
Attribute dependency graphs:
modelling cause and effect in
systems design
Sebastian Rötzer 1, Sebastian Schweigert-Recksiek1, Dominik Thoma2 and
Markus Zimmermann 1

1Technical University of Munich, Munich, Germany; TUM School of Engineering and Design,
Department of Mechanical Engineering, Laboratory for Product Development and Light-
weight Design
2ID-Consult GmbH, Munich, Germany

Abstract
Complexity in product design increases with little understanding of cause and effect. As a
consequence, the impact of design decisions (or changes) on the product is difficult to predict
and control. This article presents a model of cause and effect for design decisions that avoid
circular dependencies: the so-called attribute dependency graph (ADG) models complex
system behaviour and properties, and increases transparency by carefully distinguishing
between what is realised and what is required. An ADG is a polyhierarchy, with design
variables (directly controllable) at the bottom, quantities of interest (not directly controllable)
on the top, and intermediate attributes. The dependencies represent causality in a simple sense:
assigning values to design variables, representing the cause, will determine the values of the
dependent attributes, representing the effect.ADGsdonot account forwhat is required, but for
what effects emerge by design activity. A set of rules makes them independent of designers’
views. They provide the structure for so-called INUS conditions, that is, insufficient but
necessary parts of unnecessary but sufficient conditions that can be used for requirement
development. Themodelling approach is applied to one simple synthetic and then to two real-
world design problems, the design of a water hose box and a passenger vehicle.

Keywords: Causality, Complexity, Dependency modeling, Systems design, Product design

1. Introduction
Many approaches to engineering design have tried to treat circular dependencies
(Ouertani 2008; Weilkiens 2008; Zimmermann et al. 2017). They are a common
problem in the design of large and complex systems where system properties depend
on numerous subsystem properties down to component attributes. As a result,
unintended iterations in product development processes occur frequently, diminish-
ing the efficiency of product development (Schweigert-Recksiek & Lindemann 2018).
This effect is amplified in the design of product families when multiple systems that
share components are designed simultaneously (Jiao, Simpson & Siddique 2007;
Eichstetter, Müller & Zimmermann 2015). To avoid unintended iterations, an
approach to model system behaviour should avoid circular dependencies.

It is difficult for designers of complex systems to assess the impact of a change to
one attribute on the others. This can lead to a lack of transparency and undesired

Received 02 February 2022
Revised 02 September 2022
Accepted 05 September 2022

Corresponding author
S. Rötzer
sebastian.roetzer@tum.de

© The Author(s), 2022. Published by
Cambridge University Press. This is
an Open Access article, distributed
under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/
4.0), which permits unrestricted
re-use, distribution and
reproduction, provided the original
article is properly cited.

Des. Sci., vol. 8, e27
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2022.20

1/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://orcid.org/0000-0002-3875-0988
https://orcid.org/0000-0002-6666-3291
mailto:sebastian.roetzer@tum.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://journals.cambridge.org/dsj
https://doi.org/10.1017/dsj.2022.20
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dsj.2022.20&domain=pdf
https://doi.org/10.1017/dsj.2022.20


system behaviour, as a designer might not have all effects of their change in mind.
The designer may confuse effects with causes or requirements with assumptions.
Therefore, a clear cause and effect structure is necessary to increase transparency
in complex system design. Furthermore, designers sometimes make assumptions
for values of unknown attributes because they have more degrees of freedom than
requirements. These (hidden) assumptions limit the set of possible solutions from
the beginning. Thus, an approach should allow for an assumption-free design.

Designers may not only want to know the dependency structure of the system
but also how the attributes determine each other. They need to know the
quantitative behaviour in order to design a system that fulfils all requirements.
This requires a support for quantitative modelling. While breaking down
requirements in the early stages of design, it is important, but at the same time
difficult, to formulate independent, that is, decoupled requirements (Suh 2010).
Zimmermann et al. (2017) present the solution space engineering (SSE)
approach to systematically break down requirements from the system to the
component level. The approach uses solution spaces. A solution space consists of
all good designs for a specific problem. Good designs fulfil all requirements of the
system. A design is seen as a set of specific design variable values. Design variables
describe the subsystems or components of the system. As design variables are the
designers’ degrees of freedom, solution spaces support them by projecting the
requirements of the system onto the domain of design variables. Thus, a designer
can see how a change to a design variable changes the performance of the overall
system. To compute these solution spaces, the approach requires quantitative
models in a hierarchical structure without circular dependencies. Structuring the
attributes and their dependencies in these problems requires an approach to
modelling system dependencies according to the needs of the solution spaces.
The approach must guide quantitative modelling and incorporate information
about the models, such as physical dependencies. The system modelling
approach can be seen as the language of SSE. Thus, it needs to be applicable to
engineering design problems.

When designing large complex systems, such as vehicles, many engineers of
different disciplines have to work together (Kreimeyer 2009). They have different
views on the product, which need to be incorporated. As the design process
progresses over time and new insights or additional subsystems or components
are implemented, a modelling approach needs to be easily extendable. When
engineers from different disciplines and departments work together in the design
of large complex systems, various levels of detail are needed. A dependency model,
therefore, needs to be able to zoom in and out to provide information of the
required level of detail without losing information.

Adequate forms of graphical representation can help to build a common basis
of understanding of the design problem and its dependencies between the parties
involved. Furthermore, ‘visualisation is one of the most effective means to support
communication, since humans perceive about 70% of all information visually’
(Eiselt et al. 2013). Graph representations are especially beneficial for conveying
information about complex products (Schweigert et al. 2017). Graphs can also be
analysed using network analysis techniques. However, ‘despite its success, appli-
cations of network science have, to a large extent, focused on understanding
various mechanisms related to complex systems, and to a lesser extent on using
this understanding as an engineering tool’ (Chen et al. 2018). This leaves some

2/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


unused potential as ‘networks can help us create abstract models of structural
dependencies within products and systems’ (Chen et al. 2018).

Existing approaches do not enable users to produce models of cause and effect
in engineering design that fulfil the aforementioned requirements. They either
propose modelling approaches with different goals. Or they do not provide
sufficient guidance by rules and procedures to successfully create models that
comply with the requirements. This article aims at closing this gap by, first,
detailing the modelling approach proposed in Zimmermann et al. (2017) and,
second, presenting guidelines for application to support practitioners.

2. Related research

2.1. Product and process modelling

There are many approaches to model products, including the dependencies
between their attributes as well as the corresponding processes to develop those
products (Luft &Wartzack 2016). In the following, we present a selection of those
approaches:

Axiomatic Design, developed by Suh (2010): The four domains, customer
needs, functional requirements, design parameters, and process variables, are linked
via matrices built on the two axioms of independence of functional requirements,
and minimising the information content of designs. Relevant to this article is the
mapping between the functional and the physical domain. The design parameters
are design variables in our context. The first axiom aims at avoiding dependencies
between requirements. However, the approach only represents two hierarchical
layers and their mapping: the functional and the physical domain. It does not show
how the attributes in the physical domain interact with each other to create a
certain behaviour in the functional domain. Therefore, for example, quantitative
modelling is not supported.

Concept–Knowledge Theory (C–K), developed by Hatchuel & Weil (2003):
There is a formal distinction between spaces of ‘concepts1’ (C) and spaces of
‘knowledge’ (K). Four operators are needed for design: C ! K, K ! C, C ! C,
and K ! K. The approach aims at an abstract level of product development. It is
concerned with ‘the generation of new objects and new knowledge’ (Hatchuel &
Weil 2009) in earlier stages of the product development process, in contrast to the
approach illustrated in this article, which focuses on design in the sense of
determining system properties. There is no possibility to zoom on the design.
Furthermore, there is no clear cause and effect structure inside the concepts, but
rather a more abstract level.

Function–Behaviour–Structure (FBS) framework, developed by Gero (1990):
The FBS framework starts with the function F from which an expected behaviour
Be is derived. A structure S is then designed to executeBe.Comparing the behaviour
Bs of the structure with Be forms the basis for future iterations, resulting in
documentation of design D. Visualisations play a minor role here. This approach
does not avoid circular dependencies.

1Hatchuel andWeil use the following rather abstract definition:A ‘concept’ C is an entity (or group of
entities) that verifies a group of properties P. It is a proposition which has no logical status in a space of
knowledge K (i.e., nor false nor true in K).

3/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


Characteristics-Properties Modelling (CPM), developed by Weber (2014):
Essential here is a distinction between characteristics and properties: Characteris-
tics (Cm) describe the structure and the shape of a product. The characteristics can
be directly manipulated by the designer. Properties (Pn) describe the behaviour of a
product. They cannot be influenced directly, only indirectly by changing the
depending characteristics. This provides a specific cause and effect structure.
The CPM does not use the perspective of a polyhierarchy,2 though, which limits
the extendability.

Design Structure Matrix (DSM) methodology, developed by Steward (1981)
(as elaborated by Eppinger & Browning 2012): The DSM is represented as a square
matrix and consists of elements in rows and columns as well as their relations in the
cells. Different types of matrices are common in engineering management. When
two different domains (e.g., people and components) are linked, a domain map-
ping matrix (DMM) is created. The combination of three DSMs and six DMMs
forms a multidomain matrix (MDM), in most cases consisting of the domains
people, components, and activities (processes). While each matrix can be trans-
formed into a graph and vice versa, the DSM methodology as described by
Eppinger & Browning (2012) does not avoid circular dependencies nor does it
specifically aim for causality.

Analytical Target Cascading, developed by Kim et al. (2003): Analytical
target cascading partitions an overall design problem into several coupled
optimization problems, as the overall problem is often not solvable. The corres-
ponding graphs visualise the flow of information between the different levels of
the design problem. However, these graphs represent bidirectional exchange of
information between different optimizations. It does not aim at a clear cause and
effect structure.

Extended Design Structure Matrices (XDSM), developed by Lambe &Martins
(2012): Lambe andMartins combine the structure of a DSMwith visual elements of
flow diagrams. It visualises data dependency and process flow on a single diagram at
the same time.XDSMshave a strong focus on tools andprocesses. They visualise how
certain attributes are calculated from others and which models or algorithms are
used. They do not represent the physical dependency structure of the system itself.
They can also represent coupled, thus circular, dependencies between the tools.

Effect Graphs,3 developed by Bossel (1992): An effect graph is an early
qualitative model built to come up with the first qualitative statements about the
system behaviour. It starts with a word model in colloquial language before
building a foundation for later mathematical analyses. Circular dependencies are
explicitly part of the model.

Directed Acyclic Graphs (DAG) or causal diagrams as described by Pearl
(1995). Their key property is that there are no cycles. However, their application is
not tailored to system design, but to probabilistic models and empirical research,
therefore limiting their applicability in engineering design problems. Murphy
(2012) describes their use in machine learning.

Table 1 summarises the approaches described above.

2Structure where one child node can have multiple parent nodes (Kreimeyer 2009).
3Translation by the authors from the German term Wirkungsgraph.

4/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


Table 1. Overview of product and process modelling approaches

Approach Nodes

Edges

Aim of visualisation
Reason why it does not solve our
problem

Type of
dependency Meaning

Axiomatic
Design – Suh
(2010)

States of the functional
or physical domain
(i.e., values of a design
parameter)

Undirected Connection of
statesa

Coupling of
functional
requirements (FRs)
and design
parameters (DPs)

Only two hierarchical layers:
functional and physical domain.
No support for quantitative
modelling

C–K Theory –
Hatchuel &
Weil (2003)

Concepts Directed
(top-down)

Expansion of
concepts

Visualise the
co-expansion of
knowledge and
concepts

No clear cause and effect structure
of the dependencies within the
concepts; no zooming

FBS framework
– Gero (1990)

Functions, behaviour,
structure, design

Directed Transformation
between F, B and
S; comparison of
Be and Bs

b

Visualisations of
activities in design

No explicit, circular-free product
modelling

CPM – Weber
(2014)

Characteristics (C),
properties (P) and the
relations (R) between
C & P

Directed Connection of C
and P via Rc

Visualisation of the
approach

Only two levels; limited
extendability

DSM
Methodology
– Steward
(1981)

System elements Both possible Relation (different
meanings)

N/A Clear cause and effect structure not
intended in most cases; does not
avoid circular dependencies

Analytical
Target
Cascading –
Kim et al.
(2003)

Design variables Both possible Decomposition of
the design
problem or
information
flow

Flow of information
between the
different levels of a
design problem

Bidirectional exchange of
information; does not represent
cause and effect or avoid circular
dependencies

5/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/dsj.2022.20


Table 1. Continued

Approach Nodes

Edges

Aim of visualisation
Reason why it does not solve our
problem

Type of
dependency Meaning

Extended
Design
Structure
Matrices –
Lambe &
Martins
(2012)

Computational elements
(disciplinary analyses,
optimizers, surrogate
models, etc.)

Directed Data passed
between the
computational
elements

How attributes are
calculated and
which models or
algorithms are used

No physical representation of the
dependency structure of the
system itself; represents the flow
of data between tools

Effect Graphs –
Bossel (1992)

System elements without
distinction of their
kind

Directed Effect from one
system element
to another

Preparation for
simulation models

Circular dependencies are explicitly
part of the model

Directed Acyclic
Graphs
(DAGs) –
Pearl (1995)

Any sort of variable Directed Cause Representing
(supposed) causal
connections in
empirical data

Tailored to probabilistic modelling,
not to engineering design
problems

a

Causal between functional requirements and design parameters.
b

Causal, especially between F and Be as well as between S and BS.
cNo causality because external characteristics also influence properties; no hierarchy between properties.

6/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/dsj.2022.20


2.2. Previous work related to ADGs

Zimmermann et al. (2017) proposed a framework for the design of large systems
subject to uncertainty. The first pillar of the framework is a graph to model the
dependencies of the system. Various publications use visualisations similar to this
dependency graph (Münster et al. 2014; Wimmler et al. 2015; Zare et al. 2017;
Korus et al. 2019; Krischer & Zimmermann 2021; Rötzer et al. 2022). Wöhr et al.
(2020) use a dependency graph in the context of process modelling. Furthermore,
dependency graphs form the foundation for modular model-based system design
(Rötzer et al. 2020). Therein, modular models reflect parts of a larger system. Due
to precise interfaces, it is possible to automatically assemble the modular models
into a large model. For this to work, there cannot be any circular dependencies in
the models. Hence, the use of dependency graphs provides the necessary input to
build modular system models. However, none of the aforementioned publications
specifies the exact interpretation and rules of the graphs they are using.

3. Introductory example: joint design

3.1. Modelling the design problem

Consider a scenario in which two metal sheets are to be connected by bolts (see
Figure 1, left). One requirement is that the connection must support a horizontal
force FQ,req. We distinguish between the required minimum load-bearing capacity
FQ,req and the realised load-bearing capacity FQ,real, which is realised by a specific
design. The designer’s task is to design the joint so that the required load bearing
capacity is realised, that is, FQ,real ≥ FQ,req.

The designer has to determine the number of bolts needed n and the force
applied by FS. Furthermore, the constant friction coefficient μ has an influence on
the joint. Thus, the relevant attributes are: FQ,real, FS, n, and μ. To identify the
dependency structure within the attributes, the designer can change the values of
all attributes systematically.

For the application of ADGs, the focus is on the actual behaviour of the system.
Desired behaviour and requirements are not considered yet.

• FS: Does a change on FS influence the number of bolts n? No, the number of
bolts can be chosen independently of the force that is applied to them, and vice
versa. Does a change on FS influence the constant friction coefficient μ?
Possibly. For the beginning, we assume that for our design task, the constant
friction coefficient is only dependent on the selected materials. Thus, there is
no influence between FS and μ, as μ also does not have any influence on the
applied force. Does a change on FS lead to a change in FQ,real? Yes.

• n: We have already figured out that n has no influence on FS and μ, but it has an
influence on FQ,real.

• μ: μ has no influence on the number of bolts n and the applied force FS. It also
determines FQ,real.

• FQ,real: FQ,real has no influence on FS, as it is a consequence of FS. The same
applies to μ and n. Thus, we cannot control FQ,real directly.

7/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


We identify FS, n, and μ as independently controllable design variables and
FQ,real as an indirectly controllable quantity of interest. Figure 1 (right) shows the
corresponding ADG.

The lower level comprises the design variables, which are independent of each
other. FQ,real constitutes the upper level of quantities of interests (QoIs).

The bottom-up mapping maps the design variables (n, μ and FS) onto the QoI
(FQ,real) and can be cast into the form y¼ f xð Þ, in which y are QoIs and x are the
design variables. For this example, the following formula applies:

FQ,real ¼ nμFS:

With a quantitative model available, the designer is able to check whether or not a
design fulfils the requirements of the system, that is, FQ,real ≥ FQ,req. We do not
derive the design from the requirements in the first place, but start with the actual
behaviour and then check whether different sets of designs meet the requirements.
The designer can now consider all possible designs that fulfil the requirements and
not only one designwhich is derived directly from requirements using assumptions
on unknown quantities. This allows for an assumption-free modelling of the
system behaviour and design.

As ADGs may be adapted to specific design tasks, they may differ for different
scenarios of a joint design. Let us assume three independent scenarios:

a) The material combination of the two plates is already fixed in the design
process. The designer has the freedom to specify the number of bolts n and the
force FS which is applied to them.

b) In addition to the number of bolts n and the applied force FS, the designer can
choose the materials used for the joint or add additional material between the
plates. The designer can thus adjust the friction coefficient, here assumed as
constant μ.

c) Investigations in the R&D department revealed that μ is not constant for the
chosen materials, but depends on the applied horizontal force F¼ FSn. In this
case, F determines both FQ,real and μ.

3.2. Solving the design problems

A designer could start with the required force FQ,req ¼ 10kN. They may assume
that four bolts are needed. Furthermore, the designer assumes that the sheets are
made of steel and have a friction coefficient of 0.2. Having these values allows the
designer to calculate the force which needs to be applied on each bolt:
FS ¼ FQ,reqμN ¼ 12:5kN. When the requirement changes, the designer needs to

Figure 1. Left: joint design; right: corresponding attribute dependency graph (ADG).

8/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


recalculate the equation. Furthermore, when additional requirements are intro-
duced it becomesmore complicated:Which requirement should we use to start the
calculation? Thenwe have to check whether the other requirements are satisfied. In
this case, the applied force might be too high for the bolt used. Therefore, a bolt
with a higher strength seems to be required. The designer may have forgotten that
they based the calculation on assumptions, such as the number of bolts. ADGs
enable assumption-free design because they do not require any assumptions.
Furthermore, when the designer calculates the applied force FS from the require-
ment on FQ,real they confuse design variables with requirements on QoIs. FQ,real
cannot be changed and thus is not controllable. The ADG shows what can be
controlled: the number of bolts n, the force applied to the bolts FS, and the friction
coefficient μ. Consequently, the designer could change the number of bolts or the
material instead, depending on the scenario.

In order to solve the design problem in an assumption-free way, we use ADGs
and compute solution spaces for the design variables we can control (Zimmermann
et al. 2017). Figure 2 depicts the ADGs for the scenarios described above.

In Scenario a), n and FS influence FQ,real. μ also influences FQ,real, but the
designer has no freedom to change it. For the ADG, there are two possibilities:
(1)We can omit this attribute or (2) we can sketch it as a design parameter (i.e., we
consider it to be not adjustable) with dashed lines to indicate its influence. Figure 3,
Scenario a) depicts the solution space and one possible solution to this design
problem. In this scenario, μ is a parameter, so the designer cannot change it. In this
case, it is μ¼ 0:2. FS and n are design variables, which can be assigned values to
obtain a certain system performance, expressed by FQ,real. By applying a require-
ment on FQ,real, we divide all possible designs in two groups: good designs, which
fulfil all requirements (green dots), and the bad designs, which violate a require-
ment (red dots). The ADG incorporates the idea of solution spaces by revealing
how the designer can influence the system behaviour. There is no need tomake any
assumptions on the design variables, for example, on the number of bolts n.
According to Figure 3, the designer can choose from different designs which fulfil
the requirements, for example, n¼ 6 and FS ¼ 10kN. The intersection of the two
dashed lines in Scenario a) indicates this solution. There are other possible
solutions, since every green dot indicates a good design. The designer can incorp-
orate other information in their decision, such as geometrical constraints. Accord-
ingly, the designer wants to use the minimum number of bolts possible (here
n¼ 3). Or they could prefer a robust solution and move the design further away
from the limit line, for example, to n¼ 10 or FS ¼ 15kN.

In Scenario b) the designer can additionally adjust the friction coefficient μ.
Therefore, it is marked as a design variable. Figure 3, Scenario b) shows the
solution spaces for this design task. As we have three design variables, we need
two diagrams to depict them. The boundaries of the good design space become
blurry because a three-dimensional design space is projected onto two dimensions.
We can derive intervals for design variables, which contain only good designs. The
rectangular solution spaces depict those intervals. The designer can choose inde-
pendently one value for each design variable within its intervals.4 In this scenario,
the designer could also change μ to higher values to get a higher value for FQ,real.

4In contrast to Scenario a) (point-based solution), here we derive a rectangular solution space
(set-based design). This can be done independently of the scenario and the ADG.

9/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


In Scenario c) we can observe two differences: First, FS and n influence FQ,real
directly and indirectly via F and μ. Indirect dependencies make the behaviour of
complex systems less intuitive. ADGs can model this influence in a unique way
without circular dependencies. Second, the characteristic curvebμ Fð Þ is an attribute.
bμ Fð Þ characterises the behaviour of the material. The realised friction coefficient
depends on the force F. As FS and n are design variables, we do not know a priori

Figure 2. Attribute dependency graphs (ADGs) for three different joint design
scenarios: (a) μ is considered as a design parameter, that is, its value is fixed; (b) μ
is considered as a design variable, that is, its value can be changed; (c) μ is considered
as force dependent, that is, its values can only be assigned indirectly by the resulting
force F¼ nFS and a characteristic curve bμ Fð Þ.

Figure 3. Solution spaces for three different joint design scenarios. Green dots
indicate good designs. Black frames indicate regions of permissible variation.

10/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


what value the friction coefficient μwill have. As soon as we assign FS and n values,
we can calculate the specific friction coefficient for a specific force F¼ nFS with the
characteristic curve. In this design scenario, the characteristic curve itself is
considered as fixed. Therefore, it is handled as a design parameter. In this case,
we again only have two design variables, as μ is determined by FS, n, and bμ Fð Þ.
Figure 3, Scenario c) shows the corresponding solution space with possible
intervals for the design variable values. We can see that the limit curve differs
from Scenario a). In Scenario a), μ¼ 0:2 is fixed. In Scenario c), its value depends
on FS and n. The different shapes of the good design space visualise that indirect
influence.

For all three design tasks, ADGs show which attributes the designer can
influence and how they interact with each other. ADGs can also depict indirect
dependencies and characteristic curves without circular dependencies. They pave
the way for an assumption-free quantitative design, as can be seen in this example
for SSE.

4. The method

4.1. When to apply this method

ADGs can help engineers in the decomposition of complex technical systems (such
as a production printer) in collaborative design processes. A system engineer’s task
might be to break down overall system objectives (e.g., image quality, productivity
and cost) to multiple subsystems (e.g., print head, transportation system and
drying unit) and to ensure the successful interaction of the subsystems to achieve
the system objectives. In this task, the ADG helps to identify the dependencies
between subsystems and to investigate conflicting system objectives (e.g., image
quality versus cost). Early in the design phase, the system engineermight only draw
an abstract ADG. During the course of the project, the ADG can be detailed to
design variables of the identified necessary components.

System engineers can use ADGs for systems design. They are built for a design
problem in a specific context. Typically, systems are to be designed such that they
fulfil certain requirements. To design systems, the values of design variables have to
be determined. By interaction according to physical laws, all attributes generate a
system behaviour, which then either fulfils the given requirements or not.

ADGs show which attributes interact with each other to generate a certain
system behaviour. ADGs do not necessarily require quantitative models of the
dependencies, for example, by formulae. However, quantitative models can help to
set up the dependency structure, as the formula did in the introductory example.
ADGs can be used in SSE (Zimmermann et al. 2017) to describe the system that
needs to be modelled.

We regard design as an activity to choose values for the controllable attributes
(design variables) in a way that fulfils the requirements attached to noncontrollable
attributes (quantities of interest).

An ADG documents the quantities that are used to formulate INUS conditions.
Mackie (1965) defines an INUS condition as an insufficient but necessary part of an
unnecessary but sufficient condition for an effect to occur. In this sense, INUS
conditions may be called a cause for a certain effect. In the joint design example
above, we have three causes for the effect that the plate can support a certain

11/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


horizontal force FQ: the number of bolts n; the force applied by the bolts FS; and the
friction coefficient μ. Satisfying a requirement on one of these quantities is
insufficient: One or several bolts alone, without any force applied and without
any friction coefficient, do not support a lateral force. A force which cannot be
applied does not help either. A friction coefficient alone, without any vertical force,
cannot support a horizontal force. At the same time, satisfying each requirement
associated with one of the quantities is necessary: If we do not use one bolt we
cannot apply a force. If we do not apply a force, a lateral horizontal force cannot be
supported. The same applies to the friction coefficient. Satisfying all requirements
on them is sufficient for the desired effect to occur, that is, to support a horizontal
force. But this set is not necessary. Other sets of INUS conditions can support a
horizontal force: The plate can be so heavy that it provides enough vertical force, so
no bolts are needed. The plates could be welded together, so that the set consisting
of bolts, vertical force, and friction coefficient would not be necessary. They would
then constitute different designs and be described by different ADGs.

4.2. Classification in graph theory

According to the classification in graph theory developed by Diestel (2006) as
summarised in Kreimeyer (2009), an ADG has the following properties:

• It is a directed graph (‘digraph’), as it contains only directed edges and nodes.
• Neither nodes nor edges have (per se) weights (‘nonweighted graph’).
• Is is a ‘simple graph’, as no node can have an edge with itself (loops).
• ‘Hyperedges’ are allowed (one edge connecting one node to many others), but it
is not a ‘multigraph’, as between two nodes there can only be one edge or none.

• ‘Half-edges’ or ‘loose edges’ are not part of it, as every edge has to connect two
nodes.

• Similarly, no ‘disconnected’ nodes are admitted.
• It is a ‘node-labelled graph’ because every node contains a label, while edges
do not.

• ‘Complete’ graphs or ‘cliques’, where every node is connected to every other
node, are not possible in ADGs, as nodes on the same hierarchical level cannot be
connected to each other.

• An ADG is a polyhierarchy because a source node can have multiple dependent
nodes.5

4.3. Terms and definitions

Nodes represent attributes. There are three types of attributes (aligned with
Papalambros & Wilde 2017):

• Design variables (DVs): The attributes that have to be defined during the design
process. They are controllable and thus constitute operating levers for the
designer. Characteristics, such asbμ Fð Þ, are also considered to be design variables.

5We avoid the terms parent and child nodes because the flow of information in trees is typically top-
down and not bottom-up (like in ADGs). This might cause confusion when talking about parent and
child nodes.

12/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


• Design parameters (DPs): In most design processes there are attributes that could
be changed, but are assumed as fixed due to restrictions or decisions (e.g.,
modulus of elasticity after deciding for a specific material).

• Quantities of interest (QoIs): The attributes at the highest level of the ADG. They
cannot be controlled directly. QoIs describe the behaviour of a system. Require-
ments on the QoIs can be used to formulate the design goal.

In addition to attributes, there are also constants that cannot be changed and
are not the focus of the design process. Usually, they are not depicted. They could
be added in the same way design parameters are added, if helpful for under-
standing. The design attributes (variables and parameters) are found on the
bottom layer of the graph. They have no input but have one or several outputs.
When the scope of the ADG changes, the role of the attributes in the graph may
change. The DVs of an ADG on a system level may become the QoIs of an ADG
on the component level. In the course of the design processes, attributes can also
change their role, depending on the element in focus. What is a QoI for one
person (output of their design task) can be an input for somebody else’s
design task.

Within the hierarchy of the ADG, there are also nodes between design variables
andQoIs –we call them intermediate attributes.They always have both, inputs and
outputs. All edges in the ADG represent dependencies. They are directed from a
lower to a higher level (bottom-up).

Note that two elements on the same level of the hierarchy can never influence
each other, but together they can influence elements on higher levels (if they are
both linked to it). In the terminology of this article that means there is never a
(direct) dependency between two elements on the same level of hierarchy.

The term dependency in this case is (part of) the relation between a controllable
attribute (design variable) and noncontrollable attribute in the sense of a system
response. ADGs do not represent an intended behaviour, but rather an expected or
emerging behaviour. We see the system response as the behaviour of a product as a
result of a design choice. The system response is the consequence of a specific
design, that is, assigning specific values to design variables. System behaviour in
this context does not mean a time-dependent behaviour, like we can observe it in
dynamic simulations, for example. We can use dynamic simulations to quantify
QoIs (e.g., maximum acceleration values), but the quantity of interest itself is not
time-dependent because it describes the performance of the product. Furthermore,
we can use time-dependent characteristic curves (e.g., for damping in an oscillating
system) as attributes to model the system behaviour (e.g., the eigenfrequency).

Along that path between a design variable on the lowest level of the ADG and
the respective QoI at the top, cuts can be made in any position, similar to free body
diagrams in mechanics.

The rules depicted in Figure 4 give guidance for modelling ADGs. The
attributes of the ADG have to be arranged so that the attributes on the lower level
have their values assigned first. The values of the superordinate attributes follow as
the result (emerging behaviour) and are only controlled by the attributes on the
lower levels. If we want to model the dependency of power, mass, and acceleration
of a vehicle, we would first assign values to the mass and the power, so those
attributes would belong on the lower level of the graph. In addition, we can set
values for mass (chassis) and power (engine) independently. Only by combining

13/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


the values for mass and power can we determine the acceleration of the overall
product (vehicle). It is possible that an attribute Z is directly dependent on an
attribute Y and at the same time has one or more indirect dependencies from Y.

In software engineering, research indicates that circular dependencies have an
impact on the proneness of changes (Oyetoyan et al. 2015). Circular dependencies
occur when two or more software blocks mutually depend on each other. That
means, for example, that block A needs the result from block B but block B needs
the result from block A. If there is no termination condition, the circular depend-
ency results in infinite loops. In ADGs, dependencies must always point from
bottom to top. They cannot point backwards. Therefore, circular dependencies are
by definition excluded.

To make the ADG easier to read, multiple dependencies can be grouped and
joined into one edge. The above attribute is then dependent on all attributes
connected. Design parameters can be displayed or left out of an ADG. When
included, we mark them with a dotted circle to differentiate them from design
variables. We distinguish between requirements and attributes. Requirements can
be displayed in a rectangle attached to the attribute it refers to. Requirements are
mostly found on the upper level, as requirements formulated for the QoIs of the
system. Nevertheless, requirements can be also formulated for intermediate attri-
butes or design variables. For the latter, they impose limits on the design space.

In the case of building a quantitative model from the ADG, a further aspect
should be considered: Generally, an attribute is a physical quantity (e.g., mass) or a
characteristic (e.g., battery voltage over state of charge). However, for a quantitative
model, all attributes or characteristics need to bemeasurable. Thatmight not be the
case for tastes or feelings (e.g., familiarity as a response to a product design).

Figure 4. Rules and guidelines for modelling an ADG (scheme oriented on Linde-
mann, Maurer & Braun 2008).

14/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


4.4. Procedure model for building ADGs

Engineers who trained their causal thinking in the way described above can build
simple ADGs intuitively. For beginners ormore complex systems, we suggest using
the following procedure to build ADGs (see Figure 5):

1. Define the system of interest and its boundaries. Collect components and
subsystems of the product.

2. Collect attributes that describe the behaviour/performance of the system. For
this step, requirements or attributes communicated to customers can be a
source for QoIs. In product development, requirements on these attributes
can lead to conflicts of goals during the design process (e.g., mass and strength).

3. Collect attributes which (a) describe the subsystems and components,
(b) influence the system behaviour, or (c) need to be assigned values during
the design process.

4. Group controllable (design variables; bottom) and noncontrollable attributes
(QoIs; top). The remaining attributes stay in between as intermediate attributes.

5. Determine dependencies using formula or expert knowledge and draw edges
from the bottom to the top until all attributes are connected with at least one
edge. Think of which attributes can be assigned values first and which values
emerge after those values are set. Do not confuse them with requirements. We
are not looking at required or desired behaviour yet, but only at the emerging
behaviour of the system.

This is one proposed procedure. Others are possible. Sometimes an ADGhas to
be amended when new information is available. Thus, the procedure is iterative as
indicated by the dotted triangles pointing upwards in Figure 5. To verify sections of
the ADG during the process, it is helpful to translate those sections into a
quantitative model and to use SSE to visualise the solution space. This visualisation
reveals if the dependencies used are plausible and provide meaningful results. This
may lead to an iterative process of adapting the ADG and the quantitative model
until both reach a satisfactory level.

5. Determine dependencies

4. (Re-) arrange attributes

3. Collect design attributes

2. Collect quantities of 
interest (QoIs)

1. Define system boundaries

z

x

y zx

y

z

x

z

x

Steps

What attributes describe the system? 
Requirements list

What attributes can be influenced 
directly? Expert knowledge (design)

Physical models, expert knowledge 
(simulation, testing)

How can a designer influence the QoIs?
Expert knowledge (design)

Support

Figure 5. Procedure model for building attribute dependency graphs.

15/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


5. Examples
We present two further examples of ADGs in design projects: (1) garden hose box
design and (2) vehicle dynamics design.

5.1. Garden hose box design

Figure 7 displays two ADGs of a garden hose box as shown in Figure 6. The upper
ADG shows the abstracted dependencies of the hose box while the lower ADG is a
zoom into the upper ADG and therefore reveals more detail. The example shows
that it is possible to zoom in and out of ADGs to allow examination at different
levels of detail. The abstracted ADG helps to obtain an initial understanding about
considered components, QoIs and their dependencies. The detailed ADG specifies
the variables actually used to model the components. The latter is needed to
effectively support the design task described in the following.

The ADG of the hose box was used in a design project presented by Rötzer et al.
2020b. One of the key questions in this project was to determine if sharing
components among different product variants is technically feasible and econom-
ically beneficial.

The hose box serves the functions of containing, dispensing, and retracting a
predefined garden hose. The box consists of three cost-driving components:
housing, reel and spring. To reduce the complexity, the model of the hose box
uses a fixed layout of the components. That means, for example, that different
installation positions for the spring are not considered. Furthermore, the model
includes only those attributes of the components that are necessary to evaluate if
components can and should be shared among products (different variants offered
to the customer). Ten design variables describe the geometry of the components
(see Figures 6 and 7). The ADG does not show design parameters (attributes that
are considered unchangeable for the analysis), such as the wall thickness of the
spool and housing or the diameter of the water hose. On the top level, the ADG
shows 10 QoIs of the system. Out of those, the hose length (lHose) and the aspect
ratio of the housing (rHousing) are used to measure the fulfilment of customer
requirements. The other QoIs are mainly needed to guarantee the technical

Figure 6. Sketch and section of the hose box. The quantities are explained in Figure 7.

16/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


feasibility of the hose box design (e.g., (rd,hose) guarantees that the reel’s diameter is
large enough to ensure a sufficient bending curve for the hose).

Most QoIs depend on multiple design variables. Intermediate attributes in the
ADG can help to structure the dependencies between QoIs and DVs. An example
illustrates this: The spring variables have an influence on multiple QoI. However,
the influence is not attributed to a single design variable of the spring, but rather the
interaction of the five spring design variables. Therefore, the spring characteristic

Figure 7. Abstracted and detailed ADG of the hose box (zoomed in and out).

17/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


CS, as an intermediate attribute, helps to structure the ADG. The spring charac-
teristic describes the torque curve over the revolutions of the spring. This demon-
strates that ADGs can represent whole characteristic curves and not only
numerical variables. When translating the ADG into a quantitative model, char-
acteristic grid points of the curve are used as an approximation for the curve.

It might be assumed that the size of the spring has an influence on the size of the
reel, and that the size of the reel influences the size of the housing. But in ADGs
there are no direct dependencies between the design variables (in this case, the
geometrical attributes of housing, reel and spring). However, when looking at the
hose box as a combined system of the aforementioned components, the geomet-
rical attributes of the components together influence the QoI of the system, that is,
there must be a gap between the components. Or to put it differently, the
components may not overlap. The ADG helps to solve these indirect dependencies
without directly deriving one component from another. We only verify if the
requirement of leaving a gap between the components is fulfilled. The components
can be examined independently. This independence of the components means that
they can be examined individually for standardisation potential.

The ADG supported the process of creating a shared understanding of the
system and its necessary relationships among the project participants in an early
phase. In an iterative process, the ADG was adapted and discussed in order to
arrive at the most accurate representation of the system possible.

The numerical optimization of the product family of hose boxes required a
quantitative model of the hose box in program code. The ADGhelped to figure out
the dependencies for which quantitative models had to be found. That is why we
see the ADG as a support for quantitative modelling. Moreover, the ADG serves
as a checklist during the implementation of the mathematical model, where every
dependency (edge) of the graph needs to be translated to a function of the
mathematical model. For the hose box, the ADGhelped to determine the attributes
for an artificial neural network (ANN, see Figure 7) and to systematically look for a
spring design tool which can calculate the characteristic curve of the spring (CS)
from the geometrical attributes (dSpring, dArbor,wCoil, tCoil, lCoil). This was necessary
because no formula was available to calculate the characteristic of this specific kind
of power spring. The ADG helped to identify and specify the missing piece of the
overall quantitative model in order to efficiently create a suitable surrogate model.
After the quantitative model was finished, the ADG helped to explain both the
system and the quantitative model to new stakeholders. Therefore, we recommend
keeping the quantitative model and the ADG synchronised.

Now, consider a scenario in which we design the hose box without the use of
ADGs. We might begin by designing the spool or the spring according to the
requirements. If we start with the spool, we have to design a spool that can
accommodate the required hose (specified by length and diameter). Then, we
might design a spring that facilitates the retraction of the hose according to the
chosen spool. At that point, we might notice that it is impossible to find a spring
that fits into the reel’s diameter while yielding sufficient turns and torque for
retraction. We then go one step back and choose a spool design with a greater
diameter. By increasing the outer diameter of the spool, the number of vertical hose
layers can be increased. In order to keep the total box dimensions low, as a next
step, the horizontal layers, and therefore the width of the spool, can be decreased.
However, by using more vertical layers, the lever for retraction force increases,

18/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


requiring a higher momentum from the spring. This may result in the need for a
larger spring again. The designer might get stuck in a circle of increasing both reel
and spring. By jumping back and forth from the QoIs to the DVs, this traditional
approach can lead to unnecessary effort in the design process. The ADG a priori
eliminates circular dependencies by breaking down the requirements on the QoIs
to the DVs. That allows us to determine designs that simultaneously fulfil all
requirements without unnecessary loops during the design process.

5.2. Vehicle dynamics design

Figure 8 shows the ADG for an industry project on vehicle dynamics design. Due to
nondisclosure reasons, some of the content is redacted. This example illustrates
how an ADG helps to structure and organise many dependencies of a complex
system. It is structured according to the abstraction levels of the V-model: it starts
from customer-related attributes on the top level and ends with the attributes of
components on the bottom level. For better visualisation, a zoomed-out ADG is
shown. The grey boxes contain groups of attributes which belong to a certain
cluster, such as axle bearings containing different bearing stiffnesses (component
level) or cornering characteristics containing eigenfrequencies and max. lateral
accelerations (vehicle (subjective) level). This was done to provide a better over-
view than a fully expanded ADG with all attributes and dependencies visualised.
The detailed information does not get lost and the overall dependencies are still
valid. If users want a detailed view, they can zoom in and expand the grey boxes to
ADGs themselves.

On the top of Figure 8, we can also see that the designers have highlighted some
clusters of attributes to indicate their affiliation to a specific system, such as
suspension. Additional disciplines, such as durability, acoustics or crash, can
connect their ADGs with this ADG. It can be easily extended. Further attributes
can be added horizontally. The user then simply has to check whether existing
attributes contribute to the attributes added. It does not change the existing
dependencies. Describing the components in a more detailed way extends the
ADG vertically – we can go from designing subsystems to designing components.
Existing DVs might then turn into intermediate attributes as new DVs are
introduced, but the interactions of the existing attributes in the system are
preserved. This supports a holistic view and thus an overall understanding of the
system. In this example, many engineers collaborate to design this complex system.
ADGs can help to systematically store knowledge about dependencies within a
department and share it with other departments. The clear rules of an ADG can
serve as a common language for different designers. Consequently, it can enable
interdisciplinarity in complex system design.

The bottom of Figure 8 shows examples of how designers use different
quantitative models to quantify the dependencies in the ADG: multibody dynamic
simulations, a formula-based 2-track model, or a response surface approximation
as a surrogate model. Even the driver can be modelled according to this logic if the
necessary data is available. Furthermore, missing models can be identified easily.
The ADG lists all attributes which need to be modelled. This supports quantitative
system design. Missing models can be identified, as every edge needs to be
expressed by a model. Furthermore, complex dependencies from the bottom to
the top can be traced and visualised. This helps designers to identify how a change

19/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


on the component level can influence the system level. This can provide transpar-
ency during the design of a complex system.

6. Discussion, summary and outlook

6.1. Discussion

This section discusses the limitations of ADGs, the modelling of cyclic dependen-
cies, and the characteristics of ADGs.

Limitations
ADGs have limitations similar to many other modelling techniques in technical
product development, without tool support it is difficult to handle large amounts of

TTirres

SSprprrrrS riiingsgsgsgs / damperepereeee s

AAAAAAAAAArrrrrrrcccchitttteeecccctttturuuureeeeeeeeeeeee
ppppaaaararararameeetersrss

Steering Cornering Dynamic behavior Ride comfort

Crash

Acoustics

Strength

Subsubsystem

Suspension
Tires

Springs / dampers

Architecture
parameters

Steering Cornering Dynamic behavior Ride comfort

Vehicle
(objective)

Vehicle
(subjective)

Subsystem

Component

Crash

Acoustics

Strength

Surrogate 2: 
Response 

surface

Surrogate 1: 
2-track 
model

Multi-body
dynamics

Driver

Subsubsystem

Vehicle
(objective)

Vehicle
(subjective)

Subsystem

Component

Courtesy of BMW

Figure 8. Attribute dependency graph (ADG) for vehicle dynamics design; top:
assignment of attributes to components; bottom: assignment of attributes to quan-
titative models.

20/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


information. This is especially crucial for largeADGs of complex systems. They can
become confusing due to the high number of nodes and edges crossing each other.
Ideally, the tool used has the following features: (a) automatic graph creation based
on input data (e.g., adjacency matrix), (b) path visualisation: highlighting all
attributes which are connected to a selected attribute, (c) automatic reordering
of attributes such that intersections between edges are minimised and,
(d) capability to zoom in and out (grouping nodes and edges in black boxes).

Unless the designers applying this method have the necessary in-depth edu-
cation and training, models cannot practically fulfil their purposes of providing an
explanation and overview (Tomiyama et al. 2013). Designers need to learn and
understand the rules of an ADGbefore applying them. This obstacle may hinder its
application.

ADGs require an understanding of the system at hand. Users need to under-
stand the underlying physical effects in order to model the dependencies correctly.
It does not provide a framework to check whether or not drawn links are correct.
This can lead to ADGs that do not comply with the rules or have incorrect cause-
and-effect chains. For the most part, formulas or simulation provide sufficient
knowledge, but in some instances, empirical data from tests might be needed. In
this case, themethodology developed by Pearl &Mackenzie (2019)might be useful.
It uses stochastic methods to determine whether there are causal dependencies
between attributes. It may also provide formulas to describe the effect quantita-
tively.

ADGs provide a clear causal framework to visualise dependencies for complex
system design. The fact that circular dependencies are excluded by definition can
help to avoid unintended iterations during the design process that can arise when
engineers start the process with requirement values. They derive a point-based
design which fulfils exactly the requirement. However, technical products usually
need to fulfil many requirements from different disciplines. It is likely that this
point-based design does not fulfil all other requirements of the product. Designers
thus iterate until they find a point which fulfils all requirements. This process
consumes development time. ADGs can help to escape that vicious circle of
unintended iterations by clearly distinguishing between emerging and desired
behaviour. The ADG itself illustrates emerging behaviour. Requirements applied
to certain attributes, usually to the QoIs, represent desired behaviour. ADGs in
conjunction with SSE can help to find areas of good designs (set-based design)
subject to conflicting goals (Zimmermann et al. 2017). However, the combination
with SSE only works when attributes and dependencies can be expressed quanti-
tatively.

Cyclic dependencies
Nevertheless, there are coupled problems in complex system design. One may
argue that the proposed method cannot model feedback. This is true if we look at
the dynamic relations in technical systems. ADGs focus more on design than on
dynamic, that is, time-dependent, description of the behaviour. The prey–predator
model can illustrate the difference. The Lotka-Volterra equations can describe the
model (Lotka 1910). Figure 9 shows two graphical representations of this model.
The Index 1 describes the prey species, index 2 the predator species. N is the
population of a species, rd its death and rr its reproduction rate. In the time-

21/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


dependent model (Figure 9, left) both populations are influenced by their death
and reproduction rates. Furthermore, both populations influence each other. This
can be called feedback.

The ADG does not model those kind of feedback loops (see Figure 9, right). It
distinguishes between design variables (bottom) and QoIs (top). If we consider the
prey–predator problem as a design problem, the mean values of our populations
N1 andN2 will be interesting, as will be the characteristic curves of each population
bN1 and bN2. The coupled system model from the right side will still be used to
calculate the characteristic curves for both populations, but the perspective on the
problem is different. ADGs can provide further insights, for example, that the
average population of each species depends only on the reproduction andmortality
rates of the other species and not on its own. According to that model, the designer
could increase the death rate of the predators (e.g., through hunting) to increase the
mean population of the prey, but it would not help to increase the birth rate of the
prey species (e.g., by breeding). ADGs show how a behaviour can be influenced
rather than the time-dependent behaviour itself. It simplifies the problem by
distinguishing between controllable and uncontrollable attributes. However,
ADGs do not model circular dependencies. The model of the time-dependent
behaviour is not a focus. This may increase the understanding of the overall system
at the expense of less knowledge about the dynamic relations within the system.

When modelling dependencies, designers usually do not distinguish between
controllable and uncontrollable attributes. They rather say components or attri-
butes influence each other. This general influence can be modelled with design
structurematrices (DSMs). The term dependency is typically not defined and often
subject to the user’s choice.

In the following example, the connection between ADGs and DSMs will be
explained for two components that both influence the system behaviour. A ‘1’ in
the DSMmeans, following Luo (2015), that a change of this component affects the
functional performance or the value of the corresponding component, “indicating
the requirement for co-redesign or change propagation”. Figure 10 shows the
corresponding DSMs of the models from Figure 9.

First, we define the components C1 and C2 as consisting of all attributes
describing the prey and predator species, respectively. The DSM based on the
coupled model has only entries with values one, as all components influence each
other and are fully coupled.

To build a DSM that models an ADG we first set up its DMM. The DMM
contains information on how the components are linked to the QoIs. To derive

Figure 9. Prey–predator model according to the Lotka-Volterra equations (Lotka
1910). Left: Dynamic, coupled system behaviour. Right: ADG.

22/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


the corresponding DSM we multiply the matrix by its inverse. Now the
components are linked with each other via the QoIs. This DSM is also fully
coupled. This represents what designers often call dependency. In the language
of ADGs, it means two or more components affect the same QoI. So if one
component is changed, that is, its design variable values are changed, it may be
necessary to change another component as well to get again a certain system
behaviour, represented by the QoIs. The numbers in this DSM indicate how
many QoIs the components jointly contribute to. For example, components C1
and C2 contribute jointly to bN1 and bN2. Thus, it has the entry ‘2’. So assuming
that a component is dependent on another component if both contribute to the
same QoI, we can transfer the ADG to the more commonly used DSM and
show that ADGs are not limited to systems without circular dependencies. The
presented approach does not model dependency cycles that are often con-
sidered in change propagation. This requires a change in mindset and makes
the creation of an ADG nonintuitive. This is an obstacle in the application
of ADGs.

In contrast to ADGs, DSMs cause cycles because they do not distinguish
between what is realised (bottom-up) and what is required (top-down view in
ADG). Similarly, time-dependent input and output signals that can be cyclic, for
example, between components of dynamical systems, are not considered in ADGs.
Therefore, ADGs model only the result of time-dependent behaviour, however,
they do not solve time-dependency explicitly.

Clear rules guide the creation of ADGs. They represent the grammar of a
language. Designers can use this language to communicate their ideas and know-
ledge with each other. In general, designers often have different concepts of
dependency in mind, which impedes a common representation of knowledge.
The structure and universality of ADGs can serve as a foundation for a knowledge
database in companies. Designers can express their knowledge and connect it with
those of other designers through ADGs. With this approach, a holistic view of the
dependencies is realised step by step, including the experts’ knowledge of the
subsystems and components.

DSM Design structure matrix 

(Components –
Components)

DMM Domain mapping matrix

(Components –
Quantities of Interest)

DSM 
(Components –
Components)

Based on coupled model Based on ADG

Figure 10. Design structure matrices based on Figure 9. Left: Dynamic, coupled
system behaviour. Right: ADG.

23/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


Characteristics of ADGs
In the following, we discuss the fulfilment of the requirements described in the
introduction. This article shows three applications of ADGs for engineering
design problems: joint design, water hose box design and vehicle dynamics design.

ADGs are able to avoid circular dependencies. There are only dependencies
allowed from the level of DVs to the level of QoIs. This allows the creation of a
dependency structure without circles. However, coupled dependencies exist in
complex systems. ADGs do not represent them. This may lead to confusion and
necessitates a change in mindset. However, when subsequently quantifying the
dependencies coupled models can be used without restrictions. The requirement is
fulfilled, but its representation is not always intuitive. Thismakes it difficult for new
users to apply the method.

ADGs can offer a clear cause and effect structure. The flow of information is
bottom-up and the graph is a polyhierarchy. Accordingly, the connections between
causes at the bottom and effects to occur at the top are explicit. It helps the designer
to better understand the degrees of freedom, that is, which attributes can be
controlled. It also fosters an understanding of which attributes a change will affect.
However, building this structure according to the rules requires training. Other-
wise, the user will not be able to build an ADG. Although ADGs should be unique,
sometimes there may be more than one solution to a problem, for example, in the
case of tolerance chains. In tolerance chains, it is difficult to determine which
length is there ‘first’ and which one influences the other. For problems like this, the
ADG cannot provide a clear cause and effect structure and is subject to interpret-
ation.

ADGs should not only provide a clear structure but also support quantitative
modelling. Due to the unique bottom-up structure, quantitative models can be
made of the form y¼ f xð Þ, where x are the attributes on a lower level and y the ones
on a higher level. It can contain physical attributes and thus represent a physical
model, which helps to build quantitative models uponADGs and vice versa. This is
especially helpful when the quantitative model is not known a priori. ADGs
provide a perfect basis for neural networks. The user can directly identify the
attributes a neural network needs to fill the gap in the overall system model. The
user can plan suitable simulations or experiments efficiently. On the other hand,
knowledge about the system at hand is necessary. A user without sufficient
knowledge of the (technical) dependencies of the system cannot build an ADG.
If a quantitative model is already available, using an ADG can help to explain the
scope, setup, and used attributes to people who are not familiar with the model.
This can simplify collaboration and knowledge sharing. Note that there are no
restrictions on the type of bottom-up mappings: They can be high-dimensional
and nonlinear. They only need to have a required input and output.

With this structure, ADGs also enable SSE, which requires a circular-free and
unique bottom-upmapping (Zimmermann et al. 2017). The ADG visualises which
design attributes the user can use to change the system behaviour. With the
application of SSE, a user does not need to make any assumptions. All design
variables are varied simultaneously and the set of good designs, which fulfil all
requirements, is calculated.

These so-called solution spaces break down requirements from a system to a
component level. Zimmermann et al. (2017) focus on the calculation of these
solution spaces based on simulations. Several publications elaborate on that (see

24/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


Section 2.2). However, there is no publication yet, which describes the dependency
structure which is the basis for the solution space approach. This cause and effect-
based dependency modelling is often not intuitive and challenging for users.
Zimmermann et al. (2017) provide no explanations, rules or guidelines on how
to model those dependencies. They are an essential contribution of this article.

A user can zoom in and out without losing information. This helps to discuss
and communicate the design problem for different levels of complexity. ADGs can
be abstracted or even collapsed to the attributes themselves. The overall depend-
ency structure is obtained but is no longer displayed in such detail. In order to
maintain all information when zooming out, adequate tool support is needed.
Otherwise, a usermust create separate ADGs and the benefit of zooming in and out
is marginalised. To date, there is no such software available for free. This also
hinders a wide application of themethod. Furthermore, symbols often describe the
nodes. This makes the use of a legend necessary for more complex systems, since
some users may not know the meaning of the symbols. When grouping parts of an
ADG together, the user has to give names to the new nodes. This requires an action
on the user’s side.

Different users can extend ADGs. They can add new components and subsys-
tems by adding their attributes and connect them to the existing ones. But to stay
consistent they have to stick to the nomenclature of the existing attributes. This can
be difficult in large complex systems and definitely requires tool support and the
description of existing variables. The larger the system, the more time-consuming
the activity of identifying existing attributes will be. Nevertheless, it is essential for
the ADG to provide complete cause and effect structures. At present, there is no
free tool available to support the user in extending ADGs. Intelligent algorithms
may be a great help to identify attributes ‘that belong together’.

6.2. Summary

This article presents an approach to model systems in the context of design. We
regard design as assigning values to design variables such that the emerging system
behaviour fulfils all requirements. ADGs support this design process by providing a
dependency structure without cycles. The nodes of the ADG are attributes. The
following attributes constitute the ADG: design variables (DVs) and design
parameters form the bottom of the ADG; quantities of interest (QoIs) are at the
very top. In most systems, there are intermediate attributes in between. The
attributes are connected via directed edges, displayed as arrows. Edges can only
point from attributes on a lower level to attributes on an upper level (bottom-up).
These edges represent dependencies. We regard dependencies as causal link
between attributes. Values of attributes on a lower level determine values of
attributes on an upper level: as soon as a designer assigns values to design variables
on a lower level, the values for the attributes on the upper level emerge. Design
variables are controllable attributes in contrast to the noncontrollable QoIs. In this
case, an ADG shows which attributes actually influence the system behaviour in a
causal way. They help to distinguish between desired behaviour (requirements)
and actual behaviour. Controllable attributes are always assigned values before
noncontrollable attributes. Furthermore, a designer can zoom in and out according
to the level of detail needed. Due to the structure of a polyhierarchy, no information
is lost. The ADG can be extended during the design process: horizontally to add

25/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


more disciplines; vertically to dive deeper into the component design. ADGs are
the language of SSE (Zimmermann et al. 2017).

In SSE, quantitative models connect the design variables with the QoIs
(bottom-up). Each edge of the ADG needs to be quantified by a formula. Require-
ments are imposed on the QoIs. They divide the designs according to their
emerging system behaviour: good designs fulfil all requirements; bad design violate
at least one of them. Sampling generates the designs randomly. It samples over all
controllable attributes, that is, the design variables that the designer can control. All
design variables are considered and varied simultaneously, and thus no assump-
tions are needed. As there are no circular dependencies, requirements can be
broken down to the level of design variables explicitly and independently (top-
down). ADGs support designers with a clear, causal and effective language to
describe design problems. ADGs, therefore, provide transparency of the depend-
ency structure and avoid circular dependencies. This can reduce iterations and
save development time.

The main properties of ADGs are:

1. They build a basis for efficient design by avoiding confusion about cause-effect
dependencies and thus eliminating circular dependencies.

2. They help to document (and thereby understand) what can be controlled
directly in a complex design problem and what cannot be controlled.

3. They show whether or not an attribute influences a quantity of interest. This
supports quantitative modelling and packaging streams of influence.

4. An ADG is a polyhierarchy. It is useful when design problems have to be
discussed on different levels of detail. Designers can always zoom in and out of
the relevant level of abstraction without getting stuck in a circular dependency.

5. They enable an assumption-free design. Design variables are clearly separated
from requirements. Desired behaviour does not influence emergent behaviour.
As a result, solutions are not sorted out a priori by setting assumptions on
unknown attributes.

6. They can easily be extended horizontally and vertically. Horizontal extension
incorporates more aspects of a system (possibly making the problem more
complex). Vertical extension increases the in-depth level (possibly making the
problem more complicated).

This article uses three examples to illustrate the application of ADGs in
ascending complexity: joint design, design of a garden hose box, and vehicle
dynamics design.

6.3. Outlook

Graphs similar to ADGs have already been used in some applications, for example,
by Münster et al. (2014), Wimmler et al. (2015), Zare et al. (2017), Korus et al.
(2019), and Krischer & Zimmermann (2021). However, a systematic comparison
of a design process with and without ADGs has not been conducted yet. Therefore,
success criteria need to be defined and the influence of other factors needs to be
considered. Pearl &Mackenzie (2019) provide a methodology which could help to
extract the effect of ADGs on the result among ‘confounders’. These are attributes
which can also influence the result of an experiment in an undesired way.

26/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


Furthermore, ADGs are still rarely used in engineering practice. Further
applications can help (a) to show the benefits and limitations of this modelling
and (b) to raise the level of awareness. New applications also challenge the rules of
ADGs. For instance, modelling dependencies of tolerances is very challenging
according to the rules of an ADG. All lengths can be measured simultaneously.
There is no causal way how two lengths can determine a third one. Pushing the
limits of ADGs by application is part of current research. Developing an open-
source tool to support the creation and maintenance of ADGs would be helpful.

Sarica & Luo (2019) present an approach to classify components according to
their levels of susceptibility and influence using DSMs as an input. There are four
categories: constants (low influence, low susceptibility), absorbers (low influence,
high susceptibility), multipliers (high influence, low susceptibility), and carriers
(high influence, high susceptibility). The authors deduce design rules for the
different types, for example, multipliers and carriers should be designed to be
flexible to redesign; absorbers and carriers should be designed to be robust to
external changes. This approach could use DSMs derived from ADGs as an input
(see Figure 10) and provide design rules for assigning design variable values
using SSE.

Financial support
This research received no specific grant from any funding agency, commercial, or
not-for-profit sectors.

References
Bossel, H. 1992 Modellbildung und Simulation: Konzepte, Verfahren und Modelle zum

Verhalten Dynamischer Systeme; Ein Lehr- und Arbeitsbuch. Vieweg.

Chen, W., Heydari, B.,Maier, A. M. & Panchal, J. H. 2018 Network-based modeling and
analysis in design. Design Science 4, 16.

Diestel, R. 2006 Graph Theory, Vol. 173 of Graduate Texts in Mathematics (3rd ed.).
Springer.

Eichstetter, M.,Müller, S. & Zimmermann, M. 2015 Product family design with solution
spaces. Journal of Mechanical Design 137 (12), 121401.

Eiselt, T., Zickner, H., Schuldt, J., Gröger, S. & Weidlich, D. 2013 Interdisciplinary
product development - virtual reality application in FMEA. Industrial and Systems
Engineering Review 1 (1), 59–67.

Eppinger, S. D.&Browning, T. R. 2012Design StructureMatrixMethods andApplications.
MIT Press.

Gero, J. S. 1990 Design prototypes: a knowledge representation schema for design. AI
Magazine 11 (4), 26.

Hatchuel, A. &Weil, B. 2003 A new approach of innovative design: an introduction to CK
theory. In Proceedings of ICED 03, the 14th International Conference on Engineering
Design, Stockholm, pp. 1–15. Design Society.

Hatchuel, A. & Weil, B. 2009 C-K design theory: an advanced formulation. Research in
Engineering Design 19 (4), 181–192.

Jiao, J. R., Simpson, T. W. & Siddique, Z. 2007 Product family design and platform-based
product development: a state-of-the-art review. Journal of Intelligent Manufacturing 18
(1), 5–29.

27/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


Kim, H. M., Michelena, N. F., Papalambros, P. Y. & Jiang, T. 2003 Target cascading in
optimal system design. Journal of Mechanical Design 125 (3), 474–480.

Korus, J.-D., Karg, P., Ramos, P. G., Schütz, C., Zimmermann, M. & Müller, S. 2019
Robust design of a complex, perturbed lateral control system for automated driving.
IFAC-PapersOnLine 52 (8), 1–6.

Kreimeyer, M. F. 2009 A structural measurement system for engineering design processes.
PhD Thesis, Technische Universität München.

Krischer, L. & Zimmermann, M. 2021 Decomposition and optimization of linear struc-
tures using meta models. Structural and Multidisciplinary Optimization 64 (4),
2393–2407.

Lambe, A. B. & Martins, J. R. 2012 Extensions to the design structure matrix for the
description of multidisciplinary design, analysis, and optimization processes. Structural
and Multidisciplinary Optimization 46 (2), 273–284.

Lindemann, U., Maurer, M. & Braun, T. 2008 Structural Complexity Management: An
Approach for the Field of Product Design. Springer Science & Business Media.

Lotka, A. J. 1910 Contribution to the theory of periodic reactions. The Journal of Physical
Chemistry 14 (3), 271–274.

Luft, T. & Wartzack, S. 2016 Application, evaluation and future research potential of the
matrix and graph based product model. In Proceedings of the DESIGN 2016 14th
International Design Conference, pp. 351–360. Design Society.

Luo, J. 2015 A simulation-based method to evaluate the impact of product architecture on
product evolvability. Research in Engineering Design 26 (4), 355–371.

Mackie, J. L. 1965 Causes and conditions.American Philosophical Quarterly 2 (4), 245–264.

Münster,M., Lehner,M.&Rixen, D. 2014Vehicle steering design using solution spaces for
decoupled dynamical subsystems. In Proceedings of ISMA 2014 International Confer-
ence on Noise and Vibration Engineering, USD 2014 International Conference on
Uncertainty in Structural Dynamics (ed. P. Sas). KU Leuven Dep. Werktuigkunde.

Murphy, K. P. 2012 Machine Learning: A Probabilistic Perspective. MIT Press.

Ouertani, M.-Z. 2008 Supporting conflict management in collaborative design: an
approach to assess engineering change impacts. Computers in Industry 59 (9), 882–893.

Oyetoyan, T. D., Falleri, J.-R., Dietrich, J. & Jezek, K. 2015 Circular dependencies and
change-proneness: an empirical study. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), pp. 241–250. IEEE.

Papalambros, P. Y. & Wilde, D. J. 2017 Principles of Optimal Design: Modeling and
Computation (3rd ed.). Cambridge University Press.

Pearl, J. 1995 Causal diagrams for empirical research. Biometrika 82 (4), 669–688.

Pearl, J. & Mackenzie, D. 2019 The Book of Why: The New Science of Cause and Effect.
Penguin Books.

Rötzer, S., Berger, V. & Zimmermann, M. 2022 Cost optimization of product families
using solution spaces: application to early-stage electric vehicle design. Proceedings of
the Design Society 2, 583–592.

Rötzer, S., Rostan, N., Steger, H. C., Vogel-Heuser, B. & Zimmermann, M. 2020
Sequencing of information in modular model-based systems design. In Proceedings of
the 22nd International DSM Conference (DSM 2020). MIT Press.

Rötzer, S., Thoma, D. & Zimmermann, M. 2020 Cost optimization of product families
using solution spaces. In Proceedings of the Design Society: DESIGN Conference,
pp. 1087–1094. Design Society.

Sarica, S.& Luo, J. 2019 An infinite regress model of design change propagation in complex
systems. IEEE Systems Journal 13 (4), 3610–3618.

28/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20


Schweigert, S., Luft, T.,Wartzack, S.& Lindemann, U. 2017 Combination ofmatrix-based
and graph-based modeling for product and organizational structures. In Proceedings of
the 19th International DSM Conference. Design Society.

Schweigert-Recksiek, S. & Lindemann, U. 2018 Improvement opportunities for the
collaboration of design and simulation departments-an interview study. In DS 92:
Proceedings of the DESIGN 2018 15th International Design Conference, pp. 905–916.
Design Society.

Steward, D. V. 1981 The design structure system: a method for managing the design of
complex systems. IEEE Transactions on Engineering Management EM-28 (3), 71–74.

Suh,N. P. 2010The Principles of Design, Vol. 6 of Oxford Series onAdvancedManufacturing.
Oxford University Press.

Tomiyama, T., van Beek, T. J., Cabrera, A. A. A., Komoto, H. & D’Amelio, V. 2013
Making function modeling practically usable. Ai Edam 27 (3), 301–309.

Weber, C. 2014Modelling products and product development based on characteristics and
properties. In An Anthology of Theories and Models of Design: Philosophy, Approaches
and Empirical Explorations (ed. A. Chakrabarti & L. T. M. Blessing), pp. 327–352.
Springer.

Weilkiens, T. 2008 Systems Engineering with SysML/UML: Modeling, Analysis, Design (1st
ed.). OMG Press.

Wimmler, J., Schramm, D., Wahle, M. & Zimmermann, M. 2015 Concurrent design of
vehicle tires and axles. In 6th International Munich Chassis Symposium 2015, Proceed-
ings (ed. P. Pfeffer), pp. 839–851. Springer Fachmedien Wiesbaden.

Wöhr, F., Königs, S., Ring, P. & Zimmermann, M. 2020 A role-activity-product model to
simulate distributed design processes. In DS 103: Proceedings of the 22nd International
DSMConference (DSM2020),MIT, Cambridge,Massachusetts, October 13th–15th 2020,
p. 10. The Design Society.

Zare, A.,Michels, K., Rath-Maia, L. & Zimmermann, M. 2017 On the design of actuators
and control systems in early development stages. In 8th International Munich Chassis
Symposium 2017, Proceedings (ed. P. E. Pfeffer), pp. 337–352. Springer Fachmedien
Wiesbaden.

Zimmermann, M., Königs, S., Niemeyer, C., Fender, J., Zeherbauer, C., Vitale, R. &
Wahle, M. 2017 On the design of large systems subject to uncertainty. Journal of
Engineering Design 28 (4), 233–254.

29/29

https://doi.org/10.1017/dsj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2022.20

	Attribute dependency graphs: modelling cause and effect in systems design
	1. Introduction
	2. Related research
	2.1. Product and process modelling
	2.2. Previous work related to ADGs

	3. Introductory example: joint design
	3.1. Modelling the design problem
	3.2. Solving the design problems

	4. The method
	4.1. When to apply this method
	4.2. Classification in graph theory
	4.3. Terms and definitions
	4.4. Procedure model for building ADGs

	5. Examples
	5.1. Garden hose box design
	5.2. Vehicle dynamics design

	6. Discussion, summary and outlook
	6.1. Discussion
	Limitations
	Cyclic dependencies
	Characteristics of ADGs

	6.2. Summary
	6.3. Outlook

	Financial support
	References


