pressure and
viscous forces produces corresponding changes to both the velocity and vorticity fields. It
is often convenient to visualise and interpret fluid motions by the evolution of the vorticity
field, rather than the velocity field. One then treats vorticity as the primary variable,
and either the L–H or L–P definitions may be used to understand the generation and
redistribution of vorticity in the flow.

We have previously found that for many flows, the L–H interpretation offers the
following advantages over the L–P interpretation (Terrington et al. 2021). First, Lyman’s
flux is equal to the viscous acceleration of boundary fluid elements and, therefore,
more clearly illustrates the kinematic relationship between velocity and vorticity. Second,
Lyman’s definition of the boundary vorticity flux allows vorticity generation to be
described as an inviscid process, generalising Morton’s (1984) interpretation of vorticity
creation to three-dimensional flows. Third, Huggins’ vorticity current tensor can be related
to the transport of circulation in any two-dimensional reference surface, allowing a
powerful control-surface analysis of three-dimensional vortical flows. Finally, the L–H
interpretation clearly illustrates how the kinematic condition that vortex lines do not
end inside the fluid is maintained during viscous processes such as vortex reconnection
(Terrington et al. 2021), or the connection of a vortex ring to a free surface (Terrington,
Hourigan & Thompson 2022a). In addition, Eyink (2021) has shown that the Huggins
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tensor leads to a generalised Josephson–Anderson relation between the drag on a finite
solid body and the vorticity flux. The numerous benefits offered by the L–H interpretation
of vorticity dynamics motivate us to develop the corresponding L–H interpretation of
enstrophy dynamics, which is presented in § 2.3.

Recently, Wang, Eyink & Zaki (2022) have emphasised that the two expressions
σ ′ = −νn̂ · ∇ω and σ = νn̂ × (∇ × ω) measure slightly different things in general, and
therefore in some contexts only one of these definitions may be appropriate. We stress
that either definition may always be adopted as representing the local flow rate of vorticity
across a boundary. In some contexts, however, these expressions are related to some other
quantity, such as the total force and moment on a closed boundary (Wu & Wu 1993, 1996),
and these relationships may only hold for one definition of the boundary vorticity flux.

2.3. Enstrophy dynamics
Although vorticity is a conserved quantity, this does not mean the total rotational
motion within a fluid remains constant. In particular, cross-diffusive annihilation
of opposite-signed vorticity can occur (Morton 1984), which leads to a reduction
in the kinetic energy contained in vortical structures, without a reduction in the
volume-integrated vorticity. Enstrophy, however, measures the local fluid rotation without
considering the direction of rotation, and therefore the volume-integrated enstrophy
provides a measure of the total rotational motion within a fluid flow. In this subsection,
we extend the L–P and L–H interpretations of vorticity dynamics to the dynamics of
enstrophy.

A transport equation for enstrophy can be derived from (2.4), by taking the dot product
with vorticity (Wu 1995; Chen et al. 2021):

∂Ω

∂t
= −(∇ · J) · ω = −∇ · (J · ω) + J : ∇ω, (2.10)

where : denotes twice contraction (in Cartesian tensor notation, J : ∇ω = Jij∂ωj/∂xi).
As the advection and vortex stretching/tilting terms in both the L–P and Huggins’

vorticity current tensors are the same, we can split the vorticity current tensor into inviscid
and viscous parts:

J = uω − ωu + Jν, (2.11)

where J ′
ν = −ν∇ω for the L–P tensor, and Jν = −ν(∇ω − (∇ω)T) for the Huggins

tensor. Using this decomposition, (2.10) becomes

∂Ω

∂t
+ u · ∇Ω = ω · (∇u) · ω − ∇ · (Jν · ω) + Jν : ∇ω. (2.12)

The left-hand side of 2.12 is the material derivative of enstrophy, whereas the first term
on the right-hand side describes the vortex stretching effect. The term −∇ · (Jν · ω)

describes the diffusive transport of enstrophy, and the final term, Jν : ω, describes the
viscous dissipation of enstrophy.

The viscous diffusion term can also be written as the divergence of an enstrophy current
vector,

Q = Jν · ω, (2.13)

where n̂ · Q describes the local flow-rate of enstrophy in the n̂ direction. This implies that
the boundaries of a fluid domain can act as a source or sink of enstrophy, with the boundary
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enstrophy flux given by

FΩ = n̂ · Q = ω · (n̂ · Jν) = ω · σ . (2.14)

The physical interpretation of (2.14) is quite simple: when the vorticity generated on or
diffused out of a boundary is of the same sign as the boundary vorticity, the local enstrophy
is enhanced by the creation of vorticity on the boundary (Wu 1995). However, when the
vorticity created on the boundary is of opposite sign to the boundary vorticity, enstrophy
is reduced as existing vorticity cross-annihilates with the newly generated vorticity.

As with the viscous part of the vorticity current tensor, both the enstrophy diffusion and
dissipation terms cannot be unambiguously defined, and depend on which definition of the
vorticity current tensor is used. When the L–P definition is used, the viscous dissipation
term becomes

D′ = J ′
ν : ∇ω = −ν∇ω : ∇ω, (2.15)

whereas the enstrophy–current vector becomes

Q′ = J ′
ν · ω = −ν(∇ω) · ω = −ν∇Ω, (2.16)

and the boundary enstrophy flux is

F′
Ω = ω · σ ′ = −νω · (n̂ · ∇ω) = −νn̂ · ∇Ω. (2.17)

Equations (2.15)–(2.17), as well as (2.6) and (2.7), collectively form the L–P interpretation
of enstrophy and vorticity dynamics. These are the usual definitions of the viscous
dissipation term and the boundary enstrophy flux, and have been used by Wu (1995), Liu
et al. (2016) and Chen et al. (2021).

An alternative definition of the viscous dissipation and diffusion terms is obtained when
one uses Huggins’ definition of the vorticity current tensor:

D = Jν : ∇ω = ν((∇ω)T − ∇ω) : ∇ω = −ν(∇ × ω) · (∇ × ω), (2.18)

Q = Jν · ω = νω · (∇ω − (∇ω)T) = −νω × (∇ × ω), (2.19)

FΩ = ω · σ = νω · (n̂ × (∇ × ω)) = −νn̂ · [ω × (∇ × ω)]. (2.20)

Equations (2.18)–(2.20), as well as (2.9) and (2.8), collectively form the L–H interpretation
of enstrophy dynamics. To the best of the authors’ knowledge, these definitions have
not previously been considered as an alternative definition of the enstrophy generation,
transport and diffusion terms.

As with the dynamics of vorticity, both the L–P and L–H definitions give the same
kinematic evolution of the enstrophy field through (2.12). It is only the dynamical
interpretation of this motion, including the local enstrophy generation rate on the
boundary, the local flow rate of enstrophy in the fluid interior and the local enstrophy
dissipation rate, that differs between the two definitions. Enstrophy, much the same as
vorticity, is obtained from the velocity field by a purely kinematic relationship and,
therefore, changes to the enstrophy field are a consequence of the redistribution of
linear momentum throughout the flow. The L–H and L–P definitions provide alternative
dynamical interpretations of the effects of the transport of linear momentum on the
evolution of the vorticity and enstrophy fields.
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2.4. The inviscid mechanism of vorticity and enstrophy creation
One of the main advantages of the L–H interpretation is that vorticity creation on an
interface or boundary can be interpreted as an inviscid process (Morton 1984; Terrington
et al. 2021, 2022b). Therefore, under the L–H interpretation, enstrophy creation should
also be considered an inviscid process. In this subsection, we discuss the inviscid theory
of vorticity and enstrophy creation.

Using the tangential momentum equation, we obtain the following expression for the
boundary vorticity flux (Lyman 1990; Terrington et al. 2021)

σ = −n̂ ×
[

du
dt

+ ∇
(

p
ρ

)]
, (2.21)

where du/dt is the material derivative of velocity. The right-hand side of (2.21) represents
the relative acceleration between the fluid and the solid that would occur in the absence
of any viscous acceleration (Morton 1984; Terrington et al. 2021), due to either tangential
acceleration of the boundary or tangential pressure gradients. As first discussed by Morton
(1984), this inviscid relative acceleration would produce a velocity discontinuity, which
is interpreted as a sheet of vorticity on the boundary (Morton 1984; Terrington et al.
2021, 2022b). Viscous forces are responsible for the redistribution of vorticity into the fluid
after it has been generated, thereby maintaining the no-slip boundary condition (Morton
1984; Terrington et al. 2021).

Using (2.20), the boundary enstrophy flux is related to the boundary vorticity flux:

FΩ = −ω ·
(

n̂ ×
[

du
dt

+ ∇
(

p
ρ

)])
. (2.22)

Therefore, the inviscid creation of vorticity on a boundary, by either tangential acceleration
of the boundary, or a tangential pressure gradient, can also result in either the creation or
destruction of enstrophy on the boundary, depending on the relative orientations of the
boundary vorticity and the boundary vorticity flux.

Under the L–P interpretation, however, the inviscid theory of vorticity creation does not
apply. An additional viscous term appears in the expressions for the boundary vorticity
flux and boundary enstrophy flux (Wu & Wu 1993):

σ ′ = −n̂ ×
[

du
dt

+ ∇
(

p
ρ

)]
− ν(∇ω) · n̂, (2.23)

F′
Ω = −ω ·

(
n̂ ×

[
du
dt

+ ∇
(

p
ρ

)])
− νω · (∇ω) · n̂, (2.24)

Therefore, in addition to tangential boundary acceleration and tangential pressure
gradients, vorticity and enstrophy are also generated by a purely viscous mechanism,
related to the distribution of wall shear-stress on the boundary (Wu & Wu 1993). For
high-Reynolds-number flows, this viscous term is usually small, except for local regions
of high surface curvature, or near singular points in the wall-shear stress (Wu & Wu 1993).

We stress that the additional viscous terms do not occur under the L–H interpretation.
Therefore, L–H offers a conceptually more elegant interpretation of vorticity and
enstrophy generation on a boundary, where vorticity, and therefore enstrophy, is only
generated by an inviscid relative acceleration between the solid boundary and the wall,
driven by either tangential pressure gradients or tangential acceleration of the boundary.
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3. Examples

We now consider several example flows, examining each flow under the L–H and L–P
interpretations to highlight the differences between the two interpretations. The first two
examples we consider, Kida’s straight jet flow and the Stokes flow over an impulsively
rotated sphere, are highly viscous flows, in which inertial effects are small. These examples
show remarkable differences between the L–H and L–P interpretations: the flow structures
associated with strong enstrophy dissipation may differ between the two interpretations,
and the total enstrophy creation on a solid boundary, as well as the total enstrophy
dissipation in the fluid interior, may also differ between the two definitions. The third
example we consider is the inertial flow over a rotating sphere, which suggests that
for highly inertial flows, the differences between the two interpretations of enstrophy
dynamics are generally small.

3.1. Kida’s straight jet flow
The first example we consider is Kida and Takaoka’s (1991) straight-jet flow, which
is a two-dimensional model of symmetrical vortex reconnection. We have previously
investigated the dynamics of vorticity in this flow under the L–H interpretation (Terrington
et al. 2021), and found that this interpretation provides an elegant description of the vortex
connection mechanism. In particular, the breaking open and subsequent reconnection
of vortex lines are attributed to a single physical process, which clearly explains how
the kinematic condition that vortex filaments do not end inside the fluid is maintained
throughout the interaction.

In this section, we discuss the dynamics of enstrophy for the straight jet flow, under both
the L–P and L–H interpretations. In particular, we find that the flow structures associated
with strong enstrophy dissipation differ between the two interpretations, and that the
diffusion of enstrophy under L–H more closely resembles the typical interpretation of
the vortex reconnection process.

The straight-jet flow is a family of analytic solutions to the Navier–Stokes equations,
with velocity and vorticity given by Kida & Takaoka (1991):

u = (−Ax, 0, Az + u3(x, y, t)), (3.1)

ω =
(

∂u3

∂y
, −∂u3

∂x
, 0

)
, (3.2)

u3(x, y, t) = u0r2
0e−2At

σ1σ2

[
exp

[
−(x − ae−At)2

σ 2
1

− y2

σ 2
2

]
+ exp

[
−(x + ae−At)2

σ 2
1

− y2

σ 2
2

]]
,

(3.3)

σ 2
1 = 2ν

A
(1 − e−2At) + r2

0e−2At, (3.4)

σ 2
2 = 4νt + r2

0, (3.5)

where A, r0, a and u0 are constants. The vorticity field (3.2) is essentially a
two-dimensional vector field, and therefore vortex lines lie entirely within the x–y plane.
Moreover, each vortex line is also a level surface of the scalar field u3.

We consider a single case with parameters A = 1, ν = 0.5, r0 = 0.5, u0 = 1 and a = 1,
which were chosen to provide a clear example of vortex reconnection. Vortex lines
(contours of u3) are plotted at a selection of flow times in figure 1, and a transient animation
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Figure 1. Vortex lines in the x–y plane (contours of u3), at flow times (a) t = 0, (b) t = 0.2 and (c) t = 0.6, for
Kida’s straight jet flow. Vortex lines are colour coded by whether they enclose only a single ‘O’-point (pink) or
the entire system of two ‘O’-points and one ‘X’-point (blue).

is provided in supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.95.
This flow initially features three singular points (where ω = 0): two ‘O’-points, labelled
O1 and O2, and one ‘X’-point, labelled X. At the critical time t ≈ 0.5058, the singular
points merge into a single ‘O’-point.

Following the terminology used by Melander & Hussain (1994), each vortex line in
figure 1(b) lies in one of three islands: the ‘inner islands’ associated with O1 and O2,
which correspond to the pink shaded regions; and the outer island, which corresponds to
the blue shaded region. The strength of each island is measured by the circulation, which
is defined as the integral of normal vorticity along a curve that intersects each vortex
line in the island precisely once (Greene 1993; Melander & Hussain 1994). Note that the
island circulation is usually referred to as the ‘vorticity flux’, by analogy with the magnetic
flux (Greene 1993; Melander & Hussain 1994). However, because the term ‘vorticity flux’
may be confused with the boundary vorticity flux, we shall refer to this quantity as the
circulation.

Figure 2 presents the variation of the island circulations against time. The circulation
associated with the inner islands decreases monotonically, until it becomes zero at the
critical time t ≈ 0.5058. The circulation associated with the outer island initially increases,
reaches a maximum value at t ≈ 0.24 and subsequently decreases. The transient behaviour
of the island circulations can be understood by considering the topological changes to
the vortex lines that occur at the singular points (Greene 1993; Melander & Hussain
1994). Specifically, the annihilation of circulation occurs at each ‘O’-point, resulting in
the continual loss of circulation from the inner islands. Vortex reconnection occurs at the
‘X’-point, and transfers circulation from the inner island to the outer island. This produces
the initial increase in the circulation associated with the outer island.

We have previously analysed the diffusion of vorticity near the singular points,
and shown that the L–H definition of the vorticity current tensor leads to an elegant
interpretation of vortex reconnection at the ‘X’-point, and of the annihilation of circulation
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Figure 2. Time history of the circulation associated with the inner and outer islands.
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Figure 3. Colour plot indicating the enstrophy dissipation (D), overlaid with vectors of the enstrophy current
(Q) and vortex lines (contours of u3), at t = 0.2, under (a) the L–H interpretation and (b) the L–P interpretation.

at the ‘O’-points (Terrington et al. 2021). We now consider the dynamics of enstrophy in
this flow under both the L–P and L–H interpretations.

Figure 3 presents colour plots of the enstrophy dissipation (D) and vectors of the
enstrophy current (Q), as well as vortex lines, using (a) the L–H and (b) the L–P
definitions, at t = 0.2. Although the total enstrophy dissipation is equal under each
interpretation, ∫∫

D dx dy =
∫∫

D′ dx dy, (3.6)

the spatial distribution of enstrophy dissipation differs between each definition. Under the
L–P definition, enstrophy dissipation is concentrated near the three singular points, O1, O2
and X, whereas under the L–H interpretation, enstrophy dissipation is only concentrated
near O1 and O2, with relatively low dissipation occurring at X.

Therefore, under L–P, both the reconnection of vorticity at X and the annihilation of
circulation at O1 and O2 are associated with increased enstrophy dissipation, whereas
under L–H, only the annihilation of circulation at O1 and O2 is associated with increased
enstrophy dissipation. Vortex reconnection at X is not associated with strong enstrophy
dissipation under L–H. This is reasonable, since vortex reconnection simply represents
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Figure 4. Closeup of figure 3, showing the enstrophy current and enstrophy dissipation near the connection
point, under (a) the L–H and (b) the L–P interpretations. In panel (a), label 1 denotes the enstrophy transport
towards the connection point; label 2 denotes the enstrophy transport away from the connection point; and
label 3 marks where the enstrophy current matches the apparent motion of the vortex lines. In panel (b), label 1
denotes the enstrophy transport towards the connection point; label 2 denotes the enstrophy transport towards
the symmetry plane; label 3 denotes the enstrophy transport towards the connection point; and label 4 denotes
the enstrophy dissipation near the connection point.

the transfer of circulation across the reconnection point, whereas circulation annihilation
represents the complete removal of vorticity (and therefore enstrophy) from the flow.

Figure 3 also reveals that the enstrophy currents are different under each definition.
The most striking differences are seen near the connection point, which is illustrated more
clearly in figure 4. Under L–H (figure 4a), the enstrophy current is always perpendicular to
vortex lines, and therefore enstrophy cannot be transported along a vortex line. Moreover,
the direction of the enstrophy current matches the perceived motion of vortex lines during
the reconnection process, where vortex lines passing across the x-axis are transported
towards the connection point, whereas vortex lines intersecting the y-axis are transported
away from the connection point. The enstrophy current vectors in figure 4(a) support this
interpretation.

Under L–P (figure 4b), however, enstrophy is transported towards the connection
point in all directions, which is balanced by elevated enstrophy dissipation near the
connection point. Moreover, the mechanism responsible for the increase in enstrophy
at the y-axis differs between the two interpretations. Specifically, the enstrophy at the
locations indicated by green circles in figure 4(b) increases as vortex lines are reconnected
across the y-axis. Under the L–P interpretation, this is attributed to the transport of
enstrophy towards the y-axis in the x-direction, which, unlike the L–H interpretation, does
not match the perceived motion of vortex lines under the usual interpretation of vortex
reconnection.

3.2. Stokes flow over rotating sphere
The second example we consider is the Stokes flow driven by an impulsively started
rotating sphere. In this example, the total enstrophy generation on the surface of the sphere,
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Figure 5. Geometry and spherical coordinate system (r, θ, φ) for the Stokes flow over an impulsively rotated
sphere.

as well as the total enstrophy dissipation in the fluid interior, differ between the L–H
and L–P interpretations. However, the total rate-of-change of enstrophy (including both
enstrophy generation and dissipation) is the same for both definitions. Under L–H, the
flow approaches a steady state where the generation, diffusion and dissipation of enstrophy
are zero. Under L–P, however, the steady-state flow features continuous generation of
enstrophy on the sphere, which is balanced by the continuous dissipation of enstrophy
in the fluid interior.

The Stokes approximation allows the generation and dissipation of enstrophy to be
isolated from the advection and vortex stretching terms. We consider the following
transport equations for the ‘velocity’ field:

∂u
∂t

= −∇
(

p
ρ

)
+ ν∇2u. (3.7)

As shown in figure 5, we consider a sphere of radius R, which is rotated with
angular velocity W = W êz. Using a spherical coordinate system (r, θ, φ), the following
transformation

ur(r, θ, t) = uθ (r, θ, t) = p(r, θ, t) = 0, (3.8a)

uφ(r, θ, t) = Wr sin θ f (r̂, τ ), (3.8b)

r̂ = r/R, (3.8c)

τ = t/(R2/ν), (3.8d)

reduces (3.7) to a one-dimensional partial differential equation,

∂f
∂τ

= 4
r̂

∂f
∂ r̂

+ ∂2f
∂ r̂2 , (3.9)

which has the following initial and boundary conditions for an impulsively started sphere:

f (1, τ ) = 1, (3.10a)

f (r̂, 0) = 0. (3.10b)

In this work, (3.9) and (3.10) are solved using a finite difference method. The
semi-infinite domain in r̂ is transformed to a finite domain using the following
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transformation:

ẑ = r̂ − 1
r̂ + 1

, (3.11)

where 0 ≤ ẑ ≤ 1. Equation (3.9) is transformed into (τ, ẑ) coordinates, and then discretised
using a centred time centred space (CTCS) finite difference scheme. A regular grid
containing nz = 1000 points was used in the ẑ direction, with a constant timestep of
�τ = 0.00001. Using a larger timestep of �τ = 0.0001, or increasing the number of
gridpoints to nz = 2000, results in changes to the solution of less than 0.01 % at τ = 0.1
and τ = 1, confirming that a grid-independent result is obtained.

The vorticity and enstrophy fields for this flow are presented in figure 6, and an
animation is provided in supplementary movie 2. On the initial rotation of the sphere, a
finite quantity of vorticity is generated on the solid boundary and is immediately diffused
into the fluid. A uniform vorticity field corresponding to pure rotation is also generated in
the solid body, so that vortex lines are closed loops passing through both the solid and the
fluid. During the transient evolution, vorticity and enstrophy in the fluid gradually diffuse
away from the solid boundary, approaching a steady state given by

f (r̂, ∞) = 1/r̂3, (3.12)

ωr(r̂, ∞) = 2W cos θ/r̂3, (3.13)

ωθ(r̂, ∞) = W sin θ/r̂3, (3.14)

Ω = (4 cos2 θ + sin2 θ)W2/r̂6. (3.15)

We have previously discussed the dynamics of vorticity for this flow (Terrington et al.
2021). Under L–H, the boundary vorticity flux is given by (2.21)

σ = νêr × (∇ × ω) = ∂uφ

∂t
êθ , (3.16)

and is zero apart from the initial impulsive acceleration. Therefore, all vorticity is
generated during the initial rotation of the sphere, and the total vorticity in the fluid remains
constant thereafter. In the steady-state flow, the vorticity current is zero everywhere, and
no generation or diffusion of vorticity occurs.

Under the L–P, however, the boundary vorticity flux is given by (2.23),

σ ′ = −νêr · ∇ω = ∂uφ

∂t
êθ − ν(∇ω) · êr, (3.17)

and remains non-zero for all τ ≥ 0, due to the viscous term. In the steady-state flow,
vorticity is continually generated on the boundary, diffused into the fluid, and destroyed
by the cross-annihilation of opposite-signed vorticity in the fluid interior.

The dynamics of enstrophy is similar to that of vorticity. Under the L–H interpretation,
the boundary enstrophy flux is given by

FΩ = ω · σ = ωθ

∂uφ

∂t
, (3.18)

and enstrophy is only generated by the initial rotation of the sphere. However,
unlike vorticity, which is a conserved quantity, the total enstrophy decreases due to
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Figure 6. Colour plot indicating the dimensionless enstrophy, overlaid with vortex lines, for a selection of
dimensionless flow times. The vorticity and enstrophy fields for solid body rotation in the sphere are also
included.

viscous dissipation. In figure 7(a), we plot the time history of the total enstrophy,

IΩ =
∫

V
Ω dV (3.19)

as well as the total enstrophy dissipation,

ID =
∫

V
D dV, (3.20)

and the total enstrophy generation on the boundary,

IF =
∫

S
FΩ dS, (3.21)

under the L–H interpretation, in non-dimensional form. Here, V is a volume comprising
the entire fluid, whereas S is the surface of the sphere. After being generated by the initial
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Figure 7. Time history of the total enstrophy (IΩ ), enstrophy dissipation (ID) and enstrophy generation (IF)
under (a) the L–H interpretation and (b) the L–P interpretation, presented in non-dimensional form.

rotation of the sphere, the total enstrophy decays due to enstrophy dissipation, approaching
a constant value in the steady-state limit. In the steady-state flow, the generation and
dissipation of enstrophy are zero under the L–H interpretation.

Under the L–P definition, however, the boundary enstrophy flux is given by (2.24)

F′
Ω = ω · σ ′ = ωφ

∂uφ

∂t
− νω · (∇ω) · êr, (3.22)

which is non-zero for all τ > 0, and therefore enstrophy is continually created on the
boundary by the viscous effect. In figure 7(b), we plot the time history of the total
enstrophy (IΩ ), as well as the total enstrophy generation (I′

F) and dissipation (I′
D) under

the L–P interpretation, in non-dimensional form. Note that the scale of the vertical axes
in figure 7(a,b) differ by an order of magnitude. The total enstrophy, IΩ , is the same in
each plot; however, I′

F and I′
D are substantially larger than IF and ID. Under the L–P

interpretation, enstrophy is continually generated on the boundary, and the generation
of enstrophy is balanced by an equivalent increase in the enstrophy dissipation when
compared to the L–H interpretation, so that the total rate-of-change of enstrophy is
equivalent between the two interpretations. Under the L–P interpretation, the steady-state
flow is maintained by the continuous generation of enstrophy on the sphere, and continual
destruction of enstrophy by viscous dissipation in the fluid interior. Importantly, the total
enstrophy, IΩ , does not depend on whether the L–H or L–P interpretations are used, and
only the dynamical interpretation of the motion differs between the two definitions.

3.3. Inertial flow over a rotating sphere
We now consider the inertial flow over a rotating sphere. One of the main features of
this flow is the formation of a counter rotating vortex pair due to a collision between the
boundary layers from the upper and lower hemispheres, which has been examined in great
detail by Calabretto et al. (2015); Calabretto, Denier & Levy (2019). We have previously
examined the generation of vorticity in this flow (Terrington et al. 2021), and the numerical
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Figure 8. Colour plot indicating the non-dimensional enstrophy, overlaid with the projection of vortex lines
in the x–z plane, for the flow over a rotating sphere at Re = 1000, over a range of dimensionless flow times
(τ = tW).

results presented in this section are obtained using the finite volume approach outlined in
that work.

Figure 8 presents a colour plot of the dimensionless enstrophy, as well as the projection
of vortex lines in the x–z plane, for a selection of flow times. In addition, a transient
animation is provided in supplementary movie 3. Initially, enstrophy is mostly located
in the boundary layer. Rotation of the sphere results in a centrifugal effect, so that
vorticity and enstrophy in the boundary layer are advected towards the equator. Vorticity
and enstrophy from the upper and lower hemispheres interact at the equator, forming a
counter-rotating vortex pair, as well as a radial jet flow. For further details on the boundary
layer collision and jet formation, refer to Calabretto et al. (2015, 2019).

Here, our focus is on the generation and dissipation of enstrophy, under the L–H and
L–P interpretations. Under L–H, the boundary vorticity flux is given by (2.21)

σ = ∂uφ

∂t
êθ +

[
u2
φ

R tan θ
− 1

ρR
∂p
∂θ

]
êφ. (3.23)

As with the Stokes flow over a sphere, tangential vorticity is generated by the initial
acceleration of the sphere. However, azimuthal vorticity is also continually generated
on the boundary by tangential pressure gradients and the centrifugal acceleration.
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Figure 9. (a) Time history of the total enstrophy in the fluid. (b) Time history of the rate of change of enstrophy
(dIΩ/dt), enstrophy dissipation (ID), boundary enstrophy flux (IF) and vortex stretching term (IVS). Dashed
lines are used for the L–P definitions, whereas solid lines are used for the L–H interpretation.

These terms can be interpreted as the inviscid relative acceleration, where, in the absence
of viscous forces, boundary fluid elements would suffer a centrifugal acceleration towards
the equator. The inviscid generation of vorticity also results in the creation of enstrophy,
with a boundary enstrophy flux given by

FΩ = ωθ

∂uφ

∂t
+ ωφ

[
u2
φ

R tan θ
− 1

ρR
∂p
∂θ

]
. (3.24)

Under L–P, however, the boundary vorticity flux also includes the following viscous
terms:

σ ′ = σ + ν

[
ωθ

R
− 1

R
∂ωr

∂θ

]
êθ + ν

ωφ

R
êφ − ν

∂ωr

∂r
êr, (3.25)

and therefore vorticity creation is not an inviscid process. These terms also produce a
corresponding viscous contribution to the L–P boundary enstrophy flux:

F′
Ω = FΩ + ν

ω2
θ

R
− ν

ωθ

R
∂ωr

∂θ
+ ν

ω2
φ

R
− νωr

∂ωr

∂r
. (3.26)

Figure 9(a) presents a time history of the total enstrophy IΩ . The initial rotation
of the sphere generates an initially singular enstrophy, which is rapidly decayed by
viscous dissipation. The total enstrophy then increases between t/W = 5 and t/W = 10,
corresponding to the formation of the vortex pair, and remains approximately constant
thereafter.

In figure 9(b), we plot the rate-of-change of total enstrophy, as well as the total enstrophy
creation on the boundary (IF), enstrophy dissipation in the fluid interior (ID) and enstrophy
creation due to vortex stretching,

IVS =
∫

V
ω · ∇u · ω dV. (3.27)

Initially, the dissipation term dominates the boundary enstrophy flux and vortex stretching
terms, producing the initial rapid decay of enstrophy. The vortex stretching and boundary

958 A30-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

95
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.95


The Lyman–Huggins interpretation of enstrophy transport

50

10

20

30

40

50

10t/W 15

I F/
(W

3
R3

)

IF,u

IF,p
IF,r

Figure 10. Contributions to the boundary enstrophy flux due to the centrifugal acceleration (IF,u), the
tangential pressure gradients (IF,p) and the viscous term (IF,τ ).

enstrophy flux terms gradually increase, opposing the viscous dissipation of enstrophy. In
particular, the formation of the vortex pair between t/W = 5 and t/W = 10 is associated
with a sharp increase in the enstrophy source due to vortex stretching, which produces
an increase in the total enstrophy. Beyond t/W = 10, the total enstrophy creation by the
boundary enstrophy flux and vortex stretching are approximately balanced by the enstrophy
dissipation term, so that the total enstrophy remains approximately constant.

In figure 9, dashed lines indicate the dissipation and boundary flux terms under the
L–P interpretation, whereas solid lines indicate the L–H interpretation. For most of the
transient evolution, the two definitions give similar results, with only a small quantitative
difference. The boundary enstrophy flux is slightly larger under the L–P interpretation,
due to the additional viscous contribution, and this is balanced by an increased enstrophy
dissipation compared with the L–H interpretation.

In figure 10, we plot the contributions to the boundary enstrophy flux from the pressure
term (IF,p), the centrifugal acceleration (IF,u) and the viscous term (IF,τ ). Enstrophy
creation is dominated by the centrifugal acceleration, which occurs under both the L–P
and L–H interpretations. The viscous term, which only occurs under L–P, is small apart
from the initial startup and, therefore, there are only small differences between the L–H
and L–P interpretations for most of the transient evolution.

The large differences between the L–H and L–P boundary enstrophy fluxes during
the initial startup can be understood using the following argument. At t/W = 0+, the
surface-normal vorticity is given by the no-slip boundary condition, ωr = 2W cos θ ,
whereas vorticity is zero in the fluid interior. Therefore, the vorticity gradient ∂ωr/∂r
in (3.26) is singular following the initial rotation of the sphere. As the boundary layer
develops, however, this term rapidly decreases, and is small for t/W > 1.

In figure 11, we plot the spatial distribution of the enstrophy dissipation term at t/W =
12 under (a) the L–P and (b) L–H interpretations. Visually, the distributions of enstrophy
dissipation are nearly identical between the two definitions. Therefore, not only is the total
enstrophy dissipation similar between the two interpretations, the structures associated
with strong enstrophy dissipation, the boundary layer and the radial jet, are the same under
both definitions. The differences between the two interpretations (D − D′) are plotted in
figure 11(c), which confirms that while there are quantitative differences between the two
interpretations, these differences are small.
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Figure 11. Colour plot indicating the non-dimensional enstrophy dissipation under (a) the L–P and (b) the
L–H interpretations, as well as (c) the difference between the two definitions, for the flow over a rotating sphere
at Re = 1000 and at τ = 12. The projection of vortex lines in the x–z plane is also shown.

This example suggests that, while the L–H and L–P interpretations may be substantially
different for highly viscous flows, for highly inertial flows the two interpretations give quite
similar results. The quantity of enstrophy generated on the boundary, as well as the rate of
dissipation in the fluid interior, are similar between the two interpretations. Moreover, the
locations where enstrophy is generated, and the structures associated with strong enstrophy
dissipation are also similar between the two interpretations. We have also examined a
turbulent channel flow and the collision of symmetrical vortex rings (not presented for
brevity), also finding only small differences between the L–H and L–P interpretations.
Therefore, for a wide range of inertially dominated flows, one would not expect to find
significant differences between the L–H and L–P interpretations.

We remark that even for inertially dominated flows, the L–H interpretation still offers
several benefits for understanding the dynamics of vorticity. For example, the L–H
interpretation has been used to provide an elegant description of the generation and
conservation of vorticity in rotating and translating sphere flows (Terrington et al. 2021),
and for the interaction between a vortex ring and a free surface (Terrington et al. 2022a).
Even if the L–H and L–P interpretations of enstrophy dynamics are quantitatively similar
for highly inertial flows, only the L–H interpretation of enstrophy dynamics is consistent
with the L–H interpretation of vorticity dynamics.

This principle is clearly illustrated in the present example. Although the quantitative
differences between the L–H and L–P boundary enstrophy fluxes are small, only the L–H
interpretation is consistent with Morton’s (1984) inviscid theory of vorticity creation.
Therefore, the L–H interpretation offers a conceptually more elegant description of
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enstrophy creation, where enstrophy creation is interpreted as an inviscid process, due
to the inviscid relative acceleration between the fluid and the boundary.

4. Conclusions

We have extended the L–P and L–H interpretations of vorticity dynamics to the dynamics
of enstrophy. We have presented a consistent set of definitions for: the vorticity current,
boundary vorticity flux, enstrophy current, boundary enstrophy flux and the enstrophy
dissipation term, under each interpretation. Although the kinematic evolution of the
vorticity and enstrophy fields are the same under each set of definitions, the dynamical
interpretation of the motion generally differs. The local enstrophy creation rate on a
boundary, as well as the local enstrophy dissipation in the fluid interior, may differ
under each interpretation. Moreover, the total enstrophy generation on a solid body, as
well as the total enstrophy creation in the fluid interior, may also differ between the two
interpretations.

Importantly, the L–H interpretation of vorticity dynamics offers several advantages over
the L–P interpretation, and the L–H interpretation of enstrophy dynamics developed in
this work is consistent with the L–H interpretation of vorticity dynamics. For example, the
L–H interpretation offers a conceptually simple interpretation of vorticity and enstrophy
creation, where vorticity, and therefore enstrophy, creation is an inviscid process, driven
by the relative acceleration between the fluid and the boundary. Under the L–P definitions,
however, vorticity and enstrophy are also generated by a purely viscous mechanism.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.95.
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