ON GENERATING FUNCTIONS FOR CLASSICAL POLYNOMIALS

O. SHANKER

(Received 19 June 1970)
Communicated by B. Mond

1. Introduction

Recently Brown [1] gave two new classes of generating functions which include the generating functions for the polynomials of Gegenbauer, Jacobi and Laguerre. The aim of the paper is to give a new class of generating functions which includes both sets of generating functions given by Brown and provides a new class of generating functions for the polynomials of Gegenbauer, Jacobi and Laguerre.

2. Preliminaries

First of all we will prove a formal series relation with the help of a combinatorial identity, as a lemma.

Lemma. Given a sequence $\phi_{n}(n \geqq 0)$, define the new one

$$
\psi_{n}=\sum_{k=0}^{n}\binom{\alpha+\beta_{n}}{n-k} \phi_{k} \quad(n \geqq 0)
$$

then
(2) $\sum_{n=0}^{\infty} \frac{\alpha\left(p+q_{n}\right)}{\left(\alpha+\beta_{n}\right)} \psi_{n}\left[\frac{x}{(1+x)^{\beta}}\right]^{n}=\alpha(1+x)^{x} \sum_{n=0}^{\infty}\left[\frac{p+q_{n}}{\alpha+\beta_{n}}+\frac{q x}{1+(1-\beta) x}\right] \phi_{n} x^{n}$, where α, β, p and q are any complex numbers.

Proof. The proof is based on the identity [4, 16(b) p. 169]

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\alpha\left(p+q_{n}\right)}{\left(\alpha+\beta_{n}\right)}\binom{\alpha+\beta_{n}}{n}\left[\frac{x}{(1+x)^{\beta}}\right]^{n}=(1+x)^{x}\left[p+\frac{q \alpha x}{1+(1-\beta) x}\right] \tag{3}
\end{equation*}
$$

To obtain (2), simply recall (1) and write

$$
\sum_{n=0}^{\infty} \frac{\alpha\left(p+q_{n}\right)}{\left(\alpha+\beta_{n}\right)} \Psi_{n}\left[\frac{x}{(1+x)^{\beta}}\right]^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\alpha\left(p+q_{n}\right)}{\left(\alpha+\beta_{n}\right)}\binom{\alpha+\beta_{n}}{n-k} \phi_{k}\left[\frac{x}{(1+x)^{\beta}}\right]^{n}
$$

$$
\begin{array}{r}
=\sum_{k=0}^{\infty}\left\{\sum_{n=0}^{\infty} \frac{\alpha+\beta_{k}}{\alpha+\beta_{k}+\beta_{n}} \cdot\left(p+q_{k}+q_{n}\right)\binom{\alpha+\beta_{k}+\beta_{n}}{n}\left[\frac{x}{(1+x)^{\beta}}\right]^{n}\right\} \\
\frac{\alpha}{\alpha+\beta_{k}} \phi_{k}\left[\frac{x}{(1+x)^{\beta}}\right]^{k} .
\end{array}
$$

Then, using (3) with α and p replaced by $\alpha+\beta k$ and $p+q k$ respectively, we arrive at the desired result. From this lemma we get the lemma [1, §2] by taking $p=1$, $q=\beta / \alpha$ and $p=1, q=0$.

3. Generating functions

Our new class of the generating functions follows readily from the above lemma.
*Theorem. Let

$$
\begin{equation*}
g_{n}^{\alpha}(x, c)=\binom{\alpha+\beta_{n}}{n} \sum_{k=0}^{n}\binom{n}{k} \frac{c_{k} x^{k}}{(1+\alpha+(\beta-1) n)_{k}} \tag{4}
\end{equation*}
$$

where the c_{k} are arbitrary. Then
5)

$$
\sum_{n=0}^{\infty} \frac{\alpha\left(p+q_{n}\right)}{\alpha+\beta_{n}} g_{n}^{\alpha}(x, c) t^{n}
$$

$$
=\alpha(1+v)^{\alpha}\left[\sum_{n=0}^{\infty} \frac{p+q_{n}}{\alpha+\beta_{n}} \frac{c_{n} x^{n} v^{n}}{n!}+\frac{q v}{1+(1-\beta) v} \sum_{n=0}^{\infty} \frac{c_{n} x^{n} v^{n}}{n!}\right]
$$

where

$$
\begin{equation*}
v=(1+v)^{3} t \tag{6}
\end{equation*}
$$

Proof. In the lemma let $\phi_{n}=\frac{c_{n} x^{n}}{n!}$ and observe that ψ_{n} becomes the polynomial $g_{n}^{\alpha}(x, c)$ defined by (4), and (5) becomes (2). This completes the proof of the theorem.

Interesting special cases follow. With $\beta=1 / 2$ in (5), we easily get generating functions $[1,(7)]$ and $[1,(8)]$ by taking $p=1, q=1 / 2 \alpha$ and $p=1, q=0$ respectively (from (6), with $\beta=1 / 2$ we have $v=k / 2\left[t \pm \sqrt{k^{2}+4}\right]$).

From (5) we easily have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\alpha\left(p+q_{n}\right)}{\left(\alpha+\beta_{n}\right)} P_{n}^{\left(\alpha-(1-\beta) n, \gamma-\beta_{n}\right)}(x) t^{n} \tag{7}
\end{equation*}
$$

[^0]\[

$$
\begin{gathered}
=\alpha(1+v)^{\alpha}\left[\frac{p}{\alpha}{ }_{3} F_{2}\left(\begin{array}{c}
\alpha / \beta, 1+p / q, 1+\alpha+\gamma \\
1+\alpha / \beta, p / q
\end{array}-\left(\frac{1-x}{2}\right) v\right)+\frac{q v}{1+(1-\beta) v}\right. \\
\left.\left\{1+\left(\frac{1-x}{2}\right) v\right\}^{-\alpha-\gamma-1}\right],
\end{gathered}
$$
\]

where $P_{n}^{(\alpha, \beta)}(x)=\binom{\alpha+n}{n}{ }_{2} F_{1}\binom{-n, 1+\alpha+\beta+n \frac{1-x}{2}}{1+\alpha}$ is Jacobi polynomial and $v-(1+v)^{\beta} t$. In (7) if we take $\beta=1 / 2$, we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\alpha(p+q n)}{(\alpha+n / 2)} P_{n}^{(\alpha-n / 2 \cdot \gamma-n / 2)}(x) t^{n} \\
& =\alpha(1+u)_{a}\left[\frac{p}{\alpha}{ }_{3} F_{2}\left(\begin{array}{c}
2 \alpha, 1+p / q, 1+\alpha+\gamma \\
1+2 \alpha, p / q
\end{array} \quad\left(\frac{1-x}{2}\right) u\right)+\frac{q u}{1+u / 2}\right. \tag{8}\\
& \left.\qquad\left\{1+\left(\frac{1-x}{2}\right) u\right\}^{-\alpha-\gamma-1}\right],
\end{align*}
$$

where $u=\frac{t}{2}\left[t \pm \sqrt{t^{2}+4}\right]$. In (8) if we put $\gamma=\alpha$ we get the generating function for Gegenbauer polynomials. With $\beta=1, p=1$ and $q=1 / \alpha$ in (7) we get a generating function of Feldheim [3].

For the modified Laguerre polynomials
we have

$$
L_{n}^{\left(\alpha+\beta_{n}\right)}(x)=\sum_{k=0}^{\infty}\binom{\alpha+(\beta+1) n}{n-k} \frac{(-x)^{k}}{k!}
$$

$$
\sum_{n=0}^{\infty} \frac{\alpha\left(p+q_{n}\right)}{\left(\alpha+\beta_{n}+n\right)} L_{n}^{\left(\alpha+\beta_{n}\right)}(x) t^{n}=\alpha(1+v)^{\alpha}
$$

$$
\left[\frac{p}{\alpha}{ }_{2} F_{2}\left(\begin{array}{l}
\alpha /(1+\beta), 1+p / q \tag{9}\\
1+\alpha /(1+\beta), p / q
\end{array}-x v\right)+\frac{q v}{1-\beta v} e^{-x v}\right]
$$

where $v=(1+v)^{\beta+1} t$. In (9) if we take $p=1, q=(1+\beta) / \alpha$ we get the generating function [2, (8)].

Using the particular form of the Jacobi polynomial [5, (15)], namely,

$$
P_{n}^{(\alpha-n, \beta-n)}(x)=\binom{n-\alpha-\beta-1}{n}\left(\frac{1-x}{2}\right)^{n} F_{2}\left(\begin{array}{cc}
-n,-\alpha & 2 \\
-\alpha-\beta & \overline{1-x}
\end{array}\right),
$$

we easily get from (5)

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\left[(1+\alpha+\gamma)\left(p+q_{n}\right)\right.}{\left(1+\alpha+\gamma-\beta_{n}\right)} P_{n}^{\left(\alpha-n, \gamma-\beta_{n}\right)}(x) t^{n} \\
& \quad=(1+\alpha+\gamma)(1+w)^{-\alpha-\gamma-1} \tag{10}
\end{align*}
$$

$$
\begin{aligned}
& {\left[\frac{p}{(1+\alpha+\gamma)^{3}} F_{2}\left(\begin{array}{cc}
-(1+\alpha+\gamma) / \beta, 1+p / q,-\alpha & -2 w \\
1-(1+\alpha+\gamma) / \beta, p / q & 1-x
\end{array}\right)\right.} \\
& \left.-\frac{q w}{1+(1-\beta) w}\left(1+\frac{2 w}{1-x}\right)^{\alpha}\right]
\end{aligned}
$$

where $w=(1-x) t(1+w)^{\beta} / 2$. By taking $p=1, q=-\beta /(1+\alpha+\gamma)$, we get the generating function $[5,(16)]$, which includes many particular cases as cited in paper [5].

In the last we may remark that the main result of Srivastava $[5,(9)]$ and its generalization $\left[5,\left(^{*}\right)\right]$ are the direct consequence of the lemma $[1, \S 2]$ which have generalized in this paper.

I am grateful to Dr S . Saran for the guidance in the preparation of the paper.

References

[1] J.W. Brown, 'New generating functions for classical polynomials', Proc. Amer. Math. Soc. 21 (1969), 263-268.
[2] L. Carlitz, 'Some generating functions for Laguerre polynomials', Duke Math. J. 35 (1968), 825-827.
[3] F. Feldheim, 'Relation entre les polynomes de Jacobi, Laguerre et Hermite', Acta Math. 75 (1943), 117-138.
[4] J. Riordan, Combinatorial Identities (Wiley, New York (1968)).
[5] H.M. Srivastava, 'Generating functions for Jacobi and Laguerre polynomials', Proc. Amer. Math. Soc. 23 (1969), 590-595.

Department of Mathematics
Punjabi University
Patiala, India

[^0]: * I am grateful to the referee for suggesting the general form of this theorem.

