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Quasiconformal Contactomorphisms and
Polynomial Hulls with Convex Fibers
Zoltán M. Balogh and Christoph Leuenberger

Abstract. Consider the polynomial hull of a smoothly varying family of strictly convex smooth domains
fibered over the unit circle. It is well-known that the boundary of the hull is foliated by graphs of analytic
discs. We prove that this foliation is smooth, and we show that it induces a complex flow of contactomor-
phisms. These mappings are quasiconformal in the sense of Korányi and Reimann. A similar bound on their
quasiconformal distortion holds as in the one-dimensional case of holomorphic motions. The special case
when the fibers are rotations of a fixed domain in C2 is studied in details.

1 Preliminaries and Statements of Results

The study of holomorphic motions in one complex variable has been largely motivated by
complex dynamics. The observation (cf. [22]) that the Julia sets of rational maps move
holomorphically with respect to the parameter provides a whole class of natural and inter-
esting examples of holomorphic motions. There is also an intimate connection between
holomorphic motions and quasiconformal maps, thus holomorphic motions can be used
as a tool in proving deep results in the theory of quasiconformal maps [2], [3].

Let us now be more precise: given a subset Y ⊂ C, one can define a holomorphic motion
of Y as a mappingΨ : ∆× Y → C, such that

(i) Ψ(0, ·) = Ψ0 = id|Y ,
(ii) for any fixed y ∈ Y , the map z → Ψ(z, y) is holomorphic in∆,
(iii) for any fixed z ∈ ∆, the map y → Ψ(z, y) = Ψz(y) is an injection.

A remarkable result concerning holomorphic motions is the so called extended λ-lemma.
This says that a holomorphic motion of the set Y ⊂ C extends to a motion of the whole
C. The mappingsΨz(·) are quasiconformal with the following precise bound on the quasi-
conformal distortion:

K(Ψz) ≤
1 + |z|

1− |z|
.(1)

Partial results in this direction have been obtained by Bers and Royden [7] and also by
Sullivan and Thurston in [30]. The result in the above form was proven by Slodkowski
in [26]. The idea of his proof was to embed Y in the boundary ∂X(0) of the 0-fiber X(0) =
{y ∈ C : (0, y) ∈ X̂} of the polynomial hull X̂ of a certain X ⊂ ∂∆ × C; where the fibers
of X are Jordan domains in C. He could then apply the description of the boundary of
polynomial hulls due to Forstnerič [12] to prove the statement of the extended λ-lemma.
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Holomorphic motions in one complex dimension are still the subject of current re-
search [27], [28] and a first step has been made in [4] to understand higher dimensional
holomorphic motions. In this paper we continue this investigation as we study the holomor-
phic motions in higher dimensions that are induced by the analytic foliation of polynomial
hulls fibered over the unit disc.

We are going to work in the following setting. Let X ⊆ ∂∆× Cn be a smoothly varying
family of strictly convex smooth domains in Cn, n ≥ 2 fibered over the unit circle ∂∆:
X =

⋃
ζ∈∂∆{ζ}×X(ζ), where X(ζ) ⊆ Cn is a strictly convex smooth domain containing 0

in the interior. X is given by a defining function r : ∂∆× Cn → R such that

X(ζ) = {y ∈ Cn : r(ζ, y) < 0}, ζ ∈ ∂∆.

We assume that r is of class C1,α
(
∂∆,Ck+1,α(Cn)

)
where 0 < α < 1, k ≥ 2. This means

that for a fixed ζ ∈ ∂∆ the function r(ζ, ·) : Cn → R is of class Ck+1,α and the mapping:
ζ → r(ζ, ·) from ∂∆ to Ck+1,α(Cn) is in Hölder class C1,α.

The polynomial hull X̂ of X in Cn+1 is defined by

X̂ = {x ∈ Cn+1 : |p(x)| ≤ max
X
|p| for every polynomial p on Cn+1}.

The structure of X̂ was studied by several authors (see [25] and the references therein). We
start by recalling some relevant results. Let X(z) denote the fiber of X̂ over z ∈ ∆:

X(z) = {y ∈ Cn : (z, y) ∈ X̂}.

Let π : C× Cn → C be the projection to the first component and let

S = π−1(∆) ∩ ∂X̂

denote the boundary of X̂ over the unit disc∆. Consider the following nonlinear Riemann-
Hilbert problem:

{
f : ∆→ Cn is holomorphic and continuous on∆,

f (ζ) ∈ ∂X(ζ), ζ ∈ ∂∆.
(2)

Let us denote by gr( f ) = {
(
z, f (z)

)
: z ∈ ∆} the graph of f . It is clear by maximum

principle that if f is a solution of (2) then gr( f ) ⊆ X̂. Moreover, the boundary S is foliated
by such graphs. A quite complete description of this fact is given by Slodkowski in [25]
which we next recall:

Theorem A (Slodkowski)

(a) For every x0 ∈ ∂X(0) there exists a unique solution f = fx0 of (2) such that f (0) = x0

which in addition satisfies the following:

(i) f is of class C1,α−0 on∆;

(ii) f (z) ∈ ∂X(z), z ∈ ∆;
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(iii) there exists a nonvanishing, positive function p : ∂∆ → R of class C
1
2 such that the

dual map of f

f̃ (ζ) = p(ζ)rz

(
ζ, f (ζ)

)
, ζ ∈ ∂∆

admits a holomorphic extension that does not vanish in∆, where rz = (rz1 , . . . , rzn ).

(b) Concerning the fibers X(z), z ∈ ∆ we have the following:

(i) for any x ∈ ∂X(z) there is a unique x0 ∈ ∂X(0) such that gr( fx0 ) ⊆ S and fx0 (z) =
x;

(ii) the fibers X(z) are strictly convex;

(iii) the value of the dual map f̃ (z) at z supports X(z) at the point f (z), i.e.,

Re〈 f̃ (z), f (z)− w〉 ≥ 0, w ∈ X(z),

where 〈a, b〉 =
∑

i aibi is the complex product in Cn.

(c) If f : ∆ → Cn is a solution of (2) such that there exists a dual map f̃ of f that has a
nonvanishing holomorphic extension to∆ then gr( f ) ⊆ S.

Recall that f ∈ C1,α−0 means that f ∈ C1,β for each 0 < β < α.

Remark 1.1 In fact in [25] it is only shown that f ∈ Cβ(∆,Cn) for all β < 1. With
our assumptions on r the regularity of f as stated in Theorem A (a)(i) is easily seen by the
following standard consideration: Define the set Y ⊆ ∂∆× Cn by

Y =
⋃
ζ∈∂∆

{ζ} × ∂X(ζ)

and consider the map

ψ : Y → Cn+1 × CPn−1

(ζ, y) 7→
(
ζ, y,Hy∂X(ζ)

)
,

where Hy∂X(ζ) is the maximal complex hyperplane in Cn tangent to ∂X(ζ) at y viewed as a
point in CPn−1. Using a result of Webster [31] it is easy to check that M = ψ(Y ) is a totally
real submanifold in Cn+1 × CPn−1 of class C1,α. Consider the map F : ∆→ Cn+1 × CPn−1

given by z 7→
(
z, f (z),H f (z)

)
where H f (z) is the complex hyperplane H f (z) = {w ∈ Cn :

〈 f̃ (z),w〉 = 0} viewed as a point in CPn−1. By Theorem A (a)(iii) it follows that F is
an analytic disc with F(∂∆) ⊆ M. The desired regularity of f follows by the results of
Čirca [11].

In the sequel we shall also use the fact that there is a uniform C
1
2 -bound on the discs f

(see [25, Lemma 1.6]).
Clearly the above result concerns only the regularity of a fixed holomorphic discs that is

contained in S. In contrast to the case of one dimensional fibers (see e.g. [12]) in the above
higher dimensional setting there were no explicit results concerning the global regularity of
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S; even though specialists believed that such result must be true (cf. [29]). Our first result
concerns the regularity of S, and of the mapping:

Ψ : ∆× ∂X(0)→ Cn given byΨ(z, x0) = fx0 (z),

where fx0 is the unique disc given in Theorem A with fx0 (0) = x0 and gr( fx0 ) ⊆ S.

Theorem 1.1

(a) The boundary S = π−1(∆)∩ ∂X̂ is a Ck,α−0 smooth hypersurface in Cn+1. Moreover, for
each z ∈ ∆ the boundaries ∂X(z) are Ck,α−0-smooth hypersurfaces in Cn.

(b) The mappingΨ(z, ·) : ∂X(0)→ ∂X(z) is a Ck,α−0 smooth diffeomorphism.

To comment on this statement let us mention that in [25] it is shown that Ψ : ∆ ×
∂X(0) → Cn is a homeomorphism onto S. A weaker result of regularity than in state-
ment (a) of Theorem 1.1 could be obtained using the theory of partial indices by combin-
ing the results of [10] and [14]. To do that one has to assume that the defining function r
is of class C1,α

(
∂∆,Ck+2(Cn)

)
, k ≥ 2.

The idea of our proof is based on condition (a)(iii) that is called the stationarity condition
and is a natural extension to polynomial hulls of Lempert’s stationary discs [17], [18] used
in the study of the Kobayashi metric in convex domains.

Our point is that the ideas of Lempert from [18] and [20] to study variations of the
Kobayashi extremals work (with the appropriate modifications) in the case of polynomial
hulls as well.

An important feature for holomorphic motions in one complex variable was the re-
lation with quasiconformal mappings. In the setting several complex variables a natural
notion of quasiconformality has been introduced by Korányi and Reimann [15], [16], [23].
According to [16], [23] a C1 smooth diffeomorphism F : ∂D1 → ∂D2 between the bound-
aries of two strictly pseudoconvex domains D1,D2 ⊂ Cn is a quasiconformal map if it is
a contactomorphism. This means that the tangent map F∗ preserves the horizontal bun-
dle, i.e., F∗H∂D1 = H∂D2, where the horizontal bundle H∂D is the maximal complex
subbundle of the tangent bundle T∂D. The local distortion of the complex structure is
measured by the number K(x) at every x ∈ ∂D1 and the maximal distortion of F is de-
fined by K = supx∈∂D0

K(x). In [16] and [23] there is a formula to calculate the distortion
using a higher dimensional version of the Beltrami differential. It follows that CR-maps—
in particular restrictions to the boundary of biholomorphisms of strictly pseudoconvex
domains—are 1-quasiconformal which shows that this notion of quasiconformality is most
suitable in several complex variables. Let us mention that Bland and Duchamp introduced
a similar notion of Beltrami differential in order to study deformations of CR structures,
see [9], [8].

In contrast to the powerful Ahlfors-Bers-Bojarski measurable Riemann mapping theo-
rem, in several complex variables there is no complete theory for the existence of quasicon-
formal maps between boundaries of strictly pseudoconvex domains. A way to create con-
tactomorphisms as time-t maps of certain flows has been studied by Reimann in [23]. In
many other places these maps appear in quite different setting (see [24], [19], [4], [5], [6]).
In our situation quasiconformal contactomorphisms are induced by the analytic foliation
in a natural way, as stated in our next result.
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Theorem 1.2 The mappingΨ : ∆× ∂X(0)→ Cn has the following properties:

(a) Ψ(0, ·) = id |∂X(0),
(b) Ψ(·, x0) : ∆→ Cn is holomorphic for every x0 ∈ ∂X(0),
(c) Ψ(z, ·) : ∂X(0)→ ∂X(z) is a Ck,α−0-smooth contactomorphism for every z ∈ ∆,
(d) there exists a non-negative constant C = C(X), C < 1, such that the maximal quasicon-

formal distortion K(z) ofΨ(z, ·) is estimated by

K(z) ≤
1 + C|z|

1−C|z|
.

Conditions (a) and (b) are obvious by the definition of Ψ but we include them here to
point out the analogy with the one-dimensional holomorphic motions. Observe also that
the bound in (d) is similar to (1).

The paper is organized as follows. In the next section we prove Theorem 1.1 and Theo-
rem 1.2, while in Section 3 we study in more details the special case where X(ζ) = 1

ζ
D, and

D is a strictly convex domain in C2. In this special case the holomorphic discs are related to
the Kobayashi extremals and the bound on the quasiconformality is related to the Lempert
invariants (cf. [19]). Section 4 is for final remarks.

2 Proofs of Theorem 1.1 and Theorem 1.2

Taking Theorem 1.1 for granted we give first the

Proof of Theorem 1.2 By the second part of statement (a) of Theorem 1.1 we have that
∂X(z) is a Ck,α−0-smooth hypersurface in Cn for any z ∈ ∆. Property (c) is proven in view
of statement (b) of Theorem 1.1 if we check the contact property of Ψ(z, ·) : ∂X(0) →
∂X(z). Let us choose a vector Y ∈ Hx0∂X(0). We have to show that Ψ∗(z, x0)Y ∈
HΨ(z,x0)∂X(z) where Ψ∗(z, x0) : Tx0∂X(0) → TΨ(z,x0)∂X(z) is the tangent map of Ψ with

respect to the second variable. In view of statement (b) from Theorem A the vector f̃ ∈ Cn

is a normal vector to ∂X(z) at the point f (z) = Ψ(z, x0). Consequently the equation of the
tangent space TΨ(z,x0)∂X(z) is given by

TΨ(z,x0)∂X(z) = {Z ∈ Cn : Re〈 f̃ (z),Z〉 = 0}(3)

and the equation of the horizontal space HΨ(z,x0)∂X(z) is

HΨ(z,x0)∂X(z) = {Z ∈ Cn : 〈 f̃ (z),Z〉 = 0}.(4)

Therefore we have to show

〈 f̃ (z),Ψ∗(z, x0)Y 〉 = 0.(5)

Choose a smooth curve γ : (−ε, ε) → ∂X(0) with the properties γ(0) = x0 and γ̇(0) =
d
dt |t=0γ(t) = Y and consider the function γ̃ : ∆ × (−ε, ε) → Cn given by γ̃(z, t) =
Ψ
(
z, γ(t)

)
. We have

Ψ∗(z, x0)Y =
d

dt
|t=0γ̃(z, t) = v(z),
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where v : ∆ → Cn is holomorphic and v(z) ∈ TΨ(z,x0)∂X(z). Consider the holomorphic
function h : ∆ → C defined by h(z) = 〈 f̃ (z), v(z)〉. Then h(0) = 0 since v(0) = Y ∈
Hx0∂X(0). Furthermore for all z ∈ ∆

Re h(z) = Re〈 f̃ (z), v(z)〉 = 0(6)

by (3) because v(z) ∈ TΨ(z,x0)∂X(z). By holomorphicity of h it follows h ≡ 0. This means
〈 f̃ (z),Ψ∗(z, x0)Y 〉 = 0 and we are done.

Let us show the estimate in (d). Since Ψ(z, ·) : ∂X(0) → ∂X(z) is a Ck,α−0-smooth
contactomorphism between strictly pseudoconvex boundaries it is quasiconformal in the
sense of Korányi and Reimann.

The quasiconformal distortion K(z) ofΨ(z, ·) (cf. [15], [16]) is calculated by

K(z) = sup
x0∈∂X(0)

1 + ‖µ(z, x0)‖L

1− ‖µ(z, x0)‖L
,(7)

where µ(z, x0) is a higher dimensional version of the Beltrami differential defined as fol-
lows.

Let us consider the complexified horizontal spaces C⊗Hx0∂X(0), C⊗HΨ(z,x0)∂X(z) and
their splitting into (1, 0) and (0, 1)−subspaces, i.e., the eigenspaces of the standard complex
structure J in Cn. For example, the (1, 0) and (0, 1)-spaces of C⊗Hx0∂X(0) are given by

H1,0
x0
∂X(0) = {X − i JX : X ∈ Hx0∂X(0)},

H0,1
x0
∂X(0) = H1,0

x0 ∂X(0).
(8)

Because Ψ(z, ·) : ∂X(0)→ ∂X(z) is generally not a CR map, its complexified tangent map

Ψ∗(z, x0) : C⊗Hx0∂X(0)→ C⊗HΨ(z,x0)∂X(z)(9)

does not preserve the (1, 0) and (0, 1)−spaces. The Beltrami differential µ(z, x0) will be in
our case a matrix that measures the distortion of these subspaces. To be more precise, let
us fix a basis (Zα)α=1,...,n−1 of H1,0

x0
∂X(0). The image of this basis (Zα)α=1,...,n−1 under the

tangent mapΨ∗(z, x0) decomposes into holomorphic and antiholomorphic parts

Ψ∗(z, x0)Zα = Vα + W α,

where Vα = Vα(z), Wα =Wα(z) ∈ H1,0
Ψ(z,x0)∂X(z).

Now, the vectors V1, . . . ,Vn−1 span the whole of H1,0
Ψ(z,x0)∂X(z) (cf. [15]) and conse-

quently there exist coefficients µαβ , α, β = 1, . . . , n− 1, such that

Wα =

n−1∑
β=1

µαβVβ.(10)
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The matrix valued function µ : ∆ × ∂X(0) → Mn−1(C) is our higher dimensional
version of the Beltrami coefficient. The norm of µ(z, x0) in (7) is meant to be calculated in
terms of the Leviform L of ∂X(0) at the point x0 ∈ ∂X0 by

‖µ(z, x0)‖L = sup
L(Z,Z)=1

L(µZ, µZ).

Notice that the above expression does not depend on the choice of the defining function.
Furthermore, observe that for z = 0 we have Ψ(0, ·) = id |∂X(0) and thus µ(0, x0) = 0 for
any x0 ∈ ∂X(0). By our assumption of strict convexity (in fact strict pseudoconvexity is
enough) it follows (see [4] or [15])

‖µ(z, x0)‖L = ‖µ(z)‖L < 1.

The estimate in (d) follows now from a version of the Schwarz lemma if we can show
that for fixed x0 ∈ ∂X(0) the function µ := µ(·, x0) : ∆ → Mn−1(C) is holomorphic.
To do that write Ψ(z, ·) : ∂X(0) → Cn as Ψ = (Ψ1, . . . ,Ψn) and view H1,0

Ψ(z,x0)∂X(z) as a

subspace of T1,0Cn. Therefore we have

Vα =

n∑
k=1

(ZαΨ
k)
∂

∂zk
,

Wα =

n∑
k=1

(ZαΨ
k)
∂

∂zk
.

(11)

Notice first that the coefficients ZαΨk and ZαΨk are holomorphic functions in z.
Combining (11) and (10) we obtain

n∑
k=1

(ZαΨ
k)
∂

∂zk
=

n−1∑
β=1

µαβ

n∑
k=1

(ZβΨ
k)
∂

∂zk
,

from where it follows that

ZαΨ
k =

n−1∑
β=1

µαβ(ZβΨ
k), α = 1, . . . , n− 1, k = 1, . . . , n.(12)

Let us introduce the notations akα = ZαΨ
k and bkα = ZαΨk. Since µ is a symmetric matrix

(cf. [15]) relation (12) can be written as

akα =

n−1∑
β=1

bkβµβα.(13)

Introducing the matrices A = (akα) and B = (bkα), k = 1, . . . , n, α = 1, . . . , n − 1, one
can write (13) in matrix form

A = B · µ,(14)
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where A,B : ∆→Mn,n−1(C) are holomorphic matrix-valued functions.
Since the vectors V1(0), . . . ,Vn−1(0) that are columns of B(0) are independent, there

exists an (n − 1) × (n − 1)-minor b(0) of B(0) such that det b(0) 6= 0. Consider the
holomorphic fuction b : ∆ → C, b(z) = det b(z). Denote by P the discrete set of zeros of
b in ∆. Consider the equation a = b · µ where a is the (n − 1) × (n − 1)−minor of A
satisfying the above relation. As b is invertible on∆ \ P we have that

µ(z) = b−1(z)a(z), z ∈ ∆ \ P,

and so µ is holomorphic on ∆ \ P. On the other hand ‖µ‖L < 1, thus each entry µαβ is
bounded. Since isolated singularities are removable for bounded holomorphic functions it
follows that µ is holomorphic on∆.

Consequently the function µ : ∆ → Mn−1(C) is holomorphic with ‖µ(z)‖L < 1 and
µ(0) = 0. Moreover, using (11) and the regularity of Ψ given in Theorem 1.1 it is clear
from the definition of µ that the function

∆× ∂X(0) 3 (z, x0) 7→ ‖µ(z, x0)‖L ∈ R

is continuous. Consequently there exists a non-negative constant C < 1 such that
‖µ(z)‖L = ‖µ(z, x0)‖L ≤ C for all z ∈ ∆, x0 ∈ ∂X(0). To finish the proof of (d) we
need to show that ‖µ(z)‖L ≤ C|z|.

To show this estimate it is better to use the first definition of µ. Let us recall that the
Leviform L is fixed (independent of z) as we have considered it at the fixed point x0 ∈
∂X(0). It is an easy exercise in linear algebra to see that there exists a diagonal matrix D
and a unitary matrix U such that ‖µ‖L = ‖µ̃‖, where µ̃ = VµV−1, V = DU and ‖ · ‖
stands for the usual operator norm of matrices. Then µ̃ : ∆ → Mn−1(C) is holomorphic,
µ̃(0) = 0 and ‖µ̃‖ < C for all z ∈ ∆. All we need to show is ‖µ̃(z)‖ ≤ C|z|.

To see this choose a vector h ∈ Cn−1, ‖h‖ = 1. Consider the vector-valued holomorphic
function φh : ∆→ Cn−1 given by

φh(z) =

{
1
z µ̃(z)h, z ∈ ∆ \ {0},

µ̃ ′(0)h, z = 0.

By the maximum priciple ‖φh(z)‖ ≤ C which gives ‖µ̃(z)h‖ ≤ C|z|. Taking supremum
over h ∈ Cn−1, ‖h‖ = 1, the estimate ‖µ̃(z)‖ ≤ C|z| follows. This together with (7) yields

K(z) ≤
1 + C|z|

1−C|z|

and the proof is finished.

Remark 2.1 A Beltrami differential similar to the one in the above proof was used by
Lempert [21] to study the embeddability problem of 3-dimensional CR manifolds. The
relation between these two Beltrami differentials was discussed in [4].
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Proof of Theorem 1.1 We will follow an idea of L. Lempert to create holomorphic discs
near the fixed disc f = fx0 which satisfy (2). This is done by the implicit function theorem
using a setup similar to the one in [18]. Our discs will foliate smoothly a neighborhood of
f in S proving the smoothness of S. For the convenience of the reader we include a detailed
proof even if this results in repeating the reasoning of [18], [20]. Let us start with some
preparations.

The first step is to prove that 〈 f̃ , f 〉 ∈ C1,α−0(∆). By Theorem A, f̃ is in C
1
2 (∆) and f

is in C1,α−0(∆). Recall that

f̃ (ζ) = p(ζ)rz

(
ζ, f (ζ)

)
, ζ ∈ ∂∆,

for some p ∈ C
1
2 (∂∆), p : ∂∆→ R+, and observe that Re 〈 f̃ , f 〉 > 0 by Theorem A. This

implies that
arg〈rz

(
ζ, f (ζ)

)
, f (ζ)〉 = arg〈 f̃ (ζ), f (ζ)〉, ζ ∈ ∂∆,

and thus arg 〈 f̃ , f 〉 ∈ C1,α−0(∂∆) by our smoothness assumption on r. Here we use
the fact that the composition of f and rz is a C1,α−0-regular map. (This follows e.g. from
Lemma 11.2 of [14]; or the reader can easily check it by an argument similar to the one in
the proof of Claim 4 below.)

By taking the harmonic extension to ∆ of Im log〈 f̃ , f 〉 = arg〈 f̃ , f 〉 we obtain that
Im log〈 f̃ , f 〉 ∈ C1,α−0(∆). By Privalov’s theorem we obtain 〈 f̃ , f 〉 ∈ C1,α−0(∆).

According to Lemma 3.2 in [18] there is a function σ : ∆→ C \ {0}, holomorphic in∆
and of class C

1
2 (∆) such that σ f̃ ∈ C1,α−0(∆). Write

σ = 〈σ f̃ , f 〉
1

〈 f̃ , f 〉
.

Using that f , σ f̃ and 〈 f̃ , f 〉 are C1,α−0-regular it follows that σ ∈ C1,α−0(∆). Similarly, we
can write f̃ = 1

σ
(σ f̃ ) to conclude f̃ ∈ C1,α−0(∆).

Since f̃ is nonvanishing there is no loss of generality to assume that its first two coordi-
nates f̃1 and f̃2 do not vanish simultanously. As σ f̃ ∈ C1,α−0(∆) there exist holomorphic
functions g1, g2 ∈ C1,α−0(∆) such that f̃1g1 + f̃2g2 =

1
σ

. We define now the holomorphic
matrix

H f =




f1 − f̃2 −g1 f̃3 · · · −g1 f̃n

f2 − f̃1 −g2 f̃3 · · · −g2 f̃n

f3 0 1
σ

· · · 0
...

...
...

...
fn 0 0 · · · 1

σ


 .(15)

Clearly H f is of class C1,α−0(∆) and we claim that det H f 6= 0. Indeed, the last n − 1
columns are independent among themselves and they are orthogonal to f̃ whereas the first
column is not in view of Re 〈 f̃ , f 〉 > 0 on∆.

Let us introduce some notations. Choose a number s with 0 < 2s < α and denote
by Xn the space of Cn-valued functions in Cs(∂∆). Let Yn (Y n) be the subspace of Xn
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consisting of functions having holomorphic (antiholomorphic) extension to ∆, and let

Y
0
n = { f ∈ Y n : f (0) = 0}. Furthermore we denote by π : Xn → Y

0
n the projection

π
( ∞∑
−∞

akζ
k
)
=

−1∑
−∞

akζ
k.

Finally, by Q we denote the set of functions g : ∂∆→ R of class Cs.
Fix x0 ∈ ∂X(0) and let ( f0, p0) ∈ Yn × Q be as in statement (a) of Theorem A. Without

loss of generality assume that x0 = (1, 0, . . . , 0) ∈ Cn and consider the real (2n − 1)-
dimensional parameter space

T = {τ ∈ Cn : τ = x0 + (iτ0, τ1 + iτ2, . . . , τ2n−3 + iτ2n−2), τi ∈ R, |τi| ≤ ε}.

We are going to look for a triple ( fτ , pτ , λτ ) ∈ Yn × Q × R such that ( fx0 , px0 , λx0 ) =
( f0, p0, 1) and ( fτ , pτ , λτ ) solves for each τ ∈ T the system

r
(
ζ, fτ (ζ)

)
= 0,

π
(

pτ (ζ)rz

(
ζ, fτ (ζ)

))
= 0,

fτ (0)− λττ = 0.

(16)

Statement (c) of Theorem A guarantees that the solutions of the first two equations of (16)
are necessarily in S. The last equation realizes the local parametrization of ∂X(0) by τ .
Notice that the middle equation of (16) is equivalent to

π
(

pτ (ζ)Ht (ζ)rz

(
ζ, fτ (ζ)

))
= 0,(17)

where H is the matrix from (15) corresponding to f0. The advantage of multiplying by
Ht (ζ) is that the first component 〈 f̃ , f 〉 of the new column vector is nonvanishing when
fτ = f0. This implies that the same holds for f near f0 and condition (17) is equivalent to
requiring that the quotient of an arbitrary component of Ht (rz ◦ fτ ) and its first component
have a holomorphic extension to∆ where (rz ◦ fτ )(ζ) = rz

(
ζ, fτ (ζ)

)
. Let us denote by (z)1

the first component of a vector z ∈ Cn and by [z] the vector in Cn−1 formed by the last
n− 1 components.

We are now to set up the implicit function theorem in question. Consider the mapping

Φ : T × Yn × R→ Q× Y
0
n−1 × Cn

Φ(τ , f , λ) =

(
r ◦ f , π

[Ht (rz ◦ f )](
Ht (rz ◦ f )

)
1

, f (0)− λτ

)
.

(18)

More exactly Φ is defined in a neighborhood of (τ0 = x0, f0 = fx0 , 1) ⊆ T × Yn × R.
It is easy to see that there exists an implicit function

ψ : T → Yn × R

τ 7→ ( fτ , λτ ),
(19)
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such that

Φ
(
τ , ψ(τ )

)
= Φ(τ , fτ , λτ ) = (0, 0, 0).(20)

Namely, as X(0) is strictly convex (Theorem A (b)(ii)) and 0 ∈ int X(0) we clearly find for
τ ∈ T a value λτ such that x(τ ) = λττ ∈ ∂X(0), and fτ is the mapping fτ = fx(τ ) given by
Theorem A (a). By what we said above it is clear that fτ and λτ satisfy (20).

Recall now from the a priori estimate in Lemma 1.6 of [25] that all disks fx0 , x0 ∈ ∂X(0),
are C

1
2 -bounded by some uniform constant C . Using this fact we can prove the following

Claim 1 The mapping ψ from (19) is continuous at each point τ ∈ T.

Proof The continuity of τ → λτ is clear by the strict convexity of ∂X(0). To prove the
continuity of τ → fτ , assume by contradiction there were a sequence τi → τ such that
fi = fτi did not converge to f = fτ . All fi lie in the bounded set B(C) = {g ∈ C

1
2 :

‖g‖ 1
2
≤ C}. As the embedding ι : C

1
2 ↪→ Cs is compact (see e.g. [1, Theorem 1.31]) the set

ι
(
B(C)

)
is precompact in Cs and hence there exists a subsequence of fi (again denoted by

fi) such that fi → g in Cs for some g ∈ Cs with g 6= f . On the other hand, we clearly have
that g(0) = f (0) ∈ ∂X(0), and g satisfies the Riemann-Hilbert problem (2) since all fi do.
Hence g = f by Theorem A (a), a contradiction.

We are going to show now that the regularity of ψ can considerably be increased. We
shall use an argument similar to the one in [20]. For this purpose let us introduce the set
Zn = { f ∈ Yn ∩C1,α(∂∆,Cn) : ‖ f ‖ 1

2
≤ C} endowed with the Cs-norm of Yn. The idea is

now to restrict the mappingΦ from (18) to T×Zn×R and apply the following proposition
proved in [20].

Proposition B Let X, Y , A be Banach spaces, Z ⊆ X a convex subset, and Φ : Z × Y → A
be a Ck,β mapping (k ≥ 1, 0 < β < 1). Assume that for a point (z0, y0) ∈ Z × Y we have
Φ(z0, y0) = 0 and for a suitable choice of ∂Φ/∂z

∂Φ

∂z
(x0, y0) : X → A

is an isomorphism. If ψ is a continuous mapping of some neighborhood U of y0 in Y into Z
with ψ(y0) = z0 and Φ

(
ψ(y), y

)
= 0, y ∈ U , thenΨ is of class Ck,β near y0.

In this proposition we used the following notion of Ck,β-regularity. A mapping R : Z →
A is of class Cβ (0 < β < 1) if ‖R(z1) − R(z2)‖A ≤ const. ‖z1 − z2‖X for z1, z2 ∈ Z. R
is differentiable at z ∈ Z if there is a continuous linear mapping dR(z) : X → A such that
‖R(z1)− R(z)− dR(z)(z1 − z)‖A = o(‖z1 − z‖X) as z1 → z, z1 ∈ Z. (Clearly, dR need not
be unique.) The classes Ck,β are then defined in the usual recursive way.

We apply Proposition B to our mappings Φ and ψ from (18) and (19). The continuity
of ψ was already proven in Claim 1 above. Next, we are going to check the other conditions
of Proposition B.

We start with
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Claim 2 The partial derivative

L =
∂Φ

∂( f , λ)

∣∣∣
(x0, f0,1)

: Yn × R→ Q× Y
0
n−1 × Cn

is invertible.

Proof The linear mapping L applied to ( f , λ) ∈ Yn × R is

L( f , λ) =
d

dt

∣∣∣
t=0
Φ(x0, f0 + t f , 1 + tλ)

=

(
2 Re〈rz ◦ f0, f 〉, π

[Ht (rzz ◦ f0) f + Ht (rzz ◦ f0) f ](
Ht (rz ◦ f0)

)
1

, f (0)− λx0

)
.

(21)

The proof of the invertibility of L is quite similar to the considerations in Section 4 in [18].
We omit the details.

The proof of the regularity of Φ is a bit more technical. First, we need

Claim 3 Let ρ : Cn → C be function of class Ck,α. The mapping R : Zn → X1 defined by
R(g)(ζ) = ρ

(
g(ζ)

)
is of class Ck,α−2s.

The proof is a slight modification of the proof of Proposition 1 in [20] that is easily
established. We need Claim 3 to prove

Claim 4 Let k ≥ 1 and ρ ∈ C1,α
(
∂∆,Ck,α(Cn,C)

)
. The mapping R : Zn → Cs(∂∆,C)

given by
R( f )(ζ) = ρ

(
ζ, f (ζ)

)
, ζ ∈ ∂∆,

is of class Ck,α−2s.

Proof We first show that

ρ ∈ C1,α
(
∂∆,Ck,α(Cn,C)

)
implies ρ ∈ C1,α(∂∆× Cn,C).(22)

To see this, we prove first that from σ ∈ Cα
(
∂∆,Cα(Cn,C)

)
it followsσ ∈ Cα(∂∆×Cn,C).

Let σ ∈ Cα
(
∂∆,Cα(Cn,C)

)
. As ζ → σ(ζ, ·) is of class Cα we have for ζ1, ζ2 ∈ ∂∆, z ∈ Cn

|σ(ζ1, z)− σ(ζ2, z)| ≤ ‖σ(ζ1, ·)− σ(ζ2, ·)‖α ≤ C1|ζ1 − ζ2|
α.

By the continuity of the mapping ζ → ‖σ(ζ, ·)‖α we get that for ζ ∈ ∂∆, z1, z2 ∈ Cn

|σ(ζ, z1)− σ(ζ, z2)| ≤ ‖σ(ζ, ·)‖α |z1 − z2|
α ≤ C2|z1 − z2|

α

where C2 = supζ∈∂∆ ‖σ(ζ, ·)‖α. Combining these estimates we get

|σ(ζ1, z1)− σ(ζ2, z2)| ≤ |σ(ζ1, z1)− σ(ζ1, z2)| + |σ(ζ1, z2)− σ(ζ2, z2)|

≤ max(C1,C2)(|ζ1 − ζ2|
α + |z1 − z2|

α),
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proving σ ∈ Cα(∂∆× Cn,C).
Taking partial derivatives of ρwith respect to ζ and z = (z1, . . . , zn) the implication (22)

is now easily checked.

To prove Claim 4 let us first assume k = 1. Consider the mapping

ι : Zn →
(
C1,α(∂∆, ∂∆× Cn), ‖ · ‖s

)
,

ι( f )(ζ) =
(
ζ, f (ζ)

)
Clearly ι is C∞. As ρ is in C1,α(∂∆×Cn,C) and R( f ) = ρ◦ ι( f ) we conclude from Claim 3
that R is of class C1,α−2s.

Let now k = 2. Observe that the first derivative of R is given by

dR : Zn ×Cs(∂∆,R2n)→ Cs(∂∆,C),

dR( f , h)(ζ) =
n∑

j=1

h j(ζ)
∂ρ

∂z j

(
ζ, f (ζ)

)
+ h̄ j(ζ)

∂ρ

∂z̄ j

(
ζ, f (ζ)

)

But as ∂ρ
∂z j
, ∂ρ
∂z̄ j

∈ C1,α
(
∂∆,Ck−1,α(Cn,C)

)
and k = 2 we still have ∂ρ

∂z j
, ∂ρ
∂z̄ j

∈

C1,α(∂∆×Cn,C) and the above argument can be repeated to get that dR is of class C1,α−2s.
The proof for k > 2 is an obvious induction.

Using Claim 4 and observing that each component of rz is in C1,α
(
∂∆,Ck,α(Cn,C)

)
it

follows that
Φ|T×Zn×R : T × Zn × R→ Q× Y

0
n−1 × Cn

is of class Ck,α−2s.

We are now in position to apply Proposition B to the mappings Φ|T×Zn×R and ψ : T →
Zn × R. We get that ψ is of class Ck,α−2s and hence the solutions fτ , τ ∈ T, of the equation

Φ(τ , fτ , λτ ) = 0

have the property that gr( fτ ) foliate S Ck,α−2s-smoothly in a neighborhood of f0. The first
part of statement (a) of Theorem 1.1 follows now since s can be chosen arbitrarily small.

The smoothness of S does not automatically imply that the fibers ∂X(z) are smooth hy-
persurfaces. The smoothness of ∂X(0) follows from the Ck,α−0-smoothness of the implicit
function ψ. Namely, the mapping τ → λττ yields a Ck,α−0-smooth (local) parametriza-
tion of ∂X(0), and it is easily checked that its (real) Jacobian has maximal rank 2n− 1. The
proof of the smoothness of ∂X(z) for z ∈ ∆, z 6= 0, is postponed to the very end.

For the proof of the second statement of Theorem 1.1 notice that Ψ(z, ·) : ∂X(0) →
∂X(z) is a bijection by Theorem A. It is Ck,α−0-smooth by the first statement of Theo-
rem 1.1 and the C∞-smoothness of the evaluation map. We need to check that the map

Ψ∗(z, x0) : Tx0∂X(0)→ Cn(23)
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has maximal (real) rank 2n− 1 at any point (z, x0) ∈ ∆× ∂X(0). This is equivalent to the
fact that the holomorphic function V : ∆→ Cn given by

V (z) = Ψ∗(z, x0)V0, z ∈ ∆,(24)

does not vanish on∆ for any nonzero V0 ∈ Tx0∂X(0). Consider the function φ : ∆× T →
Cn given by φ(z, τ ) = fτ (ζ), where fτ are coming from the implicit function theorem. It is
clear that the nonvanishing of V from (24) is equivalent to

W (z) = φ∗(z, x0)W0(25)

does not vanish for any W0 ∈ Tx0T = iR× Cn−1, W0 6= 0. On the other hand recall that

Φ
(
τ , φ(z, τ ), λ(τ )

)
= 0.

Taking the directional derivative with respect to τ in the above equation at τ = x0 and in
direction W0 we obtain

∂Φ

∂( f , λ)

∣∣∣
(x0, f0,1)

(W,Λ) +
∂Φ

∂τ

∣∣∣
(x0, f0,1)

(W0) = 0

where Λ = λ∗(x0)W . From (18) it follows that

∂Φ

∂τ

∣∣∣
(x0, f0,1)

(W0) = (0, 0,−W0).

Using this and (21) we obtain that the function z 7→W (z) satisfies the equations

Re〈rz ◦ f0,W 〉 = 0,

π

(
[Ht (rzz ◦ f0)W + Ht (rzz ◦ f0)W ](

Ht (rz ◦ f0)
)

1

)
= 0,

W (0)− Λx0 =W0.

(26)

On the other hand W (0) = φ∗(0, x0)W0 and by φ(0, τ ) = fτ (0) = λ(τ )τ we have W (0) =
Λx0 + W0. So the last equation is an identity. Introducing U = H−1W , (26) becomes

Re(U1〈 f̃ , f0〉) = 0, A[U ] + B[U ] + ϕ ∈ Yn−1,(27)

where ϕ is a multiple of some vector-valued function by U1. By the convexity of the fibres
the matrix-valued functions A,B : ∂∆→Mn−1(C) satisfy

zt A(ζ)z > |zt B(ζ)z|(28)

for any z ∈ Cn−1, ζ ∈ ∂∆. This follows the same way as in [18].
Let us assume that U (ζ0) = 0 for some ζ0 ∈ ∆. By the first equation of (27) we obtain

U1 ≡ 0 and thus ϕ ≡ 0. Consequently [U ] is solution of

A[U ] + B[U ] ∈ Yn−1.(29)

By Lemma 4.2 of [18] (29) has a unique solution. Since [U ](ζ0) = 0 we conclude that
[U ] ≡ 0. Consequently U ≡ 0 which is clearly a contradiction to W (0) = Λx0 + W0 6= 0.

Because Ψ(z, ·) : ∂X(0) → ∂X(z) is a Ck,α−0-smooth diffeomorphism and ∂X(0) is
Ck,α−0-smooth the smoothness of ∂X(z), z 6= 0, follows. This finishes the proof of Theo-
rem 1.1.
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3 Beltrami Differential and Lempert Invariants

We are going to study next the case when the fibers X(ζ), ζ ∈ ∂∆, are rotations of a fixed
strictly convex, smooth domain D ∈ C2, i.e., X(ζ) = 1

ζ
D, ζ ∈ ∂∆. Slodkowski observed

(cf. [25]) that the discs g : ∆→ Cn whose graphs foliate the boundary of the hull are of the
form

g(z) =

{
f (z)

z , z 6= 0

f ′(0), z = 0,

where f : ∆ → Cn are the Kobayashi extremal discs of the domain D. The 0-fiber X(0)
becomes the Kobayashi indicatrix of D:

X(0) = ID = { f ′(0) | f : ∆→ D, f is holomorphic, f (0) = 0}.

For v ∈ ∂ID we denote by fv the unique extremal disc with fv(0) = 0, f ′v (0) = v. ID is a
completely circled smooth domain, and the mapping

Ψ := Ψ(1, ·) : ∂ID → ∂D

v 7→ fv(1)

is a contact diffeomorphism. This is the restriction to the boundary of the so-called circular
representation of D.

Choosing v ∈ ∂ID and a nonvanishing section Y (ζ) of H1,0∂ID|ζv, ζ ∈ ∂∆, the Beltrami
differential µ ofΨ along the circle ζv, ζ ∈ ∂∆, becomes a function µ : ∂∆→ C defined by

Ψ∗Y (ζ) = Y1(ζ) + µ̄(ζ)Y 1(ζ),(30)

where Y1(ζ) is the projection ofΨ∗Y onto H1,0
Ψ(ζv)∂D. µ depends on the choice of the section

Y but |µ| does not and ‖µ‖∞ < 1.
The aim of this section is to relate µ to the biholomorphic invariants introduced by

Lempert [19] that we briefly recall.
For v as above and the corresponding extremal disk fv there exists a normalizing biholo-

morphic mapping Φ : D→ D0 such that

f0(z) = (Φ ◦ fv)(z) = (z, 0), z ∈ ∆,

and the defining function of D0 can be written in a neighborhood of f0(∆) as

r0(z1, z2) = −1 + |z1|
2 + |z2|

2 + Re B(z1)z2
2 + O(3).(31)

Here O(3) denotes a term bounded by a constant times dist3((z1, z2), f (∂∆)
)

. The func-
tion β : ∂∆→ C, β(ζ) = ζ2B(ζ), (or rather its antiholomorphic part) is a biholomorphic
invariant that we call Lempert invariant associated to the extremal disk fv. The indicatrix
together with the Lempert invariants of all extremal disks form a complete set of holomor-
phic invariants (see [19]). The meaning of β is to measure the deviation of D from ID. The
convexity of D implies that the distance of β to H∞ is less than 1:

dist(β,H∞) = inf
h∈H∞

‖h− β‖∞ < 1.

We are going to estimate the size of |µ| by dist(β,H∞). This is done via the solutions of
the following Riemann-Hilbert problem which we call Lempert problem.
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Definition 3.1 We say that Ua : ∆ → C, Ua ∈ H∞(∆) ∩ C(∆), solves the Lempert
problem with Ua(0) = a ∈ C and the function φ : ∂∆→ C given by

φ(ζ) = U a(ζ) + β(ζ)Ua(ζ)(32)

has a holomorphic extension to∆.

Since dist(β,H∞) < 1, for given a ∈ C the Lempert problem (32) admits a unique
solution Ua that is smooth up to ∂∆, and if a 6= 0 then Ua has no zeros in ∆̄ (see [18]).

We are now in position to formulate the following

Proposition 3.2 The size |µ| of the Beltrami differential is related to the Lempert problem
by the formula

|µ(ζ)| =
|V1(ζ) + iV2(ζ)|

|V2(ζ)− iV2(ζ)|
,(33)

where V1, V2 are the solutions V1 = U1 and V2 = Ui, i.e., V1, V2 solve the Lempert problem
with V1(0) = 1, V2(0) = i.

From this follows the estimate

Corollary 3.3

a) We have

‖µ‖∞ ≥ dist(β,H∞)(34)

with equality if and only if |µ| is constant on ∂∆.
b) β extends holomorphically to∆ if and only if µ ≡ 0.

Proof of Proposition 3.2 The first step is to calculate the action ofΨ∗ on a non-vanishing
section of the bundle Hζv∂I over the circle ζv, ζ ∈ ∂∆. We do this by considering a varia-
tion of extremal disks.

As the size |µ| of the Beltrami differential is a holomorphic invariant it is no loss of
generality to assume that v = (0, 1), f = fv is in normal form

f (z) = (z, 0)

and the defining function of D is locally given by (31). Consider a curve v(t) in ∂ID through
v tangent to W0 ∈ Hv∂ID:

v(t) = v + tW0 + O(t2)

Let f t = fv(t) be the corresponding family of extremal disks. Write

f t = f + tF + O(t2), F = (F1, F2),
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where F : ∆ → C2 is holomorphic and F(0) = 0. Extremality of f t and contact property
of Ψ imply that W0 = (0,W2) and F1 ≡ 0 (see [19]). Geometrically this means that the
complex lines Hζv∂ID, H f (ζ)∂D are simply the vertical lines {0} × C ⊆ C2.

It also follows that the holomorphic function V (z) = F2(z)/z has the property that

φ(ζ) = V (ζ) + β(ζ)V (ζ), ζ ∈ ∂∆,

has a holomorphic extension to ∆. Observe that V (0) = F ′(0) = W2. In other words, V
solves the Lempert problem (32) with V (0) =W2.

With these preparations we can now calculate

(Ψ∗)vW0 = (Ψ∗)v

(
(0,W2)

)
=

d

dt

∣∣∣
t=0
Ψ
(

v + t(0,W ) + O(t2)
)

=
d

dt

∣∣∣
t=0

f t (1) = F(1) =
(
0,V (1)

)
.

Consider the section W (ζ) = ζW0 along the circle ζv, ζ ∈ ∂∆. Using the fact thatΨ(ζv) =
fζv(1) = fv(ζ) one obtains as above:

(Ψ∗)ζvW (ζ) =
(
0, ζV (ζ)

)
.(35)

The next step is to calculate the Beltrami differential of Ψ at the points ζv choosing
Y = Y (ζ) in (30) to be

Y =W − i⊗ iW ∈ H1,0
ζv ∂ID.

Here we write i for the imaginary unit coming from the complexification of H∂ID and
H∂D to distinguish it from the complex structure tensor of the horizontal bundles H∂I
and H∂D. Now we have

Ψ∗(W − i⊗ iW ) = U1 − i⊗U2 ∈ C⊗H∂D

where U1(ζ),U2(ζ) ∈ HΨ(ζv)∂D. If we make the special choice W (ζ) = (0, ζ), i.e., W0 =
(0, 1), we get by (35):

U1(ζ) = (Ψ∗)ζvW (ζ) =
(
0, ζV1(ζ)

)
,

U2(ζ) = (Ψ∗)ζviW (ζ) =
(
0, ζV2(ζ)

)
,

(36)

where V1, V2 are the solutions of the Lempert problem (32) with initial values V1(0) = 1
and V2(0) = i.

On the other hand, by the definition of the Beltrami differential µ(ζ) = µ
(
ζv,Y (ζ)

)
we

have

Ψ∗(W − i⊗ iW ) = Y1 + µ̄Y 1,(37)

where Y1(ζ) ∈ H1,0
Ψ(ζv)∂D, i.e., it is of the form Y1 = X − i⊗ iX for X(ζ) ∈ HΨ(ζv)∂D. If we

write µ as µ = µ1 + iµ2 then (37) reads

Ψ∗(W − i⊗ iW ) = (X + µ1X + µ2iX)− i⊗ (iX − µ1iX + µ2X),
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and hence

U1 = Ψ∗W = X + µ1X + µ2iX,

U2 = Ψ∗iW = i(X − µ1X − µ2iX).
(38)

Recall now that HΨ(ζv)∂D = {0} × C and so X = (0,X2). Using (36) and (38) we obtain

ζV1(ζ) = X2(ζ) +
(
µ1(ζ) + iµ2(ζ)

)
X2(ζ) = X2(ζ) + µ(ζ)X2(ζ),

ζV2(ζ) = i
(

X2(ζ)−
(
µ1(ζ) + iµ2(ζ)

)
X2(ζ)

)
= i
(

X2(ζ)− µ(ζ)X2(ζ)
)
,

which imply that

µ(ζ)
(
V1(ζ)− iV2(ζ)

)
= V1(ζ) + iV2(ζ).(39)

From this and the fact that V1, V2 solve (32) it follows that U = V1 − iV2 has the
property that the function

U (ζ) + β(ζ)µ(ζ)U (ζ), ζ ∈ ∂∆,

admits a holomorphic extension to ∆. In other words, U solves the above Lempert prob-
lem, where βµ appears instead of β.

Recall that dist(β,H∞) < 1. By the holomorphicity of µ and ‖µ‖∞ < 1 we see that
dist(βµ,H∞) < 1. Since U (0) = V1(0) − iV2(0) = 2 we conclude (see the remark after
Definition 3.1) that U has no zeros on∆. Hence from (39)

µ(ζ) =
V1(ζ) + iV2(ζ)

V1(ζ)− iV2(ζ)
.(40)

As the absolute value of µ does not depend on the choice of the section W this proves
Propostition 3.2.

Proof of Corollary 3.3 To prove the estimate in part a) of Corollary 3.3 consider the func-
tions

φ1(ζ) = V 1(ζ) + β(ζ)V1(ζ),

φ2(ζ) = V 2(ζ) + β(ζ)V2(ζ),

for ζ ∈ ∂∆. They admit a holomorphic extension to∆, again denoted by φ1, φ2. Dividing
the equation

V1(ζ) + iV2(ζ) + β(ζ)
(
V1(ζ)− iV2(ζ)

)
= φ1(ζ)− iφ2(ζ)(41)

by V1(ζ)− iV2(ζ) we get

|µ(ζ)| =

∣∣∣∣∣V1(ζ) + iV2(ζ)

V1(ζ)− iV2(ζ)

∣∣∣∣∣ =
∣∣∣∣ φ1(ζ)− iφ2(ζ)

V1(ζ)− iV2(ζ)
− β(ζ)

∣∣∣∣ .(42)
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Because the function h : ∆→ C, h(ζ) =
(
φ1(ζ)− iφ2(ζ)

)
/
(
V1(ζ)− iV2(ζ)

)
is in H∞ and

smooth on∆ there exists ζ0 ∈ ∂∆ such that |µ(ζ0)| = |h(ζ0)− β(ζ0)| ≥ dist(β,H∞) and
(34) follows.

It remains to prove the necessary and sufficient condition for equality in (34). Assume
first that ‖µ‖∞ = dist(β,H∞). By (42) it follows that h is the nearest H∞-function to β.
Then it follows (see e.g. [13, p. 135]) that |h− β| and hence also |µ| is constant on ∂∆.

To prove the other direction assume that |µ| = c > 0 on ∂∆. We have to show that
dist(β,H∞) = c. Assume by contradiction that we had dist(β,H∞) < c. Then there
exists a function h1 ∈ H∞ such that ‖β − h1‖∞ < c. Observe now that V1 and V2 are
also solutions to the Lempert problem with β−h1 instead of β. Consequently the function
φ : ∂∆→ C,

φ = V1 + iV2 + (β − h1)(V1 − iV2),(43)

has a holomorphic extension to ∆. Using (40) and since |µ(ζ)| = c 6= 0 for ζ ∈ ∂∆ we
can write (43) as

φ = V1 + iV2 +
β − h1

µ
(V1 + iV2).

On the other hand

dist

(
β − h1

µ
,H∞

)
≤
‖β − h1‖∞

infζ∈∂∆ |µ(ζ)|
=

1

c
‖β − h1‖∞ < 1.

Now observe that U = V1 + iV2 is a solution of the above Lempert problem with β−h1

µ

instead of β. But U (0) = 0 and thus U ≡ 0 which is a contradiction to |µ(ζ)| = c 6= 0
by (40). This finishes the proof of part a).

For part b) of Corollary 3.3 notice that if the Lempert invariant β(ζ) has a holomorphic
extension to ∆ the solutions V1, V2 of (32) are constant, V1 ≡ 1 and V2 ≡ i, and hence
µ = 0 on ∂∆ by (40). The converse is clear from part a).

Example 1 Let t < 1 be a positive number. We construct a strictly convex, smooth domain
D ∈ C2 for which

sup
v∈ID

‖µv‖∞ ≥ t.(44)

Let r : C2 → R be given by

r(z1, z2) = −1 + |z1|
2 + |z2|

2 + t Re z̄3
1z2

2 + C|z2|
4.

Consider the holomorphic disk f : ∆→ C2, f (z) = (z, 0). It is not hard to check that r is
strictly convex in a neighborhood of f (∆). Choose a positive number η so small and the
constant C so large that r is strictly convex in the interior of the bidisk

Bη = {z ∈ C2 : |z1|
2 ≤ 1 + η, |z2|

2 ≤ η}
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and r|∂Bη > 0. It follows that D = {z ∈ Bη : r(z) < 1} is a smooth strictly convex
domain. It is straightforward to check that f is a stationary map for D and hence extremal.
(See [17] for the definition of stationarity.) The Lempert invariant of f is β(ζ) = t ζ̄ . One
can explicitely solve the corresponding Lempert problem and calculate that |µv(ζ)| = t for
v = (1, 0) and (44) follows.

Example 2 For the Lempert invariant β(ζ) = t(ζ̄ + ζ̄2), 0 < t < 1
2 , the corresponding

Beltrami differential can also be calculated explicitely. In this case |µ(ζ)|, ζ ∈ ∂∆, is not a
constant and so one has the strict inequality

‖µ‖∞ > dist(β,H∞).

4 Final Remarks

Remark 4.1 In [23] it was shown that flows of contactomorphisms Ψs : ∂D0 → ∂Ds of
boundaries of strictly pseudoconvex smooth domains can always be extended to the inside
of the domains as symplectic mappings with respect to the Bergman forms. In particular
our mapsΨ(z, ·) : ∂X(0)→ ∂X(z) can be extended to maps Ψ̃(z, ·) : X(0)→ X(z) that are
symplectic inside and such that Ψ̃(z, ·)|∂X(0) = Ψ(z, ·).

Remark 4.2 Example 1 in Section 3 shows that there are configurations X where the con-
stant C from Theorem 1.2 (d) is arbitrarily close to 1. Can C be equal to 1 if we allow X(ζ)
to be not strictly convex for certain ζ (say of zero measure in ∂∆)? This is e.g. the case when
X is defined via the smooth function

r(ζ, z1, z2) = |z1|
2 + |ζ − 1|2 |z2|

2 + |z2|
4 − 1.

Most of the results of Theorem A still hold in such degenerate cases. However a difficulty
appears from the fact that for ζ = 1 the fiber X(1) is no longer strictly convex, hence the
inequality (28) does not hold. Moreover, the fiber X(1) is not even strictly pseudoconvex
and so the submanifold M from Remark 1.1 is not totally real. Consequently, our consid-
erations as well as the ones in [14] and [10] do not apply.
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