Inhibition of bone turnover by milk intake in postmenopausal women

Jean-Philippe Bonjour1*, Marion Brandolini-Bunlon2, Yves Boirie2, Françoise Morel-Laporte2, Véronique Braesco2, Marie-Claude Bertière3 and Jean-Claude Souberbielle4

1Service of Bone Diseases, University Hospital, Rue Micheli-Du-Crest, Geneva 1211, Switzerland
2Centre de Recherche en Nutrition Humaine d’Auvergne, 58 rue Montaulembert, 63009 Clermont-Ferrand, France
3Centre de Recherche et d’Information Nutritionnelles, 45 rue Saint-Lazare, 75314 Paris, France
4Laboratoire d’Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France

(Received 22 August 2007 – Revised 19 December 2007 – Accepted 21 January 2008 – First published online 26 February 2008)

Increased postmenopausal bone turnover leads to bone loss and fragility fracture risk. In the absence of osteoporosis, risk preventive measures, particularly those modifying nutritional lifestyle, are appropriate. We tested the hypothesis that milk supplementation affects bone turnover related to biochemical markers that in a long term, may be expected to reduce postmenopausal bone loss. Thirty healthy postmenopausal women aged 59.3 (SD 3.3) years were enrolled in a prospective crossover trial of 16 weeks. After a 4-week period of adaptation with diet providing 600 mg calcium plus 300 mg ingested as 250 ml semi-skimmed milk, participants were maintained during 6 weeks under the same 600 mg calcium diet and randomized to receive either 500 ml semi-skimmed milk, thus providing a total of 1200 mg calcium, or no milk supplement. In the next 6 weeks they were switched to the alternative regimen. At the end of the each period, i.e. after 4, 10 and 16 weeks, blood and urinary samples were collected. The changes in blood variables between the periods of 6 weeks without and with milk supplementation were: for parathyroid hormone, −3.2 pg/ml (P=0.0054); for crosslinked telopeptide of type I collagen, −624 pg/ml (P<0.0001); for propeptide of type I procollagen, −5.5 ng/ml (P=0.00092); for osteocalcin, −2.8 ng/ml (P=0.00014). In conclusion, a 6-week period of milk supplementation induced a decrease in several biochemical variables compatible with diminished bone turnover mediated by reduction in parathyroid hormone secretion. This nutritional approach to postmenopausal alteration in bone metabolism may be a valuable measure in the primary prevention of osteoporosis.

Menopause: Milk supplementation: Calcium intake: Bone turnover

Increased bone turnover after menopause is considered a key mechanism in bone loss and increased risk of fragility fracture(1,2). In the general population pharmaceutical intervention aimed at preventing bone loss is no longer widely recommended within the 10-year period following menopause. The reasons for this conservative attitude adopted by the medical community stem from both cost-effectiveness analysis and long term safety of pharmaceutical intervention on skeletal and extra-skeletal functions(3 – 6). Particularly, the widespread use of hormone replacement therapy has been reconsidered based on the assessment of benefits and harm(7). Although considerable controversy surrounds the use of hormone replacement therapy(8 – 11), the results of the Women Health Initiative study(12) led to substantial modifications by health care providers in the prescription pattern for the primary prevention of osteoporosis, with rapid reduction in hormone replacement therapy use(13 – 15). Thus what was considered as the best therapeutic approach in the primary prevention of postmenopausal osteoporosis was widely discontinued as documented by a 57% prescription reduction in the USA between 2002 and 2004(15). Therefore, it appears timely to reconsider other preventive measures, particularly by exploring strategies aimed at reasonably modifying lifestyle factors that are known to exert a beneficial impact on bone metabolism, such as nutrition and physical activity. Several randomized controlled trials indicate that calcium supplementation associated with a sufficient vitamin D supply reduces postmenopausal or age-related bone loss and fragility fracture(16 – 21). As for any chronic therapies the effectiveness of pharmaceutical medication can be compromised by poor adherence and/or persistence. Insufficient compliance can be explained by various reasons such as safety concerns, inconvenience of treatment schedule, lack of motivation, and/or drug-related side-effects(22). Low compliance holds true not only for specific anti-osteoporosis drugs such as bisphosphonates or raloxifene, but also for pharmaceutical preparations of calcium salts(22,23). In fact, treatment compliance was particularly poor for calcium ± vitamin D supplements(22). Furthermore, in a recent review some clinical guidance was given regarding the use of calcium and vitamin D for the prevention of fragility fracture in the subjects at risk(24). The authors considered that calcium

Abbreviations: aBMD, areal bone mineral density; BAP, bone alkaline phosphatase; BRI, net calcium bone resorption index; CTX, crosslinked telopeptide of type I collagen; IGF, insulin-like growth factor; PINP, propeptide of type I procollagen; PTH, parathyroid hormone; TmPi, tubular inorganic phosphate reabsorption capacity; TRCaI, renal tubular calcium reabsorption index.

* Corresponding author: Professor Jean-Philippe Bonjour, fax +41 223829973, email Jean-Philippe.Bonjour@medecine.unige.ch
and vitamin D supplements remain medicinal products that have to be prescribed by physicians and other health care providers\(^{(24)}\). In subjects without impending risk of osteoporosis, as for instance in postmenopausal women at 5–10 years from the time of menstruation cessation with no particular risk factor for osteoporosis, it appears advantageous to provide calcium by increasing its dietary intake\(^{(24)}\). Dairy products have a relatively high calcium content as compared to other usual foods. Furthermore, dairy products also provide protein that is certainly an essential nutrient for bone health\(^{(25–28)}\).

The most relevant end-point to demonstrate the efficiency of an intervention in the context of osteoporosis is the prospective recording of fragility fractures. This is an extremely demanding end-point that requires enrolment of several thousands of subjects associated with very long-term follow-up, particularly in the absence of prevalent osteoporosis.

Changes in bone biochemical markers have been shown to predict not only the rate of bone loss, but also the risk of incident fracture\(^{(29–34)}\). The early predictive effect of bone turnover inhibition of an intervention reducing hip, non-spine and vertebral fracture appears to be at least as strong as that observed with change in areal bone mineral density (aBMD)\(^{(34)}\). Furthermore, this predictive value of bone marker variation on bone loss in postmenopausal women was documented not only with bisphosphonate treatment\(^{(32,34)}\), but also with calcium supplementation\(^{(33)}\). Note that the magnitude of the early response of bone remodelling biochemical markers is not tightly related to the degree of fracture risk reduction\(^{(30–33)}\).

In the present study we investigated in a group of healthy postmenopausal women, with mean age of 59.5 years, displaying a rather moderate reduction in aBMD as compared to young adult subjects, whether milk supplementation would influence biochemical markers in a way compatible with a reduction in bone turnover.

**Materials and methods**

**Participants**

Thirty healthy women aged between 55 and 65 years, 5 years or more since menopause, volunteered for being enrolled into a prospective crossover trial of 16 weeks. Personal history and clinical examination warranted that those enrolled did not suffer from any disease and/or were not under medical therapy. None of them had taken hormonal-related therapy for the prevention of postmenopausal disorders during the last 12 months preceding the entry into the trial; no calcium supplementation; neither antosteoporotic medication including bisphosphonates, calcitonin, raloxifene, strontium ranelate, vitamin D derivatives, nor medication suggested to act on bone metabolism such as tibolone, anabolic steroids, dehydroepiandrosterone, ipriflavone and other phytoestrogens, or statins. Inclusion criteria were: BMI ranging between 20 and 27 kg/m\(^2\); plasma concentration of follicle-stimulating hormone above 20 IU/l; absence of osteoporosis as defined by osteodensitometric T-score value of \(\leq -2.5\)\(^{(35)}\), or history of low trauma fracture; absence of milk distaste, intolerance or allergy to cows’ milk or other dairy products; stable food consumption habits in the last 3 months; mean spontaneous calcium intake \(\geq 600\) mg/d, with no more than 400 mg provided by non-dairy products such as fruit, vegetables and/or mineral water; normal haematological and biological status; physical activity between 1·25 and 3·75 according to the questionnaire-based index established by Baecke et al.\(^{(36)}\), negative HIV and hepatitis C virus tests; signed inform consent. The ethical committee of the Auvergne region (France) approved the protocol.

**Milk content**

The ultra-heat-treated semi-skimmed milk used in the present study contained per 250 ml: 300 mg calcium, 481 kJ (115 kcal), 8 g proteins, 4 g lipids, 11·5 g glucides, no vitamin D.

**Study design**

At the beginning of the study an oral dose of 100 000 IU vitamin D3 contained in a 2 ml vial (Uvédose\(^{R}\), Laboratoire Crinex, France) was taken by all participants. This administration was aimed at avoiding any vitamin D insufficiency during the experimental phase. Then, a 4-week period of adaptation was started with diet providing 600 mg calcium plus 300 mg provided by 250 ml semi-skimmed milk. Then during the next 6 weeks the participants were maintained under the same 600 mg calcium diet and randomized to receive either a supplement of 500 ml semi-skimmed milk, thus providing a total of 1200 mg calcium, or no milk supplement. In a third phase of 6 weeks they were switched to the alternative regimen (Fig. 1). The participants were free to consume the milk supplement at one time or in several portions during the day. During the last 24 h of the adaptation phase and of each experimental period, i.e. after 4, 10 and 16 weeks, the participants were asked to collect their urine. The next morning after voiding the overnight urine, samples of both urine and blood were collected in the fasting state.

**Food control.** During the 16 weeks of the study, the volunteers had to limit their calcium intake to 600 mg/d. For this purpose, the certified dietitian (M. B.-B.) of the investigating team provided the volunteers with a list of foods not to be consumed because of their high calcium content, as well as a list of dairy products they had to eat daily in precise amounts. Water bottles with very low mineral content were distributed to substitute for more mineralized drinking water.

The nutrient intake was assessed at four occasions: at the time of inclusion into the study; by the end of the adaptation period; by the end of the 6-week period without milk supplementation; by the end of the 6-week period with milk supplementation. Each assessment was made by using the diary method over 7 d, with weighing by the participants of all consumed foods. Furthermore, the recorded dietary data in the diary was validated by an interview of the participants by the certified dietitian involved in the study (M. B.-B.). The food nutrient content was obtained by computer analysis using the software Geni version 6.0 (Micro6\(^{R}\), Villers les Nancy, France). This software is based on the pre-recorded nutrient table from Répertoire Général des Aliments\(^{(37)}\).
No instruction aimed at reducing spontaneous intake to avoid weight gain was given to the participants.

The compliance was assessed by both interviewing the participants at the time of checking the data recorded in their diary and by counting the milk bottles which were not consumed.

Biochemical measurements
As previously reported (38), calcium and magnesium were measured by colorimetry, sodium and potassium by indirect potentiometry with the use of specific electrodes, and creatinine by the Jaffe reaction (Roche Diagnostics, Meylan, France). Serum parathyroid hormone (PTH), osteocalcin, amino-terminal propeptide of type I procollagen (PINP) and carboxy terminal crosslinked telopeptide of type I collagen (CTx; Cross-laps) were measured by automated immunoluminiscence on the Elecsys platform (Roche Diagnostics) as recently described (39). For these four biochemical analyses the within- and between-run CV were lower than 5%, whatever the concentration tested. The reference range of these assays was established in a group of fifty-nine premenopausal healthy women aged 35–48 years. All of them had regular menses associated with plasma follicle-stimulating hormone concentration below 12 mU/l. They received a single dose of 100 000 IU vitamin D$_3$ 1 week before the blood sampling. The reference ranges were 10–46 pg/ml, 13–32 ng/ml, 19–50 ng/ml and 700–3000 pmol/l for PTH, osteocalcin, PINP and C-telopeptide, respectively. Bone alkaline phosphatase (BAP) was measured by automated immunoluminiscence on the Access II platform (Beckman-Coulter, Chaska, MN, USA). BAP within-run CV was 6.7% at mean concentration of 13-2 μg/l and below 5% at concentration above 25 μg/l. The reference range established in healthy premenopausal women was 4–15 μg/l. The serum level of 25-hydroxyvitamin D was measured by RIA (DiaSorin, Stillwater, MN, USA) as previously reported (40).

Vitamin D insufficiency was defined as a serum level of 25-hydroxyvitamin D lower than 30 ng/l (41). Serum insulin-like growth factor (IGF) I was measured by an immunoradiometric assay (IGF-I RIA-CT; Schering-Cis Bio, Gif sur Yvette, France) based on the use of two monoclonal antibodies directed toward different IGF I epitopes. In this method, bound IGF I is displaced from IGF binding protein by acidification. A large excess of IGF II is then added to the acid-treated serum to prevent reassociation of IGF I with its carrier proteins when buffer is added. The analytical properties of this assay were recently reported (39). The normal range of serum IGF I in women aged 36–65 years was 77–247 ng/ml.

Indices of the renal reabsorption of either calcium (TRCaI, mmol/l glomerular filtration rate) or inorganic phosphate (TmPi/l, glomerular filtration rate) were calculated as previously described (42, 43) from calcium, inorganic phosphate and creatinine determinations in the plasma and urine samples collected in the fasting state at the end of the intervention periods. Likewise, the estimation of the net release of calcium from bone (BRI, mmol/mmol) was calculated from the ratio of calcium over creatinine urine concentration (43, 44). These three indices allow one to discriminate disturbances in calcium–phosphate metabolism that occur in various benign and malign hypercalcemic diseases (43, 44).
Statistical analysis

The statistical power was deduced from the expected change in serum CTX that was a priori considered as the main end-point of the study. By using a crossover design, it was expected that a difference would be detected in serum CTX between periods with and without milk supplementation by 20% with a power of 80% and a two-sided \( \alpha \) of 0.05. Taking into account a measured intra-individual CV of 10%, the 20% difference in serum CTX required a sample of twenty subjects in a crossover-designed study. Thirty subjects were eventually enrolled in order to secure a greater power to the study.

The results are expressed as means and standard deviations in all tables and means and their standard errors in the figure depicting the average of individual differences as expressed in percentage change between the two experimental periods. Paired Student’s t test was employed to assess differences between the two periods. Bonferroni’s correction was used for the four-biochemical bone remodelling variables, i.e. CTX, PINP, osteocalcin and BAP. \( P \leq 0.05 \) was considered statistically significant.

Results

Baseline characteristics

None of the thirty enrolled women dropped out of the study. They had passed menopause for approximately 9 years (Table 1). Their anthropometric variables (standing height, body weight and BMI) were within the normal range determined in the French women population for that age (Table 1). The oestrogen-deficient status was expressed by the elevation of plasma follicle-stimulating hormone. As expected in non-oestrogen-substituted women at about 9 years from menopause, the osteodensitometric mean T-score values were in the low normal and slightly osteopaenic ranges for the femoral neck and lumbar spine, respectively (Table 1). The blood biochemical markers CTX, PINP, osteocalcin and BAP reflected on the average an increase in bone remodelling as compared to the pre-menopausal normal ranges (Table 2). All subjects had a serum level of 25-hydroxyvitamin D >20 ng/ml. The mean value of serum PTH was within the normal range (Table 2).

Dietary changes during intervention

The semi-skimmed milk supplementation resulted in an increase in energy intake that was associated with a significant increase of 16% in total protein intake as well as in the percentage of protein per energy intake (Table 3). Neither the carbohydrate nor lipid density were significantly altered by the semi-skimmed milk supplementation (Table 3). Calcium, inorganic phosphate, potassium and magnesium intakes significantly increased by 93, 38, 25 and 13%, respectively, while sodium intake remained virtually constant during the two experimental periods of 6 weeks (Table 3).

Biochemical changes during intervention

Several variables related to bone metabolism were significantly influenced by the milk supplementation with a reduction in blood PTH, CTX, PINP and osteocalcin (Table 4). Neither BAP nor IGF I was statistically altered (Table 4). Figure 2 illustrates the percentage difference between the two experimental periods of these six blood variables. An additional statistical analysis by both paired t test and ANOVA for repeated measurements was made in order to test whether the order of the intervention may have influenced the results. This analysis did not provide evidence that the significant decrease observed in the whole cohort (groups A + B) for PTH, CTX, PINP and osteocalcin was influenced by the order of the 6-week intervention periods, with milk supplementation during the first and second period in group A and B, respectively (data not shown).

Of note is that the mean absolute values of PTH, CTX, PINP and osteocalcin by the end of the adaptation period during

---

Table 1. Baseline characteristics of the thirty postmenopausal women

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>59.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Years since menopause (years)</td>
<td>9.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Standing height (cm)</td>
<td>162.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>62.1</td>
<td>7.5</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Plasma FSH (IU/l)</td>
<td>95.8</td>
<td>26.0</td>
</tr>
<tr>
<td>Lumbar spine aBMD (T-score)</td>
<td>-1.10</td>
<td>0.98</td>
</tr>
<tr>
<td>Femoral neck aBMD (T-score)</td>
<td>-0.88</td>
<td>0.71</td>
</tr>
<tr>
<td>Physical activity (score)</td>
<td>2.63</td>
<td>0.58</td>
</tr>
</tbody>
</table>

aBMD, areal bone mineral density; FSH, follicle-stimulating hormone.

---

Table 2. Blood biochemical variables determined at the end of the 4-week adaptation period*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (mmol/l)</td>
<td>2.47</td>
<td>0.07</td>
</tr>
<tr>
<td>Inorganic phosphate (mmol/l)</td>
<td>1.18</td>
<td>0.12</td>
</tr>
<tr>
<td>Creatinine (µmol/l)</td>
<td>66.9</td>
<td>6.6</td>
</tr>
<tr>
<td>25-Hydroxyvitamin D (ng/ml)</td>
<td>33.6</td>
<td>4.4</td>
</tr>
<tr>
<td>PTH (pg/ml)</td>
<td>40.4</td>
<td>10.5</td>
</tr>
<tr>
<td>CTX (pmol/l)</td>
<td>4207</td>
<td>1848</td>
</tr>
<tr>
<td>PINP (ng/ml)</td>
<td>62.7</td>
<td>26.1</td>
</tr>
<tr>
<td>Osteocalcin (ng/ml)</td>
<td>30.9</td>
<td>12.0</td>
</tr>
<tr>
<td>Bone alkaline phosphatase (µg/ml)</td>
<td>12.0</td>
<td>4.1</td>
</tr>
<tr>
<td>IGF I (ng/ml)</td>
<td>153.3</td>
<td>48.2</td>
</tr>
</tbody>
</table>

CTX, crosslinked telopeptide of type I collagen; IGF, insulin-like growth factor; PINP, propeptide of type I procollagen; PTH, parathyroid hormone.

*For details of procedures, see Materials and methods.
which the subjects consumed 250 ml milk/d were intermediary (Table 2) between those recorded by the end of the period without and with a milk supplementation of 500 ml/d (Table 4).

Among the urinary variables, the 24 h urine excretion was significantly elevated for inorganic phosphate (± 3·3 mmol/d, \( P = 0·019 \)) and potassium (± 12·1 mmol/d, \( P = 0·0109 \)), but not for calcium (± 0·14, \( P = 0·633 \)) during the milk-supplemented period. Neither TRCaI nor TmPi was significantly modified by the intervention, nor BRI (Table 5).

**Discussion**

There has been a renewed interest in non-pharmacological recommendation for attenuating bone loss in postmenopausal women. This stems from doubt raised by results obtained in large studies about adverse effects of hormonal replacement therapy with increased risk of CVD and breast cancer\(^\text{(12)}\). Furthermore, none of the other pharmacological agents such as bisphosphonates, the selective oestrogens receptor modulator raloxifene, strontium ranelate and PTH is recommended by national and international drug regulatory authorities to be used in the primary prevention of postmenopausal osteoporosis; their use in primary prevention being limited to women at high risk of experiencing, in a relatively short time, fragility fractures. For these various reasons only supplements of calcium and vitamin D are often prescribed. However, their efficacy is limited, particularly because of the difficulty in maintaining a satisfactory compliance in postmenopausal women not at increased risk of osteoporosis\(^\text{(22)}\).

The present study indicates that milk supplementation given to postmenopausal women with mean age slightly below 60 years and aBMD values either normal in the femoral neck (T-score ± 0·88) or at the upper limit of the osteopaenic range in the spine (T-score ± 1·10)(\text{35}) results in bone remodelling inhibition. Without milk supplementation the average of the serum bone resorption marker CTX was above the premenopausal reference values. With milk supplementation, the 14 % fall in serum CTX was not only statistically significant.

### Table 3. Nutritional variables during the period without and with milk supplementation*

<table>
<thead>
<tr>
<th>Nutritional Variable</th>
<th>Period without milk supplementation</th>
<th>Period with milk supplementation</th>
<th>Difference</th>
<th>( P )†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kJ/d)</td>
<td>7088</td>
<td>7427</td>
<td>+339</td>
<td>NS</td>
</tr>
<tr>
<td>Energy (kcal/d)</td>
<td>1694</td>
<td>1775</td>
<td>+81</td>
<td>NS</td>
</tr>
<tr>
<td>Protein (g/d)</td>
<td>68-3</td>
<td>78-9</td>
<td>+10-6</td>
<td>&lt;0·0001</td>
</tr>
<tr>
<td>Protein (% energy)</td>
<td>16-7</td>
<td>18-5</td>
<td>+1·8</td>
<td>0·0011</td>
</tr>
<tr>
<td>Carbohydrates (% energy)</td>
<td>46-3</td>
<td>46-5</td>
<td>+0-17</td>
<td>NS</td>
</tr>
<tr>
<td>Lipids (% energy)</td>
<td>37-0</td>
<td>35-0</td>
<td>−1·95</td>
<td>NS</td>
</tr>
<tr>
<td>Calcium (mg/d)</td>
<td>572</td>
<td>1105</td>
<td>+533</td>
<td>&lt;0·0001</td>
</tr>
<tr>
<td>Phosphorus (mg/d)</td>
<td>920</td>
<td>1272</td>
<td>+352</td>
<td>&lt;0·0001</td>
</tr>
<tr>
<td>Sodium (mg/d)</td>
<td>2147</td>
<td>2158</td>
<td>+11</td>
<td>NS</td>
</tr>
<tr>
<td>Potassium (mg/d)</td>
<td>2560</td>
<td>3200</td>
<td>+567</td>
<td>&lt;0·0001</td>
</tr>
<tr>
<td>Magnesium (mg/d)</td>
<td>234</td>
<td>264</td>
<td>+31</td>
<td>0·0025</td>
</tr>
</tbody>
</table>

*For details of procedures, see Materials and methods.
†\( P \) values are computed by paired \( t \) test between the period with and without milk supplementation.

### Table 4. Blood biochemical variables determined at the end of the 6-week period without and with milk supplementation*

<table>
<thead>
<tr>
<th>Biochemical Variable</th>
<th>Period without milk supplementation</th>
<th>Period with milk supplementation</th>
<th>Difference</th>
<th>( P )†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (mmol/l)</td>
<td>2-32</td>
<td>2-32</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Inorganic phosphate (mmol/l)</td>
<td>1-25</td>
<td>1-22</td>
<td>−0-03</td>
<td>NS</td>
</tr>
<tr>
<td>Creatinine (( \mu )mol/l)</td>
<td>66-6</td>
<td>67-2</td>
<td>+0-6</td>
<td>NS</td>
</tr>
<tr>
<td>Proteins (g/l)</td>
<td>68-3</td>
<td>69-8</td>
<td>+1-5</td>
<td>NS</td>
</tr>
<tr>
<td>Albumin (g/l)</td>
<td>39-1</td>
<td>39-9</td>
<td>+0-8</td>
<td>NS</td>
</tr>
<tr>
<td>25-Hydroxyvitamin D (ng/ml)</td>
<td>29-0</td>
<td>28-8</td>
<td>−0-2</td>
<td>NS</td>
</tr>
<tr>
<td>PTH (pg/ml)</td>
<td>43-0</td>
<td>39-8</td>
<td>−3-2</td>
<td>0·0054</td>
</tr>
<tr>
<td>CTX (pmol/l)</td>
<td>4445</td>
<td>3821</td>
<td>−624</td>
<td>0·0001</td>
</tr>
<tr>
<td>PINP (ng/ml)</td>
<td>64-9</td>
<td>59-5</td>
<td>−5-5</td>
<td>0·0092</td>
</tr>
<tr>
<td>Osteocalcin (ng/ml)</td>
<td>31-5</td>
<td>28-7</td>
<td>−2-8</td>
<td>0·0014</td>
</tr>
<tr>
<td>Bone alkaline phosphatase (( \mu )g/ml)</td>
<td>12-2</td>
<td>12-2</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>IGf I (ng/ml)</td>
<td>157-3</td>
<td>164-0</td>
<td>+6-7</td>
<td>NS</td>
</tr>
</tbody>
</table>

*For details of procedures, see Materials and methods.
†\( P \) values are computed by paired \( t \) test between the period with and without milk supplementation.
Inhibition of postmenopausal bone turnover by milk

Interestingly enough, the data are compatible with a milk dose response since the mean values of PTH, CTX, PINP and osteocalcin fell progressively down from no supplementation to 250 and 500 ml/d (Tables 2 and 4).

The pattern of biochemical markers of bone remodelling we observed recalls that recorded during the early phase of interventions using pharmaceutical anti-resorbing agents, such as oestrogens, bisphosphonate or raloxifene. It suggests that the foregoing reported milk intervention positively uncoupled the two processes of bone remodelling.

Overall, the present results are consistent with reported effects of calcium supplementation, taken either as isolated calcium salts, mineral water\(^ \text{24,33,47,48} \) or milk\(^ \text{45,49} \), on bone remodelling markers of postmenopausal women. However, these trials were conducted in cohorts including, at least in part, older postmenopausal women who were therefore at higher risk of osteoporosis\(^ \text{24,33,47,48} \). Indeed, besides the decline in aBMD, advancing age is an additional independent factor increasing the risk of fragility fractures\(^ \text{35} \). Thus, for a given T-score of \(-1\), the estimated 10-year risk for experiencing a fragility fracture is twice as high at 70–75 than at 50–55 years of age\(^ \text{50} \). Therefore, in the clinical setting, the decision for prescribing pharmaceutical agents\(^ \text{4,51} \) should be determined not only by the osteodensitometry value\(^ \text{52} \) but also by the identification of risk factors among which age\(^ \text{35} \), previous fracture\(^ \text{53} \), and BMI\(^ \text{3} \) have been clearly identified as of substantial importance in large-scale epidemiological studies.

The present study indicates that in relatively early postmenopausal years milk supplementation can efficiently slow down the rate of bone remodelling. The present observation sustains the notion that in postmenopausal women with femoral neck and lumbar spine aBMD values still within the normal range or in the upper part of the osteopaenic/low bone mass range\(^ \text{35} \), and without any major detectable risk factor, preventive measures for bone loss resulting from oestrogen deficiency should be centred on lifestyle factors\(^ \text{54} \). The present study brings biochemical support to this notion that is recommended by several national and international health institutions.

The inhibition of biochemical markers of bone remodelling probably resulted from the observed concomitant reduction in the serum level of PTH which, in turn, was probably mediated by the increased calcium intake. In addition, the milk-induced increment in protein intake may also have contributed to the reduction in the circulating level of PTH. Indeed, it has been

---

### Table 5. Calcium and inorganic phosphate fluxes, and urinary electrolyte excretion

<table>
<thead>
<tr>
<th></th>
<th>Period without milk supplementation</th>
<th>Period with milk supplementation</th>
<th>Difference</th>
<th>( P )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (mmol/24 h)</td>
<td>Mean (mmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>4.0 (1.9)</td>
<td>4.1 (2.0)</td>
<td>+0.1</td>
<td>NS</td>
</tr>
<tr>
<td>Inorganic phosphate</td>
<td>24 (7.7)</td>
<td>27.8 (7.0)</td>
<td>+3.3</td>
<td>0.0195</td>
</tr>
<tr>
<td>TRCal (mmol 24 h)</td>
<td>2.64 (0.15)</td>
<td>2.62 (0.14)</td>
<td>–0.02</td>
<td>NS</td>
</tr>
<tr>
<td>TmPi (mmol/l)</td>
<td>1.21 (0.17)</td>
<td>1.19 (0.23)</td>
<td>–0.02</td>
<td>NS</td>
</tr>
<tr>
<td>BRI (mmol Ca/mmol creatinine)</td>
<td>0.29 (0.16)</td>
<td>0.30 (0.16)</td>
<td>+0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Sodium</td>
<td>122.6 (39.7)</td>
<td>122.0 (47.0)</td>
<td>–0.6</td>
<td>NS</td>
</tr>
<tr>
<td>Potassium</td>
<td>60.5 (18.4)</td>
<td>72.7 (23.2)</td>
<td>+12.1</td>
<td>0.011</td>
</tr>
</tbody>
</table>

BRI, net calcium bone resorption index; GFR, glomerular filtration rate; TmPi, tubular inorganic phosphate reabsorption capacity; TRCal, renal tubular calcium reabsorption index.

\( \ast \) For details of procedures, see Materials and methods.

\( \dagger \) \( P \) values are computed by paired \( t \) test between the period with and without milk supplementation.

---

Fig. 2. Differences in percentage between the period without and with milk supplementation. Mean values were significantly different from zero: \( * P < 0.0054, 0.0010, 0.0092, 0.0014 \), for parathyroid hormone (PTH); crosslinked telopeptide of type I collagen (CTX), propeptide of type I procollagen (PINP) and osteocalcin (OC), respectively. The corresponding absolute values are presented in Table 4. BAP, bone alkaline phosphatase; IGF, insulin-like growth factor.

---

**Table 5. Calcium and inorganic phosphate fluxes, and urinary electrolyte excretion**

* (Mean values and standard deviations)
demonstrated that independently of any change in calcium consumption, increasing protein intake enhances intestinal calcium absorption capacity while reducing the serum level of PTH\(^{55}\). This effect could explain the fact that increasing both calcium and protein intakes can exert a positive impact on bone integrity. Furthermore, data suggest that these two nutrients may synergistically interact on calcium economy and bone metabolism\(^{36–38}\). In keeping with this notion, a positive effect of milk basic protein on lumbar spine aBMD of healthy postmenopausal women was associated with a reduction in urinary bone resorption marker without concomitant decrease in serum osteocalcin\(^{59}\).

All enrolled subjects remained compliant to the prescribed milk consumption. This maximal degree of both adherence and persistence during the 6-week period of milk supplementation reflects the good acceptability of this dairy product in this cohort of early postmenopausal women.

Several limitations of the reported trial have to be mentioned. A first limitation is the short time length of the study. It remains uncertain that both the reduced PTH level and bone turnover rate with greater inhibition in markers of bone resorption than formation will be maintained in the long term, eventually resulting in a substantial bone loss attenuation.

Second, the magnitude of the reduction in markers of bone resorption at the end of the milk supplementation was less than with therapeutic doses of strong inhibitors of bone resorption such as bisphosphonates\(^{1,60}\). However, it was close to that observed during the first months following the intervention onset with other inhibitors of bone resorption, such as low doses of oestrogens, raloxifene or strontium ranelate\(^{61–63}\). Nevertheless, with these compounds the reduced risk of experiencing new vertebral fractures\(^{12,64,65}\) was similar to that recorded under therapy with bisphosphonates such as alendronate or risedronate\(^{66}\).

Third, the good tolerability to the supplementation observed in the present cohort can be due in part to a biased selection of enrolled subjects who were volunteers for the study and therefore had no particular dislike for milk. Therefore, one may expect a reduced percentage of postmenopausal women ready to step in and then to adhere and persist to drink daily half a litre of semi-skimmed milk. Nevertheless, more varying regimens providing an equivalent amount of calcium and proteins obtained from other dairy products could exert a similar positive impact on bone metabolism.

Conclusion

A 6-week period of milk supplementation leading to a mean increase in calcium intake from 572 to 1105 mg/d and of protein intake from 68 to 79 g/d induced a significant decrease in several biochemical variables, a response compatible with a reduction of bone turnover. This nutritional approach, meant to alleviate the acceleration in bone remodelling, may be a valuable alternative to pharmaceutical therapy in postmenopausal women not at increased risk of osteoporosis.

Acknowledgements

We gratefully thank Mrs Paulette Rousset for efficiently contributing to a substantial part of the biochemical analysis. The study was funded by the Centre de Recherche et d’Information Nutritionnelles, Paris, France. M.-C. B. is a part-time employee of the Centre de Recherche et d’Information Nutritionnelles. None of the authors has potential conflict of interest relevant to the data reported in this paper. J.-P. B., M. B.-B., M.-C. B. and J.-C. S. were responsible for the conception of the study, data analysis and interpretation. M. B.-B., Y. B., F. M.-L. and V. B. were responsible for organizing, supervising all practical aspects of the study and for the data programming. J.-C. S. was responsible of the determinations of all bone and calcium metabolism-related biochemical blood and urine variables. J.-P. B. was responsible for writing the manuscript. All authors were responsible for critically revising the manuscript.

References

postmenopausal women after the WHI publication. *Pharmaceuticals* 16, 17–27.


