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Abstract

Many polyvariant program analyses have been studied in the 1990s, including k-CFA, poly-

morphic splitting, and the cartesian product algorithm. The idea of polyvariance is to analyze

functions more than once and thereby obtain better precision for each call site. In this paper

we present an equivalence theorem which relates a co-inductively-defined family of polyvari-

ant flow analyses and a standard type system. The proof embodies a way of understanding

polyvariant flow information in terms of union and intersection types, and, conversely, a way

of understanding union and intersection types in terms of polyvariant flow information. We

use the theorem as basis for a new flow-type system in the spirit of the λCIL-calculus of Wells,

Dimock, Muller and Turbak, in which types are annotated with flow information. A flow-type

system is useful as an interface between a flow-analysis algorithm and a program optimizer.

Derived systematically via our equivalence theorem, our flow-type system should be a good

interface to the family of polyvariant analyses that we study.

Capsule Review

Connections between monovariant flow analyses and type systems are well known. This paper

presents the first formal connection between polyvariant flow analyses and a type system with

intersection and union types. Intuitively, intersection types model the analysis of functions in

multiple contexts, while union types model sets of abstract closures.

The paper introduces F-analyses, a novel flow framework that can express flow analyses

with argument-based polyvariance, such as Agesen’s cartesian product analysis and the

polyvariant analysis of Schmidt, as well as the monovariant 0-CFA analysis. The key result of

the paper is that a program is safety checkable in an F-analysis if and only if it is typable with

intersection and union types. The correspondence is given by translations between F-analyses

and type derivations.

The results presented here are especially important in the context of type-directed compi-

lation, where it is desirable to encode the results of static analyses in the type system of a

typed intermediate language. The paper concludes with the design of a flow-type system that

can be used as the basis of a typed intermediate language.

ã A preliminary version of this paper appeared in the Proceedings of POPL’98: 25th Annual SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 197–208, San Diego, CA, January
1998.
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1 Introduction

1.1 Background

Flow analysis of higher-order programs is done for a variety of reasons, including:

closure conversion (Wand and Steckler, 1994), binding-time analysis (Bondorf, 1991),

optimizing strict functional programs (Jagannathan and Wright, 1995), optimizing

non-strict functional programs (Faxén, 1995), optimizing object-oriented programs

(Pande and Ryder, 1996), optimizing concurrent programs (Plevyak et al., 1995),

safety checking (Graver and Johnson, 1990; Palsberg and Schwartzbach, 1995), and

detecting uncaught exceptions (Yi, 1994). A basic, often-seen form of flow analyses

can be done in O(n3) time where n is the size of the program. This so-called

monovariant form of analysis can be varied in minor ways without changing the

time complexity (Heintze and McAllester, 1997b), and for simplicity we will refer

to all of these variations as 0-CFA. (CFA is an abbreviation introduced by Shivers

(1991); it stands for ‘control-flow analysis’.) A common observation is that 0-CFA is

sometimes rather imprecise, resulting in, for example, little or no optimization. The

key property of 0-CFA is that each function is analyzed just once (or not at all, if

the analysis is demand-driven).

The idea of polyvariance is to analyze functions more than once and thereby ob-

tain better precision for each call site. Polyvariant analysis was pioneered by Sharir

and Pnueli (1981), and Jones and Muchnick (1982). In the 1990s the study of poly-

variant analysis has been intensive. Well known are the k-CFA of Shivers (1991), the

poly-k-CFA of Jagannathan and Weeks (1995), the polymorphic splitting of Jagan-

nathan and Wright (1995), and the cartesian product algorithm of Agesen (1995a;

1995b). A particularly simple polyvariant analysis was presented by Schmidt (1995).

Frameworks for defining polyvariant analyses have been presented by Stefanescu

and Zhou (1994), Jagannathan and Weeks (1995), and Nielson and Nielson (1997).

Successful applications of polyvariant analysis include the optimizing compilers of

Emami, Ghiya, and Hendren (1994), Grove, DeFouw, Dean, and Chambers (1997),

the partial evaluator of Consel (1993), and the application extractor of Agesen and

Ungar (1994).

Is polyvariance related to polymorphism? This question is becoming increasingly

important for the many recent efforts to integrate flow analysis and type systems,

as pioneered by Tang and Jouvelot (1994), Heintze (1995), Banerjee (1997), and

Wells, Dimock, Muller and Turbak (1997; 1997; 1997). This line of work builds on

earlier ideas on integrating strictness information and type systems, as first done

by Kuo and Mishra (1989) and later by Wright (1991), Amtoft (1993), and others.

Benefits of integrating flow analysis and type systems may include: easy correctness

proofs (Heintze, 1995), faster flow analysis without sacrificing precision (Heintze

and McAllester, 1997a), a definition of a both sound and complete flow analysis

(Mossin, 1997), and a simplified compiler structure (Wells et al., 1997). Intuitively,

polyvariant analysis is closer to intersection types (Coppo et al., 1980; Hindley,

1991; Jim, 1996b) and union types (Pierce, 1991; Barbanera et al., 1995) than to

universal and existential quantifiers (Milner, 1978), as observed by Banerjee (1997),

Wells, Dimock, Muller and Turbak (1997), and others. The insight is that
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• ‘analyzing a function a number of times’ can be modeled by an intersection

type; and

• ‘a set of abstract values’ can be modeled by a union type.

In simple cases, these effects can also be achieved via universal quantifiers, for exam-

ple, in binding-time analysis (Henglein and Mossin, 1994). In general, polyvariance

seems to be a concept distinct from universal and existential quantification. Further

results on using universal quantifiers to achieve a form of polyvariance have been

presented by Jagannathan, Wright and Weeks (1997).

Our goal is a foundation for designing and understanding combinations of flow

analyses and type systems. This leads us to the following question:

Question: How does flow analysis relate to type systems?

Let us first examine the key differences between flow analyses and type systems.

Both may be understood as abstract interpretations, and the distinction between

them lies mostly in how they are usually formulated:

Type system Flow analysis

finitary may be infinitary

may analyze all code may avoid analyzing dead code

defined inductively may be defined co-inductively

may reject some programs works for all programs

A type system is usually defined using type rules. The rules inductively define

a set of valid type judgments. In the derivation of a valid type judgment for a

program, usually only finitely many types will be involved, and usually all parts of

the program will be analyzed. Moreover, for some type systems, there will be some

‘not type correct’ programs for which no valid type judgments exists. In contrast,

it has recently been argued that flow analyses can in a natural way be defined

co-inductively (Nielson and Nielson, 1997). The flow analysis of a program may

involve infinitely many abstract values, and often a form of reachability is built in

which avoids the analysis of dead code. Moreover, there will usually be valid flow

judgments for all programs.

When we attempt to relate flow analyses and type systems, we must find a way

of handling the four basic differences. In this paper we choose to do that by letting

the type systems ‘have it their way’. Following Nielson and Nielson (1997), we give

a co-inductive definition of a family of flow analyses, and then we restrict attention

to flow judgments that can be proved using finitely many abstract values, and which

analyze all parts of a program. Moreover, we enforce safety checks, e.g. checks that

the flow set for the operator part of a function application actually only contains

abstract closures, thereby making the augmented flow analysis accept and reject

programs much like a type checker. With the safety checks in place, we present a

type system which accepts exactly the safety-checkable programs. A similar agenda

has been carried out for 0-CFA by Palsberg and O’Keefe (1995), and the related type
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system turned out to be the one of Amadio and Cardelli (1993) with subtyping and

recursive types. Three more such results for restrictions of 0-CFA have later been

presented by Heintze (1995). (One of Heintze’s results was not completely correct;

see the paper by Palsberg (1998) for a correct version of that result.) The Amadio-

Cardelli type system, in turn, is equivalent to a form of constrained types (Mitchell,

1984; Mitchell, 1991; Aiken and Wimmers, 1993; Eifrig et al., 1995b; Eifrig et al.,

1995a), as shown by Palsberg and Smith (1996). In this paper, we address the above

question for a family of polyvariant flow analyses.

Let us next examine three of the main approaches to polyvariant flow analysis.

The best known approach may be that of using call-strings , that is, finite approxi-

mations of the dynamic call chain, to differentiate calling contexts. Examples of

such analyses include k-CFA (Shivers, 1991) and poly-k-CFA (Jagannathan and

Weeks, 1995). A more recent approach to polyvariant analysis is the polymorphic

splitting of Jagannathan and Wright (1995), which for a let-bound expression does

a separate analysis for each occurrence of the let-variable. Finally, the cartesian

product algorithm of Agesen (1995a; 1995b) will, for a given function, perform a

separate analysis for each possible static environment of the body.

Nielson and Nielson (1997) model the call-string and polymorphic splitting

approaches using so-called mementa (sequences of labels and expressions) and

mementa environments. We will focus on modeling the style of polyvariance of the

cartesian product algorithm. Our approach is to model a function by an abstract

closure which consists of the function and an abstract environment. The call-string-

oriented analyses, like k-CFA, cannot be expressed in our framework. In addition

to the cartesian product algorithm, our framework can also model a flow analysis

of Schmidt (1995), and as a simple case also 0-CFA.

1.2 Our family of flow analyses

Our family of polyvariant flow analyses is based on the notion of cover, as explained

in the following.

Suppose there is a call site where we want to abstractly apply a λ-abstraction

λx.e to a flow set s. If s ⊆ s′, then we may choose to analyze the body e in an

environment where x is bound to s′. If we make the choice s′ for all call sites, then

we effectively do just one analysis of the body e, no matter how many other call

sites there may be where λx.e can be invoked. This is the approach of 0-CFA-style

flow analysis (Palsberg, 1995), which is a form of monovariant flow analysis.

In the situation just described, binding x to s′ is a rather conservative choice.

A polyvariant analysis may choose, at a given call site, to bind x to the flow set

s for the actual argument. If we make this choice for all call sites, then we may

get to analyze the body e in a number of different environments, depending on the

number of different flow sets for the actual arguments. Notice that this number may

be less than the number of call sites where λx.e can be invoked, because two call

sites may have arguments with the same flow set. This is essentially the approach of

the relational closure analysis of Schmidt Section 12. This style of analysis was later

rediscovered by Grove et al. (1997) who called it Simple Class Sets (SCS).
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We can do a more fine-grained polyvariant analysis by breaking up the flow set

for the actual argument into singleton sets. The idea is to do an analysis of the

body e for each singleton set, and then take the union of the results. If we make

this choice for all call sites, then we may get to analyze the body e in a number of

different environments, depending on the number of different values in the flow sets

for the actual arguments. This is the approach of the cartesian product algorithm

of Agesen (1995a, 1995b).

To illustrate the differences among 0-CFA, Schmidt’s analysis, and Agesen’s

analysis, suppose we have a program E, abstract values a1, a2, a3, and two call sites

occurring in E. Suppose also that at each of the call sites we can invoke the λ-

abstraction λx.e, and that the flow sets for the actual arguments are {a1, a2} and

{a2, a3}, respectively. With 0-CFA, we will do just one analysis of the body e in an

environment where x is bound to {a1, a2} ∪ {a2, a3} = {a1, a2, a3}. With Schmidt’s

analysis, we will do two analyses of the body e: one where x is bound to {a1, a2}, and

one where x is bound to {a2, a3}. With Agesen’s analysis, we will do three analyses

of the body e: one where x is bound to {a1}, one where x is bound to {a2}, and one

where x is bound to {a3}.
In section 4, we describe a family of polyvariant flow analyses which subsumes

all of the above. The idea is that at a given call site, we will for each function that

can be invoked choose a cover of the flow set for the actual argument, see figure 1.

A cover is a set of abstract-value sets. The body of the function will then, at that

call site, be analyzed one time for each element of the cover. The analysis result

for the call site is the union of the results for the individual analyses. We can now

summarize the ideas of 0-CFA, Schmidt’s analysis, and Agesen’s analysis in terms

of how they cover the flow set for an actual argument:

• 0-CFA. For a given function, the cover consists of a single set, see the illus-

tration in figure 2. That set depends upon which function we consider. For a

given function, the set is the union of the flow sets for the actual arguments

at the call sites where the function can be applied.

• Schmidt’s analysis. The cover of a set of abstract values s is {s}, see the

illustration in Figure 3.

• Agesen’s analysis. The cover of a set of abstract values s is { {a} | a ∈ s }, see

the illustration in figure 4. Notice that if s = ∅, then the cover is ∅.
We will define the family of flow analyses such that covers can be chosen indepen-

dently at different call sites. Thus, we do not require a uniform covering strategy.

This means that our definition captures adaptive styles of flow analysis, in the spirit

of Plevyak et al. (1995), where the degree of polyvariance is determined during the

analysis.

Given a program E, we will define a function F which maps sets of flow judgments

to sets of flow judgments. The set of valid flow judgments is then defined to be the

greatest fixed point of F , and an F-analysis of E is defined to be a prefixed point R

of F (that is, R ⊆ F(R)) which contains a flow judgment for E. Among the analyses

captured in this way are those of Agesen, Schmidt, and as a simple case also 0-CFA.

This yields the first formalization of an analysis in the style of Agesen.
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flow set for e2

e1 e2

a cover

consisting

of four sets

Fig. 1. Cover the argument!

flow set for e2

e1 e2

Fig. 2. 0-CFA.

flow set for e2

e1 e2

a one-set

cover

Fig. 3. Schmidt’s analysis.

flow set for e2

e1 e2

Fig. 4. Agesen’s analysis.

One of the advantages of our definition is that it is flexible enough to accommodate

changes to the covering strategy. For example, Agesen in his thesis (1995b) begins

with explaining that his covering strategy is to use singleton sets. Later, he observes

that this leads to an uncomputable analysis, and then he modifies the covering

strategy to make the analysis computable. Our definition of an F-analysis is free

from algorithmic concerns. In general, the set of valid flow judgments for a program

is not decidable.
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1.3 Our result

We present an equivalence theorem which relates a co-inductively-defined family of

polyvariant flow analyses and a standard type system. The proof embodies a way

of understanding polyvariant flow information in terms of union and intersection

types, and conversely, a way of understanding union and intersection types in terms

of polyvariant flow information. We use the theorem as basis for a new flow-type

system in the spirit of the λCIL-calculus of Wells, Dimock, Muller and Turbak, in

which types are annotated with flow information. A flow-type system is useful as

an interface between a flow-analysis algorithm and a program optimizer. Derived

systematically via our equivalence theorem, our flow-type system should be a good

interface to the family of polyvariant analyses that we study.

Specifically, we prove that a program can be safety-checked by an analysis which

is finitary (uses finitely many abstract values) and analyzes all parts of the program

if and only if the program can be typed in a type system with intersection types,

union types, subtyping, and recursive types.

To map flows to types, we (1) extract an equation system from the flow information,

(2) solve the equation system, and (3) build a type derivation. The condition that the

employed set of abstract values is finite ensures that the equation system is finite.

We map types to flows in a similar way.

In slogan form, our result reads:

Polyvariance = Intersection Types + Union Types + Subtyping + Recursive Types.

The slogan should be taken with a grain of salt: our notion of polyvariance only

covers some of the known approaches to polyvariance.

1.4 On proving correctness

We will define a language and equip it with a type system, a family of flow analyses,

and a combined flow-type system. In this section we will discuss our choice of

semantics for the language and its impact on proofs of correctness.

For each of (1) type systems, (2) flow analyses, and (3) flow-type systems it is of

interest to prove type/flow preservation, that is, type/flow information is still valid

after a number of computation steps. Moreover, for type systems and flow-type

systems we want to establish type soundness, that is, a typable program cannot go

wrong. For a flow analysis, we want to establish flow soundness, e.g. if a program

evaluates to a function, then that function is represented in the flow information for

the program. Usually, type/flow preservation can be used as a lemma for proving

type/flow soundness.

When attempting to prove the listed properties, the key question is: what is

the style of semantics for the language? We will discuss three of the possible

choices: (1) small-step operational semantics with syntactic substitution, (2) small-

step operational semantics with environments, and (3) big-step operational semantics

with environments.
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Small-step operational semantics with syntactic substitution. This is the style of sem-

antics used in, for example, Barendregt (1981). It is convenient for proving type

preservation and type soundness, both for type systems and flow-type systems, as will

be exemplified in sections 3 and 7. It has also been used to prove flow preservation

for a 0-CFA-style flow analysis (Palsberg, 1995). Unfortunately, it is problematic

to use this style of semantics to prove flow preservation for the polyvariant flow

analysis we study here. As will be exemplified in section 4, our family of flow

analyses does not have the flow preservation property with respect to a standard

small-step semantics with syntactic substitution. We know of no way of changing

the definition of the polyvariant flow analysis such that flow preservation can be

proved with respect to this style of semantics.

Small-step operational semantics with environments. This is also known as Plotkin-

style operational semantics (Plotkin, 1981). It has been used by Nielson and Nielson

(1997) to prove flow preservation for a parameterized polyvariant flow analysis. Can

this style of semantics also be used to prove flow preservation for our analysis? We

think the answer may be ‘yes’, but we have not pursued it. The reason is that it

seems problematic to use this style of semantics to prove type preservation for our

type system.

Big-step operational semantics with environments. This is also known as natural sem-

antics (Kahn, 1987; Despeyroux, 1986). In contrast to the two styles of semantics

discussed above, it cannot handle nonterminating programs. It has been used by

Palsberg and Schwartzbach (1995) and by Schmidt (1995) to prove correctness

theorems for some flow analyses. Milner and Tofte (1991) showed how to use it to

prove type soundness for a type system. Their proof uses co-induction. We have

not tried to use this style of semantics because we want to be able to handle

nonterminating programs.

In summary, each of the three styles of semantics are problematic for our purposes.

One alternative approach would be to have two semantics, and then (1) use one

semantics for proving type preservation, (2) use another semantics for proving flow

preservation, and (3) prove that the two semantics agree. Although this may be

doable, we will not pursue it here.

We have chosen to use a small-step operational semantics with syntactic sub-

stitution. With respect to that semantics we will prove type preservation and type

soundness for the type system (section 3) and the flow-type system (section 7). For

the pure flow analysis, we will settle for a more coarse-grained and less powerful cor-

rectness result. This correctness result will be obtained via the equivalence with the

type system (section 5) in the following way. For a program which is safety-checkable

with a finitary polyvariant analysis which analyzes all parts of the program, we have

that the program is typable in our type system. Since we have type soundness for

the type system, it follows that the program cannot go wrong.
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1.5 Open problems

Among the future work and open problems are:

• Define a semantics, a type system, and a polyvariant flow analysis in such a

way that type/flow preservation and type/flow soundness all can be proved.

• Implement and experiment with the translation from flows to types.

• Provide a type inference algorithm for a large subset of our type system,

perhaps a ‘rank 2’ fragment in the spirit of Jim (1996b). Our type system with

intersection and union types is more generous than usually found in papers on

type inference with intersection types (Coppo and Giannini, 1992; van Bakel,

1991; Jim, 1996a; Banerjee, 1997).

• Prove a principal flow property for our family of flow analyses, in the spirit of

the result by Nielson and Nielson (1997).

• Extend the results to a combination of our framework and the framework of

Nielson and Nielson.

• Prove an equivalence which is based on that the flow analyses ‘have it their

way’, to as large extent as possible. For example, this entails working with a

type system which avoids type checking dead code.

• Obtain our type rules systematically using the method of Cousot (1997).

Paper outline In the remainder of this section we illustrate our result by an example.

In section 2 we define an example language, in section 3 we define our type system,

in section 4 we present our family of polyvariant flow analyses, and in section 5 we

prove our equivalence result. In section 6 we illustrate how different flow analyses

lead to different typings, and in section 7 we define our flow-type system.

1.6 Example

The running example of this paper is the following program:

E = (λf.succ ((ff)0)) (if0 c (λx.x) (λy.λz.z)).

This example is chosen because it requires a rather powerful polyvariant analysis

to produce better flow information than 0-CFA. We assume that the condition c of

the if0-expression does not cause any run-time error. If c terminates and one of the

branches is passed to λf.succ ((ff)0), then the result of (ff) will be the identity

function, and the result of evaluating the whole body will be succ 0. No run-time

errors!

Notice also that a safety check based on 0-CFA fails. The 0-CFA flow information

for the if0-expression is s = { λx.x, λy.λz.z }. The flow information for (ff) will now

contain all possible results of applying an element of s to an element of s. There are

2× 2 combinations. The result is { λx.x, λz.z, λy.λz.z }. When we then flow analyze

(ff)0, we get the flow information { Int, λz.z }. The safety check for succ ((ff)0)

requires that the flow information for the argument of succ is a subset of {Int}
so the safety check fails. This implies that the program is not typable in the type

system with subtyping and recursive types of Amadio and Cardelli (1993), using the

equivalence of Palsberg and O’Keefe (1995).
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A safety check based on Schmidt’s analysis also fails, for essentially the same

reason that a safety check based on 0-CFA fails.

The problems encountered above during type checking and safety checking are

similar. The types/flows for λx.x and λy.λz.z are combined, and later we cannot

get sufficiently precise information about the result of (ff). Agesen’s polyvariant

analysis improves the situation by enabling separate analyses of two copies of

λf.succ ((ff)0), one for each element of { λx.x, λy.λz.z }. For both copies, the safety

check succeeds, so the conclusion is that E does not cause any run-time error. In

sections 4 and 5 we give full details of applying an Agesen-style analysis to the

example program, and of mapping the flows to types. Here, we outline how the

types obtained that way do indeed yield a type derivation for the program.

The effect of polyvariant analysis can be obtained in a type system by a com-

bination of intersection types, union types, subtyping and recursive types. For the

program E,

1. we check that λx.x has some type σ, and that λy.λz.z has some type τ, and

then we get that the if0-expression has the union type (σ ∨ τ), and

2. we check that λf.succ ((ff)0) has the types σ → Int and τ→ Int, and then we

combine these types as an intersection type (σ → Int) ∧ (τ→ Int),

3. we have

(σ → Int) ∧ (τ→ Int) 6 (σ ∨ τ)→ Int,

so the standard rule for function application gives that E has type Int.

Details of how to do the first two of these steps follow. Good choices of σ and τ

are:

σ = µα.((Int→ Int) ∧ (α→ α))

τ = µβ.(β → (Int→ Int)).

These two types are not found by clever guessing; rather we first performed an

Agesen-style analysis, see section 4, and then we mapped the obtained flows to

types, see section 5. The resulting types for λx.x and λy.λz.z are σ and τ, respectively.

Notice that these recursive types satisfy the equations σ = (Int → Int) ∧ (σ → σ)

and τ = τ → (Int → Int). By type checking λx.x twice we see that it has type σ,

and by analyzing λy.λz.z just once, we see that it has type τ. Now let us type check

λf.succ ((ff)0) twice, and let us use subtyping to do that. First, we want to derive

f : σ ` ff : Int→ Int. The type derivation is:

f : σ ` f : σ

f : σ ` f : σ → σ
f : σ ` f : σ

f : σ ` ff : σ

f : σ ` ff : Int→ Int

where we have used that

σ = (Int→ Int) ∧ (σ → σ) 6 σ → σ

σ = (Int→ Int) ∧ (σ → σ) 6 Int→ Int.
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Second we want to derive f : τ ` ff : Int→ Int. The type derivation is:

f : τ ` f : τ→ (Int→ Int) f : τ ` f : τ

f : τ ` ff : Int→ Int

where we have used that τ = τ → (Int → Int). It is now straightforward to derive

∅ ` λf.succ ((ff)0) : (σ → Int) ∧ (τ→ Int). Conclusion: E is typable.

Alternative choices of σ and τ are:

σ = (Int→ Int) ∧ ((Int→ Int)→ (Int→ Int))

τ = (Int→ Int→ Int) ∧ ((Int→ Int→ Int)→ Int→ Int).

Notice that these types are not recursive. It remains open if there is a way of

mapping the flow information from the Agesen-style analysis to these types.

2 The example language

Our example language is a set of labeled λ-terms, defined by the following grammar

which is in the style of Nielson and Nielson (1997):

e ∈ Exp (labeled terms)

e ::= tl

t ∈ Term (unlabeled expressions)

t ::= x | λx.e | e1e2 | c | succ e | if0 e1 e2 e3

l ∈ Lab (infinite set of labels)

x ∈ Var (infinite set of variables)

c ∈ IntegerConstant

A program is a closed expression. Let Abs denote the set of elements of Exp of the

form (λx.e)l , and let LabelledIntegerConstant denote the set of elements of Exp of the

form cl . A value is an element of Abs ∪ LabelledIntegerConstant . We use v to range

over values. We use dce to denote the integer represented by an integer constant c.

A small-step call-by-value operational semantics for the language is given by the

reflexive, transitive closure of the relation →V :

→V ⊆ Exp × Exp

((λx.e)l1 v)l →V e[x := v] (1)

e1 →V e3

(e1e2)l →V (e3e2)l
(2)

e2 →V e4

(v e2)l →V (v e4)l
(3)

(succ cl11 )l →V c
l
2 (dc2e = dc1e+ 1) (4)

e1 →V e2

(succ e1)l →V (succ e2)l
(5)

(if0 cl1 e2 e3)l →V e2 (dce = 0) (6)
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(if0 cl1 e2 e3)l →V e3 (dce 6= 0) (7)

e1 →V e4

(if0 e1 e2 e3)l →V (if0 e4 e2 e3)l
(8)

The notation e[x := e′] denotes e with every free occurrence of x substituted by e′:

xl[x := e′] ≡ e′

yl[x := e′] ≡ yl (x 6≡ y)

(λx.e1)l[x := e′] ≡ (λx.e1)l

(λy.e1)l[x := e′] ≡ (λz.((e1[y 7→ z])[x := e′]))l (x 6≡ y and z is fresh)

(e1 e2)l[x := e′] ≡ ((e1[x := e′]) (e2[x := e′]))l

cl[x := e′] ≡ cl

(succ e1)l[x := e′] ≡ (succ (e1[x := e′]))l

(if0 e1 e2 e3)l[x := e′] ≡ (if0 (e1[x := e′]) (e2[x := e′]) (e3[x := e′]))l

where, for a fresh variable z, the notation e[y 7→ z] denotes e with every free

occurrence of y renamed to z:

yl[y 7→ z] ≡ zl

xl[y 7→ z] ≡ xl (x 6≡ y)

(λy.e1)l[y 7→ z] ≡ (λy.e1)l

(λx.e1)l[y 7→ z] ≡ (λx.(e1[y 7→ z]))l (x 6≡ y)

(e1 e2)l[y 7→ z] ≡ ((e1[y 7→ z]) (e2[y 7→ z]))l

cl[y 7→ z] ≡ cl

(succ e1)l[y 7→ z] ≡ (succ (e1[y 7→ z]))l

(if0 e1 e2 e3)l[y 7→ z] ≡ (if0 (e1[y 7→ z]) (e2[y 7→ z]) (e3[y 7→ z]))l .

It is convenient to define substitution and renaming separately because substitution

changes both the name and label of xl (the rule xl[x := e′] ≡ e′), whereas renaming

preserves the label (the rule yl[y 7→ z] ≡ zl).
Lemma 2.1

If e is closed, and e→V e
′, then e′ is closed.

Proof

This is a well-known lemma for λ-calculi where the λ-terms are unlabeled, see

(Barendregt, 1981). The proof is by induction on the structure of the derivation of

e→V e
′. We omit the details. q

An expression e is stuck if and only if it is not a value and there is no expression

e′ such that e →V e′. A program goes wrong if and only if it evaluates to a

stuck expression. Examples of stuck expressions include (cl1v)l , (succ (λx.e)l1 )l , and

(if0 (λx.e)l1 e2 e3)l . Intuitively, these expressions are stuck because c is not a function,

succ cannot be applied to functions, and λx.e is not an integer.

Notice that variables are not values, because our programs are closed expressions,

and we only allow β-reduction outside the bodies of λ-abstractions. If β-reduction
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is allowed in the body of λ-abstractions, then the operand-part of a β-redex can be

open, even though the whole program is closed. For example, in (λx.((λy.y1)2x3)4)5,

the operand-part of ((λy.y)2x3)4 is a variable. In such a setting, it would be natural

to let variables be values.

We chose to work with a call-by-value operational semantics because we can prove

that types are preserved during evaluation. It has been observed by Barbanera et

al. (1995), and also by Wells et al. (1997) that in some type systems with intersection

and union types, types are not preserved by more general notions of reduction.

3 The type system

The goal of this section is to define and prove the correctness of the type system

T61
. We will do that in two steps. First, we define a type system T6 which is

parameterized by a type ordering 6. We prove that if 6 is acceptable, then a

program typable in T6 cannot go wrong (Corollary 3.9). Secondly, we define the

type ordering 61 and prove that it is acceptable (Theorem 3.12).

3.1 Terms

Following Kozen et al. (1995), we give a general definition of (possibly infinite)

terms over an arbitrary finite ranked alphabet Σ. Such terms are essentially labeled

trees, which we represent as partial functions labeling strings over ω (the natural

numbers) with elements of Σ.

Let Σn denote the set of elements of Σ of arity n. Let ω denote the set of positive

natural numbers and let ω∗ denote the set of finite-length strings over ω.

A term over Σ is a partial function

t : ω∗ → Σ

with domain D(t) satisfying the following properties:

• D(t) is nonempty and prefix-closed;

• if t(α) ∈ Σn, then {i | αi ∈ D(t)} = {1, 2, . . . , n}.
Let t be a term and α ∈ ω∗. Define the partial function t↓α : ω∗ → Σ by

t↓α(β) = t(αβ).

If t ↓ α has nonempty domain, then it is a term, and is called the subterm of t at

position α.

A term t is said to be regular if it has only finitely many distinct subterms; i.e., if

{t↓α | α ∈ ω∗} is a finite set. Courcelle (1983) showed that t is regular if and only if

t can be described by a finite set of equations involving the µ operator.

3.2 Types

In this subsection we define a set of types, where each type is of one of the forms:∨
i∈I

∧
k∈K

(σik → σ′ik)
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(
∨
i∈I

∧
k∈K

(σik → σ′ik)) ∨ Int.

In the case of I = ∅, the first form can be simplified to ⊥, and the second form can

be simplified to Int. We will also define a notion of type equality for such types. We

use the style of definition used by Palsberg and Zhao (2000).

A type is a regular term over the ranked alphabet

Σ = {Int,⊥,→} ∪ {∧n, n > 2} ∪ {∨n, n > 2},
where Int,⊥ are nullary, → is binary, and ∨n,∧n are of n-ary.

We impose the restrictions that given a type σ and a path α, if σ(α) = ∨n, then

σ(αi) ∈ {Int,⊥,→} ∪ {∧n, n > 2}, for all i ∈ {1..n}, and if σ(α) = ∧n, then σ(αi) =→,

for all i ∈ {1..n}.
Given a type σ, if σ(ε) =→, σ(1) = σ1, and σ(2) = σ2, then we write the type

as σ1 → σ2. If σ(ε) = ∧n and σ(i) = σi ∀i ∈ {1, 2, . . . , n}, then we write the type σ

as ∧ni=1σi. If σ(ε) = ∨n and σ(i) = σi ∀i ∈ {1, 2, . . . , n}, then we write the type σ as

∨ni=1σi. If σ(ε) = ⊥, then we write the type as ⊥. If σ(ε) = Int, then we write the type

as Int.

The set of types is denoted Type. We use δ, σ, τ to range over types. We define the

set of intersection types to be a subset of Type:

IntersectionType = { σ ∈ Type | σ(ε) = ∧n, for some n, or σ(ε) =→ }.
We use T to range over intersection types. We will use Int as the type of integer

constants, and we will use intersection types as the types of λ-abstractions. We use

u to range over {Int} ∪ IntersectionType.

Intuitively, our restrictions mean that neither union types nor intersection types

can be immediately nested, that is, one cannot form a union type one of whose

immediate components is again a union type, and similarly for intersection types.

We impose this restriction for two reasons:

1. it effectively rules out infinite intersection and union types, and

2. it ensures that types are in a ‘normal form’ with respect to associativity and

commutativity, i.e. the issues of associativity and commutativity are reduced

to a matter of the order of the components in a ∧ni=1σi type and a ∨ni=1σi type.

We now define type equality. A relation R is called a bisimulation if it satisfies the

following conditions:

1. If (∨ni=1σi,∨mj=1τj) ∈ R, then

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: there exists j ∈ {1..m} : (σi, τj) ∈ R, and

• for all j ∈ {1..m}, where τj(ε) 6= ⊥, there exists i ∈ {1..n} : (σi, τj) ∈ R.

2. If τ(ε) ∈ {Int,⊥,→} ∪ {∧m, m > 2}, and (∨ni=1σi, τ) ∈ R, then,

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: (σi, τ) ∈ R, and

• if τ(ε) 6= ⊥, then there exists i ∈ {1..n} : (σi, τ) ∈ R.

3. If τ(ε) ∈ {Int,⊥,→} ∪ {∧m, m > 2}, and (τ,∨ni=1σi) ∈ R, then,

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: (τ, σi) ∈ R, and
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• if τ(ε) 6= ⊥, then there exists i ∈ {1..n} : (τ, σi) ∈ R.

4. If (∧ni=1σi,∧nj=1τj) ∈ R, then there exists a bijection t : {1..n} → {1..n} such that

for all i ∈ {1..n} : (σi, τt(i)) ∈ R.

5. If (σ1 → σ2, τ1 → τ2) ∈ R, then (σ1, τ1) ∈ R and (σ2, τ2) ∈ R.

6. If (σ, τ) ∈ R, then either

σ = τ = ⊥
σ = τ = Int

σ(ε) = τ(ε) =→
σ(ε) = τ(ε) = ∧n
σ(ε) = ∨n, or

τ(ε) = ∨n.
Bisimulation are closed under union, therefore, there exists a largest bisimulation

E =
⋃{ R | R is a bisimulation}.

The set E is our notion of type equality. We may apply the principle of co-induction

to prove that two types are related in E, that is, to show (σ, τ) ∈ E, it is sufficient to

find a bisimulation R such that (σ, τ) ∈ R.

Theorem 3.1

The following assertions are true:

• E is a congruence relation,

• if ∧ni=1σi is a type and t : {1..n} → {1..n} is a bijection, then (∧ni=1σi,∧ni=1σt(i)) ∈
E, and

• if ∨ni=1σi is a type and t : {1..n} → {1..n} is a bijection, then (∨ni=1σi,∨ni=1σt(i)) ∈
E.

Proof

By co-induction, we omit the details. q

Type equality as defined by E can be decided in polynomial time. The case

without union types is covered by the algorithm of Palsberg and Zhao (2000), and

it is straightforward to extend their algorithm to handle our notion of union types,

we omit the details.

We use I, J to range over finite and possibly empty index sets. We use K to

range over finite and nonempty index sets. From Theorem 3.1 we have that for

type equality the ordering of the components is not important when considering

intersection and union types. So, we will use the notation∧
k∈K

σk
∨
i∈I
σi

to denote intersection types and union types where the orderings of the components

are left unspecified. By convention, if K is a singleton set, say K = {k0}, then
∧
k∈K σk

denotes σk0
. Similarly, if I is a singleton set, say I = {i0}, then

∨
i∈I σi denotes σi0 .

Moreover, if I = ∅, then
∨
i∈I σi denotes ⊥.
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We will use the notation
n∧
k=1

(σk → σ′k) ≡ (σ1 → σ′1) ∧ . . . ∧ (σn → σ′n)

n∨
i=1

σi ≡ σ1 ∨ . . . ∨ σn.

For union types, we will even go a bit further and allow a notation where the

binary ∨ is applied to two types that may be union types. This should be seen as a

shorthand for a ‘flattened’ type that satisfies the restriction that union types cannot

be nested. It is straightforward to show, by co-induction, that

σ ∨ ⊥ = ⊥ ∨ σ = σ ∨ σ = σ.

3.3 Type orderings

Pierce studied type orderings on intersection and union types (Pierce, 1991). Here

we begin by stating conditions on type orderings which will be sufficient to prove

type soundness. Later we will give examples of type orderings which satisfy the

conditions.

Definition 3.2

(Acceptable Type Orderings) We say that an ordering 6 on types is acceptable if

and only if 6 satisfies the five conditions:

1. 6 is reflexive,

2. 6 is transitive,

3. if
∧
k∈K(σk → σ′k) 6 (τ1 → τ2), and u 6 τ1, then there exists k0 ∈ K such that

u 6 σk0
and σ′k0

6 τ2,

4.
∧
k∈K(σk → τk) 66 Int, and

5. Int 66 σ → τ.

For example, the identity relation on types is an acceptable type ordering. If 6 is an

acceptable type ordering, and σ 6 τ then we say that ‘σ is a subtype of τ’.

3.4 Type rules

If F is a partial function from D1 to a set D2, and d ∈ D1, then F[x : d] denotes

a partial function which maps x to d, and maps y, where y 6= x, to F(y). If F is a

partial function, then dom(F) denotes the set of points on which F is defined. We

use ∅ to denote the partial function for which dom(∅) = ∅. We use ↪→ to denote the

constructor of spaces of partial functions with finite domain. Define

A ∈ TypeEnv = Var ↪→ Type

TypeJudgment = TypeEnv × Exp × Type.

A type environment is a partial function from variables to types. A type judgment

is a triple which will be written A ` e : τ. Intuitively, such a type judgment indicates

that in the type environment A, the expression e has type τ.
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We now define a type system T6 which is parameterized by a type ordering 6.

Given a type ordering 6, we will inductively define a set of valid type judgments. We

write T6 . A ` e : τ if and only if the judgment A ` e : τ follows by Rules (9)–(15),

where all applications of Rule (15) use the ordering 6.

A[x : τ] ` xl : τ (9)

∀k ∈ K : A[x : σk] ` e : τk
A ` (λx.e)l :

∧
k∈K(σk → τk)

(10)

A ` e1 : σ → τ A ` e2 : σ

A ` (e1e2)l : τ
(11)

A ` cl : Int (12)

A ` e : Int

A ` (succ e)l : Int
(13)

A ` e1 : Int A ` e2 : τ A ` e3 : τ

A ` (if0 e1 e2 e3)l : τ
(14)

A ` e : σ

A ` e : τ
(σ 6 τ) (15)

Rule (10) is unusual because it assigns a λ-abstraction an intersection of function

types rather than a single function type.

We say that e is typable inT6 if and only if there exist A, τ such thatT6.A ` e : τ.

3.5 Correctness

We will now prove that for an acceptable type ordering 6, a program typable in

T6 cannot go wrong. We use the proof technique of Nielson (1989) and others that

was popularized by Wright and Felleisen (1994).

Lemma 3.3

(Strengthening) If T6 . A[x : σ] ` e : τ, and x does not occur free in e, then

T6 . A ` e : τ.

Proof

The proof is by a straightforward induction on the structure of the derivation of

A[x : σ] ` e : τ. We omit the details. q

Lemma 3.4

(Renaming) If T6 . A[x : σ] ` e : τ, and z does not occur free in e, then T6 . A[z :

σ] ` e[x 7→ z] : τ in such a way that the two derivations are of the same height.

Proof

The proof is by a straightforward induction on the structure of the derivation of

A[x : σ] ` e : τ. We omit the details. q

Lemma 3.5

(Substitution) IfT6.A[x : σ] ` e : τ andT6.A ` e′ : σ, thenT6.A ` e[x := e′] : τ.
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Proof

We proceed by induction on the height of the derivation of A[x : σ] ` e : τ. There

are now seven subcases depending on which one of Rules (9)–(15) was the last one

used in the derivation of A[x : σ] ` e : τ.

• Rule (9). We have e ≡ yl . There are two subcases.

— x ≡ y. We have yl[x := e′] ≡ e′. The whole derivation of A[x : σ] ` e : τ is

of the form

A[y : τ] ` yl : τ

so σ = τ, and therefore the desired conclusion is identical to the second

hypothesis.

— x 6≡ y. We have yl[x := e′] ≡ yl . The whole derivation of A[x : σ] ` e : τ is

of the form

A′[y : τ][x : σ] ` yl : τ,

where A = A′[y : τ], and from Rule (9) we derive A′[y : τ] ` yl : τ.

• Rule (10). We have e ≡ (λy.e1)l . There are two subcases.

— x ≡ y. We have (λy.e1)l[x := e′] ≡ (λy.e1)l . Since x does not occur free in

(λy.e1)l , we can from the derivation of A[x : σ] ` (λy.e1)l : τ and Lemma 3.3

produce a derivation of A ` (λy.e1)l : τ.

— x 6≡ y. We have (λy.e1)l[x := e′] ≡ (λz.((e1[y 7→ z])[x := e′]))l , where z is

fresh. The last step in the derivation of A[x : σ] ` e : τ is of the form

∀k ∈ K : A[x : σ][y : σk] ` e1 : τk
A[x : σ] ` (λy.e1)l :

∧
k∈K(σk → τk)

For all k ∈ K , from the derivation of A[x : σ][y : σk] ` e1 : τk , and

Lemma 3.4, we can produce a derivation of A[x : σ][z : σk] ` e1[y 7→ z] : τk
of the same height. From the induction hypothesis we have that we can

derive A[z : σk] ` e1[y 7→ z][x := e′] : τk , so from Rule (10) we can derive

A ` (λz.((e1[y 7→ z])[x := e′]))l :
∧
k∈K(σk → τk).

• Rule (11). We have e ≡ (e1 e2)l , and (e1 e2)l[x := e′] ≡ ((e1[x := e′]) (e2[x :=

e′]))l . The last step in the derivation of A[x : σ] ` e : τ is of the form

A[x : σ] ` e1 : τ2 → τ A[x : σ] ` e2 : τ2

A[x : σ] ` (e1 e2)l : τ

From the induction hypothesis we have that we can derive A ` e1[x :=

e′] : τ2 → τ and A ` e2[x := e′] : τ2, and from Rule (11) we can derive

A ` ((e1[x := e′]) (e2[x := e′]))l : τ.

• Rule (12). We have e ≡ cl , and cl[x := e′] ≡ cl . The last step in the derivation

of A[x : σ] ` e : τ is of the form

A[x : σ] ` cl : Int

and from Rule (12) we can derive A ` cl : Int.

• Rule (13), Rule (14), Rule (15). Each of these cases is similar to the case of

Rule (11). We omit the details.

q
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We will say that a type derivation is in canonical form if and only if each

application of Rules (9)–(14) is followed by exactly one application of Rule (15),

possibly except the last application of one of Rules (9)–(14). Notice that if a type

derivation is in canonical form, then all its subtrees are also in canonical form. For

a reflexive and transitive type ordering 6, if we have a type derivation of A ` e : τ,

then we can transform it into a canonical-form derivation of A ` e : τ.

Theorem 3.6

(Type Preservation) For an acceptable type ordering 6, ifT6.A ` e : τ and e→V e
′,

then T6 . A ` e′ : τ.

Proof

It is sufficient to show the result for all canonical-form derivations of A ` e : τ. We

proceed by induction on the structure of the derivation of A ` e : τ. There are now

seven subcases depending on which one of Rules (9)–(15) was the last one used in

the derivation of A ` e : τ.

• Rule (9). We have e ≡ xl , so e→V e
′ is not possible.

• Rule (10). We have e ≡ (λx.e1)l , so e→V e
′ is not possible.

• Rule (11). We have e ≡ (e1e2)l . There are now three subcases depending on

which one of Rules (1)–(3) was the last one used in the derivation of e→V e
′.

— Rule (1). We have e ≡ ((λx.e1)l1v)l and e′ ≡ e1[x := v]. The last part of the

derivation of A ` e : τ is of the form

∀k ∈ K : A[x : σk] ` e1 : τk
A ` (λx.e1)l1 :

∧
k∈K(σk → τk)

A ` (λx.e1)l1 : σ → τ

A ` v : u

A ` v : σ

A ` ((λx.e1)l1v)l : τ

where
∧
k∈K(σk → τk) 6 σ → τ and u 6 σ. From Definition 3.2 (condition

3) we have that there exists k0 ∈ K such that u 6 σk0
and τk0

6 τ. From

A ` v : u and u 6 σk0
and Rule (15) we derive A ` v : σk0

. From Lemma

3.5, A[x : σk0
] ` e1 : τk0

, and A ` v : σk0
we derive A ` e1[x := v] : τk0

.

From Rule (15) and τk0
6 τ, we can finally derive A ` e1[x := v] : τ.

— Rules (2)–(3). In each case a derivation of A ` e′ : τ is provided by the

induction hypothesis and Rule (11).

• Rule (12). We have e ≡ cl , so e→V e
′ is not possible.

• Rule (13). We have e ≡ (succ e1)l . There are now two subcases depending on

which one of Rules (4)–(5) was the last one used in the derivation of e→V e
′.

— Rule (4). We have e ≡ (succ cl11 )l and e′ ≡ cl2, where dc2e = dc1e + 1.

The last type judgment in the derivation of A ` e : τ is of the form

A ` (succ cl11 )l : Int, and from Rule (12) we derive A ` cl2 : Int.

— Rule (5). We have e ≡ (succ e1)l and e′ ≡ (succ e2)l , and e1 →V e2. The

last part of the derivation of A ` e : τ is of the form

A ` e1 : Int

A ` (succ e1)l : Int

The induction hypothesis provides a derivation of A ` e2 : Int, and from

Rule (13) we derive A ` (succ e2)l : Int.
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• Rule (14). We have e ≡ (if0 e1 e2 e3)l . There are now three subcases depending

on which one of Rules (6)–(8) was the last one used in the derivation of e→V e
′.

In each case A ` e′ : τ is easily derived using the induction hypothesis.

• Rule (15). The last part of the derivation of A ` e : τ is of the form

A ` e : σ

A ` e : τ
(σ 6 τ)

and from A ` e : σ, the induction hypothesis provides a derivation of A ` e′ : σ.

From this and Rule (15) we derive A ` e′ : τ.

q

Lemma 3.7

For an acceptable type ordering 6, if T6 . A ` v : Int, then v is of the form cl; and

if T6 . A ` v : σ → τ, then v is of the form (λx.e)l .

Proof

Suppose first that we have a canonical-form derivation of A ` v : Int. If v ≡ (λx.e)l ,

then the last part of the derivation of A ` v : Int is of the form

A ` (λx.e)l :
∧
k∈K(σk → τk)

A ` (λx.e)l : Int

where
∧
k∈K(σk → τk) 6 Int. ¿From Definition 3.2 (condition 4) we have that this is

impossible, so the assumption that v ≡ (λx.e)l is wrong, and hence v is must be of

the form cl .

Suppose then that we have a canonical-form derivation of A ` v : σ → τ. If v ≡ cl ,
then the last part of the derivation of A ` v : σ → τ is of the form

A ` cl : Int

A ` cl : σ → τ

where Int 6 σ → τ. From Definition 3.2 (condition 5) we have that this is impossible,

so the assumption that v ≡ cl is wrong, and hence v is must be of the form (λx.e)l .

q

The following lemma states that a typable program is not stuck.

Lemma 3.8

(Progress) For an acceptable type ordering 6, if e is a closed expression, and

T6 . A ` e : τ, then either e is a value, or there exists e′ such that e→V e
′.

Proof

We proceed by induction on the structure of the derivation of A ` e : τ. There are

now seven subcases depending on which one of Rules (9)–(15) was the last one used

in the derivation of A ` e : τ.

• Rule (9). We have e ≡ x, and x is not closed.

• Rule (10). We have e ≡ (λx.e1)l , so e is a value.
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• Rule (11). We have e ≡ (e1e2)l . We have that e is closed, so also e1, e2 are

closed. The last step in the derivation of A ` e : τ is of the form

A ` e1 : σ → τ A ` e2 : σ

A ` (e1e2)l : τ

From the induction hypothesis we have that (1) either e1 is a value, or there

exists e′1 such that e1 →V e
′
1 and (2) either e2 is a value, or there exists e′2 such

that e2 →V e
′
2. We proceed by case analysis.

— If there exists e′1 such that e1 →V e
′
1, then (e1e2)l →V (e′1e2)l by Rule (2).

— If e1 is a value, and there exists e′2 such that e2 →V e
′
2, then (e1e2)l →V (e1e

′
2)l

by Rule (3).

— If e1, e2 are values, then from A ` e1 : σ → τ and Lemma 3.7 we have that

e1 is of the form λx.e3, and hence (e1e2)l →V e3[x := e2] by Rule (1).

• Rule (12). We have e ≡ cl , so e is a value.

• Rule (13). We have e ≡ (succ e1)l . We have that e is closed, so also e1 is closed.

The last step in the derivation of A ` e : τ is of the form

A ` e1 : Int

A ` (succ e1)l : Int

From the induction hypothesis we have that either e1 is a value, or there exists

e′1 such that e1 →V e
′
1. We proceed by case analysis.

— If e1 is a value, then from A ` e1 : Int and Lemma 3.7 we have that e1 is of

the form cl11 , and hence (succ cl11 )l →V c
l
2 where dc2e = dc1e+1 by Rule (4).

— If there exists e′1 such that e1 →V e′1, then (succ e1)l →V (succ e′1)l by

Rule (5).

• Rule (14). We have e ≡ (if0 e1 e2 e3)l . We have that e is closed, so also e1, e2, e3

are closed. The last step in the derivation of A ` e : τ is of the form

A ` e1 : Int A ` e2 : τ A ` e3 : τ

A ` (if0 e1 e2 e3)l : τ

From the induction hypothesis we have that either e1 is a value, or there exists

e′1 such that e1 →V e
′
1. We proceed by case analysis.

— If e1 is a value, then from A ` e1 : Int and Lemma 3.7 we have that e1 is

of the form cl1 so either e→V e2 by Rule (6) or e→V e3 by Rule (7).

— If there exists e′1 such that e1 →V e
′
1, then (if0 e1 e2 e3)l →V (if0 e′1 e2 e3)l

by Rule (8).

• Rule (15). The last part of the derivation of A ` e : τ is of the form

A ` e : σ

A ` e : τ
(σ 6 τ)

and from A ` e : σ and the induction hypothesis we have that either e is a

value or there exists e′ such that e→V e
′.

q
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Corollary 3.9

(Type Soundness) For an acceptable type ordering 6, a program typable in T6
cannot go wrong.

Proof

Suppose we have a program e which is typable in T6, that is, e is closed and we

have A, τ such that T6 . A ` e : τ. Suppose also that e can go wrong, that is, there

exists a stuck expression e′ such that e →∗V e′. From Lemma 2.1 we have that e′ is

closed. From Theorem 3.6 we have that T6 . A ` e′ : τ. From Lemma 3.8 we have

that e′ is not stuck, a contradiction. We conclude that e′ does not exist so e cannot

go wrong. q

3.6 An acceptable type ordering

We will now define an acceptable type ordering 61. We write σ 61 τ if and only if

we can derive σ 61 τ using the following rules.

σ 61 δ δ 61 τ

σ 61 τ
(16)

σ 61 σ ∨ τ′ (17)

∀i ∈ I : σi 61 τ1 → τ2∨
i∈I σi 61 τ1 → τ2

(18)

τ1 61 σ1 σ2 61 τ2

σ1 → σ2 61 τ1 → τ2
(19)

∧
k∈K(σk → σ′k) 61 τ1 → τ2∧
k∈K ′(σk → σ′k) 61 τ1 → τ2

(K ⊆ K ′) (20)

∧
k∈K

(
σk → σ′k

)
61

(∨
k∈K

σk

)
→
(∨
k∈K

σ′k

)
(21)

Rule (16) is the rule for transitivity. Rule (17) is an introduction rule for union

types, and Rule (18) is an elimination rule for union types. Rule (19) is the classical

rule of subtyping for function types. Rules (20) and Rule (21) are elimination rules

for intersection types. Rule (21) is closely related to the (∨ elim)-rule in Wells et

al. (1997). Recall that intersection types are introduced by type rule (10).

The relation 61 is not antisymmetric. For example for

σ = Int→ Int

τ = (Int→ Int)→ (Int→ Int)

we have

σ 61 σ ∨ (σ ∧ τ) (from Rule 17)

σ ∨ (σ ∧ τ) 61 σ (from Rule 18,20)

and yet σ 6= σ ∨ (σ ∧ τ).
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Lemma 3.10

(Characterization of Subtyping) We have σ 61 τ if and only if

(i) either τ = σ ∨ τ′,
(ii) or σ =

∨
i∈I
∧
k∈Ki

(σik → σ′ik), and τ = (τ1 → τ2) ∨ τ′, and ∀i ∈ I : ∃Ji : [ τ1 61∨
k∈Ji σik , and

∨
k∈Ji σ

′
ik 61 τ2, and Ji ⊆ Ki ].

Proof

For ⇐, there are two cases. If τ = σ ∨ τ′, then we can derive σ 61 τ using Rule (17).

Suppose σ =
∨
i∈I
∧
k∈Ki

(σik → σ′ik), and τ = (τ1 → τ2) ∨ τ′, and ∀i ∈ I : ∃Ji :

[ τ1 61

∨
k∈Ji σik , and

∨
k∈Ji σ

′
ik 61 τ2, and Ji ⊆ Ki ]. For all i ∈ I , we have

∧
k∈Ji

(σik → σ′ik) 61

(∨
k∈Ji

σik

)
→
(∨
k∈Ji

σ′ik

)
Rule (21)(∨

k∈Ji
σik

)
→
(∨
k∈Ji

σ′ik

)
61 τ1 → τ2 Rule (19)

and from these two inequalities and Rule (16) we have∧
k∈Ji

(σik → σ′ik) 61 τ1 → τ2.

For all i ∈ I , from
∧
k∈Ji(σik → σ′ik) 61 τ1 → τ2, Ji ⊆ K , and Rule (20) we have∧

k∈K
(σik → σ′ik) 61 τ1 → τ2.

We can now use Rule (18) to derive∨
i∈I

∧
k∈K

(σik → σ′ik) 61 τ1 → τ2,

and from Rule (17) we also have

τ1 → τ2 61 (τ1 → τ2) ∨ τ′.
Finally, an application of Rule (16) derives σ 61 τ.

For ⇒, we proceed by induction on the structure of the derivation of σ 61 τ.

There are six cases. If the last rule used in the derivation of σ 61 τ is Rule (17), then

we have τ = σ∨ τ′, so (i) is satisfied. If the last rule used in the derivation of σ 61 τ

is one of Rules (18–21), then it is in each case straightforward to show that (ii) is

satisfied with τ′ = ⊥. If the last rule used in the derivation of σ 61 τ is Rule (16),

then we have the situation
σ 61 δ δ 61 τ

σ 61 τ

By applying the induction hypothesis to both σ 61 δ and δ 61 τ, we get that there

are four subcases, which we will consider in turn.

First, suppose δ = σ ∨ δ′, and τ = δ ∨ τ′. We have τ = σ ∨ (δ′ ∨ τ′), so (i) is

satisfied.

Secondly, suppose δ = σ∨δ′, and δ =
∨
i∈I
∧
k∈Ki

(δik → δ′ik), and τ = (τ1 → τ2)∨τ′,
and ∀i ∈ I : ∃Ji : [ τ1 61

∨
k∈Ji δik , and

∨
k∈Ji δ

′
ik 61 τ2, and Ji ⊆ Ki ]. We
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have σ =
∨
i∈I ′
∧
k∈Ki

(δik → δ′ik) where I ′ ⊆ I , so ∀i ∈ I ′ : [ τ1 61

∨
k∈Ji δik , and∨

k∈Ji δ
′
ik 61 τ2, and Ji ⊆ Ki ], so (ii) is satisfied.

Thirdly, suppose σ =
∨
i∈I
∧
k∈Ki

(σik → σ′ik), and δ = (δ1 → δ2) ∨ δ′, and ∀i ∈ I :

∃Ji : [ δ1 61

∨
k∈Ji σik , and

∨
k∈Ji σ

′
ik 61 δ2, and Ji ⊆ Ki ], and τ = δ ∨ τ′. We have

τ = (δ1 → δ2) ∨ (δ′ ∨ τ′), so (ii) is satisfied.

Fourthly, suppose σ =
∨
i∈I
∧
k∈Ki

(σik → σ′ik), and δ = (δ1 → δ2) ∨ δ′, and ∀i ∈ I :

∃Ji : [ δ1 61

∨
k∈Ji σik , and

∨
k∈Ji σ

′
ik 61 δ2, and Ji ⊆ Ki ], and δ =

∨
i∈I ′
∧
k∈K ′i (δik →

δ′ik), and τ = (τ1 → τ2)∨τ′, and ∀i ∈ I ′ : ∃J ′i : [ τ1 61

∨
k∈J ′i δik , and

∨
k∈J ′i δ

′
ik 61 τ2, and

J ′i ⊆ K ′i ]. From δ = (δ1 → δ2)∨ δ′ =
∨
i∈I ′
∧
k∈K ′i (δik → δ′ik) we have that there exists

i0 ∈ I ′ such that δ1 → δ2 =
∧
k∈K ′i0 (δi0k → δ′i0k). Moreover, for all k ∈ K ′i0 we have

δ1 = δi0k and δ2 = δ′i0k . We have ∀i ∈ I : ∃Ji : [ τ1 61

∨
k∈J ′i0 δi0k = δ1 61

∨
k∈Ji σik ,

and
∨
k∈Ji σ

′
ik 61 δ2 =

∨
k∈J ′i0 δ

′
i0k
61 τ2, and Ji ⊆ Ki ], so (ii) is satisfied. q

Lemma 3.11

If u 61

∨
i∈I δi, then there exists i0 ∈ I such that u 61 δi0 .

Proof

From Lemma 3.10 we have that there are two cases.

If
∨
i∈I δi = u ∨ δ′, we have i0 ∈ I such that u 61 δi0 .

If u =
∧
k∈K(σk → σ′k) and

∨
i∈I δi = (τ1 → τ2) ∨ τ′, and ∃J : [ τ1 61

∨
k∈J σk

and
∨
k∈J σ′k 61 τ2 and J ⊆ K ], then choose i0 ∈ I such that τ1 → τ2 61 δi0 .

From Lemma 3.10 we have that u 61 τ1 → τ2. From Rule (16), u 61 τ1 → τ2, and

τ1 → τ2 61 δi0 , derive u 61 δi0 . q

Theorem 3.12

The relation 61 is an acceptable type ordering.

Proof

We will prove that each of the five conditions from Definition 3.2 are satisfied.

1. The relation 61 is reflexive because τ 61 τ ∨ ⊥ = τ.

2. The relation 61 is transitive by Rule (16).

3. We must show that if
∧
k∈K(σk → σ′k) 61 (τ1 → τ2), and u 61 τ1, then there

exists k0 ∈ K such that u 61 σk0
and σ′k0

61 τ2. From Lemma 3.10 we have

that there are two cases:

(a) If τ1 → τ2 = (
∧
k∈K(σk → σ′k)) ∨ τ′, then τ1 → τ2 = (

∧
k∈K(σk → σ′k)).

Choose k0 ∈ K such that τ1 → τ2 = σk0
→ σ′k0

. We have u 61 τ1 = σk0
and

σ′k0
= τ2.

(b) If ∃J : τ1 61

∨
k∈J σk and

∨
k∈J σ′k 61 τ2 and J ⊆ K , then from Lemma 3.11

we have k0 ∈ J such that u 61 σk0
. Moreover, σ′k0

61

∨
k∈J σ′k 61 τ2.

(c) We have
∧
k∈K(σk → τk) 661 Int from Lemma 3.10.

4. We have Int 661 σ → τ from Lemma 3.10.

q

Corollary 3.13

A program typable in T61
cannot go wrong.
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Proof

Combine Corollary 3.9 and Theorem 3.12. q

Notice that (i) there is no separate rule for comparing recursive types, (ii) ⊥ is a

least type in the 61-ordering because ⊥ 61 ⊥ ∨ τ = τ, (iii) if τ 61 ⊥, then τ = ⊥,

and (iv) there is no greatest type >. Observation (iii) is straightforward to prove by

induction on the structure of the derivation of τ 61 ⊥ (and it also follows from

Lemma 3.10).

In general, an expression does not have a 61-minimal type in T61
. For example,

we have

T61
. ∅ ` (λx.x1)2 : Int→ Int

T61
. ∅ ` (λx.x1)2 : ⊥ → ⊥.

The types Int→ Int and ⊥ → ⊥ have a greatest lower bound in 61 which is Int→ ⊥,

but we do not have T61
. ∅ ` (λx.x1)2 : Int→ ⊥.

4 Polyvariant flow analysis

4.1 Domains

We begin by defining domains for the flow analysis. We use E to range over closed

expressions. Our domains are parameterized by an expression E:

a ∈ Val (E) = Closure(E) ∪ {Int} (abstract values)

s ∈ ValSet(E) = P(Val (E))

Exp(E) = { e ∈ Exp | e occurs in E }
Abs(E) = { (λx.e)l ∈ Exp | (λx.e)l occurs in E }
Var(E) = { x ∈ Var | ∃e, l : (λx.e)l occurs in E }
Closure(E) = Abs(E)× FlowEnv (E) (abstract closures)

ρ ∈ FlowEnv (E) = Var(E) ↪→ ValSet(E)

FlowJudgment(E) = FlowEnv (E)× Exp(E)× ValSet(E)

R ∈ FlowJudgmentSet(E) = P(FlowJudgment(E))

C ∈ Cover(E) = P(ValSet(E)).

An abstract value a ∈ Val (E) is either an abstract closure or the constant Int. Our

flow sets are sets of abstract values, that is, elements of ValSet(E). The function P
maps a set to its powerset. An abstract closure is an abstraction of a usual closure.

A usual closure is a pair of a λ-abstraction and a static environment. An abstract

closure contains a flow environment in place of the static environment. We will write

elements of products as (x, y), etc., except for type judgments which we write as

A ` e : τ, as seen earlier, and elements of Closure(E) which we write as 〈(λx.e)l , ρ〉,
etc., for readability. A flow environment is a partial function with finite domain

from Var(E) to ValSet(E). We use → to denote the constructor of spaces of total

functions. (We also use → to denote the function-type constructor, but the intended

meaning of → will always be clear from the context.)

A flow judgment (ρ, e, s) indicates that in the flow environment ρ, the expression

e abstractly evaluates to the flow set s. Below, we define the valid flow judgments.

Let us compare a flow judgment (ρ, e, s) to a type judgment A ` e : τ. The flow

https://doi.org/10.1017/S095679680100394X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100394X


288 J. Palsberg and C. Pavlopoulou

environment ρ and the type environment A play analogous roles. Similarly, the flow

set s and the type τ play analogous roles.

4.2 The family of analyses

We define the set Valid (E) of valid flow judgments as the greatest fixed point of the

function F defined below. The interesting case is that of function application. At

every call site, and for every function that can be invoked at that call site, we want

to cover the set s2 of abstract values for the actual argument. Thus, the cover is a

set of sets of abstract values, and the union of the sets in the cover must contain s2.

Moreover, each function body must be analyzed as many times as the number of

elements in the cover.

F ∈ FlowJudgmentSet(E)→ FlowJudgmentSet(E)

F(R) = { (ρ[x : s′], xl , s) | s′ ⊆ s }
∪ { (ρ, (λx.e)l , s) | 〈(λx.e)l , ρ〉 ∈ s }
∪ { (ρ, (e1 e2)l , s) |

∃s1, s2 : (ρ, e1, s1), (ρ, e2, s2) ∈ R and

∀〈(λx.e)l′ , ρ′〉 ∈ s1 : ∃C ∈ Cover(E) :

s2 ⊆
⋃
C and

∀s′ ∈ C : ∃s′′ : (ρ′[x : s′], e, s′′) ∈ R and s′′ ⊆ s }
∪ { (ρ, cl , s) | Int ∈ s }
∪ { (ρ, (succ e1)l , s) | Int ∈ s and ∃s1 : (ρ, e1, s1) ∈ R }
∪ { (ρ, (if0 e1 e2 e3)l , s) |

∃s1, s2, s3 : (ρ, e1, s1), (ρ, e2, s2), (ρ, e3, s3) ∈ R and

s2 ⊆ s and s3 ⊆ s }
We leave implicit that all the expressions mentioned in the definition of F must

occur in E. The notation
⋃
C means “the union of the sets that are elements of C .”

The cases for xl, (λx.e)l , cl serve as “base cases” for the definition of F , as they do

not refer to R.

The case for (λx.e)l indicates that our closures are not “flat” in the sense of Appel

(1992): in a closure 〈(λx.e)l , ρ〉, we can have that ρ is defined on a variable which

does not occur free in (λx.e)l . Our choice of definition helps simplify the algorithm

which translates type information into flow information, see Section 5.3.

The case for (if0 e1 e2 e3)l indicates that the analysis does not attempt to statically

decide which branch will be taken. The type system in section 3 does not attempt

to do that either. One might change the flow analysis to have more fine-grained

information about integers, and then attempt to decide if a condition will always

(or never) evaluate to 0. To change the type system in a similar way, one possibility

is to use the conditional types of Aiken et al. (1994).

All six cases in the definition of F allow the resulting flow set s to be larger than

strictly necessary. Thus, one can view the rules as having a form of ‘subsumption’

built in, as expressed by the following lemma. As a consequence, there are many
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valid flow judgments for a given expression, just as there can be many valid type

judgments for a given expression.

Lemma 4.1

(Flow Subsumption) For R ∈ FlowJudgmentSet(E), if (ρ, e, s) ∈ F(R) and s ⊆ s′, then

(ρ, e, s′) ∈ F(R).

Proof

By a straightforward case analysis on (ρ, e, s). q

Notice that FlowJudgmentSet(E) with ⊆ as ordering is a complete lattice. It is

straightforward to show that F is monotone, that is, if R1 ⊆ R2, then F(R1) ⊆ F(R2).

From Tarski’s fixed-point theorem (Tarski, 1955) we have that F has a greatest fixed

point which we will denote by Valid (E).

Lemma 4.2

If R ⊆ F(R), then R ⊆ Valid (E).

Proof

From Tarski’s fixed point theorem we have that

Valid (E) =
⋃{ R | R ⊆ F(R) }

so if R ⊆ F(R), then R ⊆ Valid (E). q

Lemma 4.2 justifies the proof technique of co-induction (Milner and Tofte, 1991)

which we will use repeatedly:

Proof by co-induction: Suppose R ⊆ FlowJudgment(E). To prove R ⊆ Valid (E), it is sufficient

to prove R ⊆ F(R).

We have already seen that a flow judgment (ρ, e, s) and a type judgment A ` e : τ

play analogous roles.

Question: What plays a role analogous to a type derivation of a type judgment A ` e : τ?

It should be a set of valid flow judgments that contains at least one judgment for

e. Moreover, just like a type derivation can be checked independently of other type

derivations, we want to be able to check the validity of the set of flow judgments

independently of other flow judgments. Such independent checking can be done by

co-induction, and we arrive at the following definition.

Definition 4.3

We say that R ∈ FlowJudgmentSet(E) is an F-analysis of an expression e in a

program E if and only if R ⊆ F(R) and ∃ρ : ∃s : (ρ, e, s) ∈ R.

Given an F-analysis R of E, Lemma 4.2 shows that R ⊆ Valid (E). In section 5 we

will define mappings from F-analyses to type derivations, and back.

The self-contained nature of an F-analysis is largely made possible by the use

of sets of flow judgments and ‘local’ environments that need not be defined on

all bound variables in the whole program. In contrast, Nielson and Nielson (1997)

use a cache of flow information for the whole program (rather than sets of flow

judgments), and ‘global’ (rather than ‘local’) environments.
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In the introduction we discussed how various analyses can be understood in terms

of how they cover the flow set for an actual argument. In the following two cases,

we can make the intuition precise by specializing the definition of F . It is done by,

in the case for (e1e2)l , after ‘∃C ∈ Cover(E)’, inserting an extra condition on C:

• Schmidt’s analysis. C = {s2}.
• Agesen’s analysis. C = { {a} | a ∈ s2 }.

We say that an F-analysis R of E is a 0-CFA-style analysis if and only if R satisfies

that there exists ρ ∈ FlowEnv (E) such that:

• if 〈(λy.e)l , ρ′〉 ∈ ρ(x), then ρ′ = ρ;

• if (ρ′, e, s) ∈ R, then ρ′ = ρ;

• if (ρ, e, s) ∈ R and 〈(λy.e′)l , ρ′〉 ∈ s, then ρ′ = ρ; and

• if (ρ, e, s), (ρ, e, s′) ∈ R, then s = s′.

These conditions express that a unique environment ρ is the only one used in R,

and that there is a single judgment for each expression e in E. The conditions entail

that each cover consists of a single set. To see that, notice that in the case for (e1e2)l

in the definition of F , if 〈(λx.e)l′ , ρ〉 ∈ s1, then C = {ρ(x)} and s2 ⊆ ρ(x).

For some programs, the least and the greatest fixed points of F are different. For

example, consider the following λ-term and definitions. To distinguish environments,

we will use numbers as subscripts. We will choose the numbers to be different from

the labels of expressions.

E = ((λx.(x1 x2)3)4 (λy.(y5 y6)7)8)9

aλx = 〈(λx.(x1 x2)3)4, ∅〉
aλy = 〈(λy.(y5 y6)7)8, ∅〉
ρ20 = ∅[x : {aλy}]
ρ21 = ∅[y : {aλy}]
R = { (ρ20, x

1, {aλy}), (ρ20, x
2, {aλy}),

(ρ20, (x
1 x2)3, ∅), (∅, (λx.(x1 x2)3)4, {aλx}),

(ρ21, y
5, {aλy}), (ρ21, y

6, {aλy}),
(ρ21, (y

5 y6)7, ∅), (∅, (λy.(y5 y6)7)8, {aλy}),
(∅, E, ∅) }

It is straightforward to show R ⊆ F(R) by case analysis of the elements of R, so R

is an F-analysis of E. Define

R′ = { (ρ[x : s′], x1, s) | s′ ⊆ s }
∪ { (ρ[x : s′], x2, s) | s′ ⊆ s }
∪ { (ρ, (λx.(x1 x2)3)4, s) | 〈(λx.(x1 x2)3)4, ρ〉 ∈ s }
∪ { (ρ[y : s′], y5, s) | s′ ⊆ s }
∪ { (ρ[y : s′], y6, s) | s′ ⊆ s }
∪ { (ρ, (λy.(y5 y6)7)8, s) | 〈(λy.(y5 y6)7)8, ρ〉 ∈ s }

https://doi.org/10.1017/S095679680100394X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100394X


Polyvariant flow information 291

It is straightforward to show F(∅) = R′ and F(R′) = R′, so R′ is the least fixed

point of F . Notice that there are no flow judgments in R′ for applications, while, for

example, (∅, E, ∅) ∈ R ⊆ Valid (E). We conclude that R′ 6= Valid (E), that is, for E the

least and the greatest fixed points of F are different.

Nielson and Nielson (1997) also gave an example, in the setting of a different flow

analysis, of how the least and greatest fixed points can be different. In our paper, the

main result, which relates the flow analysis to a type system, relies on that Valid (E)

is defined as the greatest fixed point of F .

As mentioned in the introduction, flow preservation does not hold:

It is false that if (ρ, e, s) ∈ Valid (E) and e→V e
′, then (ρ, e′, s) ∈ Valid (E).

For example, consider the program E and the definitions of ρ, aλy, aλx, R:

E = ((λx.(λy.x1)2)3 84)5

ρ = ∅[x : {Int}]
aλy = 〈(λy.x1)2, ρ〉
aλx = 〈(λx.(λy.x1)2)3, ∅〉
R = { (∅, E, {aλy}), (∅, (λx.(λy.x1)2)3, {aλx}),

(∅, 84, {Int}), (ρ, (λy.x1)2, {aλy}) }
It is straightforward to show R ⊆ F(R) by case analysis of the elements of R, so

R is an F-analysis of E. We have (∅, E, {aλy}) ∈ Valid (E) and E →V (λy.84)2, but

(∅, (λy.84)2, {aλy}) 6∈ Valid (E).

We will present a more coarse-grained correctness result in section 5 (Corol-

lary 5.2). Moreover, the flow-type system that we will study in section 7 embodies

the ideas of the flow analysis from this section, and for that flow-type system we do

have flow-type preservation and flow-type soundness.

4.3 Example

We now continue the example from section 1 by presenting an Agesen-style analysis

of the following program:

E = ((λf.(succ ((f1f2)304)5)6)7 (if0 c (λx.x8)9 (λy.(λz.z10)11)12)13)14.

Define

aλf = 〈(λf.(succ ((f1f2)304)5)6)7, ∅〉
aλx = 〈(λx.x8)9, ∅〉
aλy = 〈(λy.(λz.z10)11)12, ∅〉
ρ20 = ∅[y : {aλy}]
aλz = 〈(λz.z10)11, ρ20〉
ρ21 = ∅[f : {aλx}]
ρ22 = ∅[f : {aλy}]
ρ23 = ∅[x : {Int}]
ρ24 = ∅[x : {aλx}]
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ρ25 = ∅[y : {aλy}] [z : {Int}]
R = { (ρ21, f

1, { aλx }), (ρ21, f
2, { aλx }), (ρ21, (f

1f2)3, { aλx }),
(ρ21, 0

4, { Int }), (ρ21, ((f
1f2)304)5, { Int }),

(ρ21, (succ ((f1f2)304)5)6, { Int }),
(ρ22, f

1, { aλy }), (ρ22, f
2, { aλy }), (ρ22, (f

1f2)3, { aλz }),
(ρ22, 0

4, { Int }), (ρ22, ((f
1f2)304)5, { Int }),

(ρ22, (succ ((f1f2)304)5)6, { Int }),
(∅, (λf.(succ ((f1f2)304)5)6)7, { aλf }),
(ρ23, x

8, { Int }), (ρ24, x
8, { aλx }), (∅, (λx.x8)9, { aλx }),

(ρ25, z
10, { Int }), (ρ20, (λz.z

10)11, { aλz }),
(∅, (λy.(λz.z10)11)12, { aλy }),
(∅, (if0 c (λx.x8)9 (λy.(λz.z10)11)12)13, { aλx, aλy}),
(∅, E, { Int }),
}

It is straightforward to show R ⊆ F(R) by case analysis of the elements of R, so R

is an F-analysis of E.

5 Equivalence

In this section we prove our main result which is the following theorem. The state-

ment of the theorem uses the concept of F-flow-safe which is defined in section 5.1.

Theorem 5.1

(Main Theorem) A program is typable in T61
if and only if it is F-flow-safe.

Proof

The two implications are given by Theorems 5.6 and 5.8. q

Corollary 5.2

If a program is F-flow-safe, then it cannot go wrong.

Proof

Combine Corollary 3.13 and Theorem 5.1. q

5.1 Basic definitions

For the purpose of proving equivalences between type systems and flow analyses we

will need the following definitions.

collect ∈ FlowJudgmentSet(E)→ ValSet(E)

collect(R) = { a ∈ Val (E) |
(ρ, e, s) ∈ R and either

− a ∈ subtrees(ρ(x)) and x ∈ dom(ρ), or

− a ∈ subtrees(s) }
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subtrees ∈ ValSet(E)→ ValSet(E)

subtrees is the pointwise ⊆-smallest function such that

subtrees(s) = { a ∈ Val (E) |
either a ∈ s,
or ∃〈(λx.e)l , ρ〉 ∈ s : ∃y ∈ dom(ρ) : a ∈ subtrees(ρ(y)) }

argres ∈ (Closure(E)×FlowJudgmentSet(E))→ P(ValSet(E)×ValSet(E))

argres(〈(λx.e)l , ρ〉, R) = { (s′, s′′) | (ρ[x : s′], e, s′′) ∈ R }
Intuitively, collect(R) is the set of abstract values involved in R. To capture that an

abstract value can be part of the environment of another abstract value, we use the

function subtrees . We use argres(a, R) to model the argument-result behavior of a

with respect to R.

For R ∈ FlowJudgmentSet(E), define

• R is safe if and only if

— if (e1 e2)l ∈ Exp(E), and (ρ, e1, s) ∈ R, then Int 6∈ s;
— if (succ e1)l ∈ Exp(E), and (ρ, e1, s) ∈ R, then s ⊆ {Int};
— if (if0 e1 e2 e3)l ∈ Exp(E), and (ρ, e1, s) ∈ R, then s ⊆ {Int}

• R is finitary if and only if collect(R) is a finite set

• R analyzes all its closure bodies if and only if ∀a ∈ collect(R) ∩ Closure(E) :

argres(a, R) 6= ∅.
The conditions for R being safe correspond to the safety checks of (Palsberg and

Schwartzbach, 1995; Palsberg and O’Keefe, 1995).

Note that R can be finite without being finitary because an element of R may

contain infinitely many distinct subtrees. A 0-CFA-style analysis is always finitary,

while an Agesen-style analysis need not be finitary (Agesen, 1995b). For Schmidt’s

analysis, it remains open whether it is always finitary.

Intuitively, we have the following correspondences:

Flows Types

safe type safe

finitary all intersection and union types

have a finite number of components

analyzes all closure bodies all intersection types are nonempty

that is, even ‘dead code’ must be well typed.

We can now define the key notion of a program being F-flow-safe.

Definition 5.3

We say that E is F-flow-safe if and only if there exists an F-analysis R of E, such

that R is safe, finitary and analyzes all its closure bodies.

We will need the following observation to ensure that certain sets are finite.
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Lemma 5.4

For R ∈ FlowJudgmentSet(E), if R is finitary and a ∈ collect(R) ∩ Closure(E), then

argres(a, R) is a finite set.

Proof

Notice that

argres(a, R) ⊆ P(collect(R)× collect(R)),

and that collect(R) is a finite set by assumption. q

Define (f ◦ g)(x) = f(g(x)). We will use the notational convention that f ◦ g(x)

should be grouped as (f ◦ g)(x).

5.2 From flows to types

Given R ∈ FlowJudgmentSet(E), where R is finitary and analyzes all its closure

bodies, we define a system of type equations TypeEqSys(R):

• Type variables: in TypeEqSys(R) the set of type variables is denoted by W(R)

and it consists of one type variable Wa for each a ∈ collect(R) ∩ Closure(E).

Notice thatW(R) is a finite set because R is finitary. We assume thatW(R) ⊆
TypeVar , where TypeVar is the set of type variables from section 3.

• Auxiliary function: define

τ ∈ EquationType(R)

τ ::= Int | ⊥ | τ ∨ τ′ | W
where W ranges over W(R). Define

f : collect(R)→ EquationType(R)

f(∅) = ⊥
f({Int}) = Int

f({a}) = Wa (a ∈ Closure(E))

f(s1 ∪ s2) = f(s1) ∨ f(s2).

Notice that f(s) is a finite disjunction because R is finitary. For example,

f({ 〈(λx.x8)9, ∅〉, 〈(λy.(λz.z10)11)12, ∅〉 }) = W〈(λx.x8)9 ,∅〉 ∨W〈(λy.(λz.z10)11)12 ,∅〉.

• Equations: for each Wa ∈ W(R), TypeEqSys(R) contains the equation

Wa =
∧

(s′ ,s′′)∈argres(a,R)

(f(s′)→ f(s′′)), (22)

where the two applications of f should be replaced by their results to obtain

the actual equation. From Lemma 5.4 and since R is finitary and analyzes all

its closure bodies, we have that the conjunction is nonempty and finite. Since

W(R) is a finite set, there are finitely many equations.

• Solutions: A solution of TypeEqSys(E) is a mapping

ψ :W(R)→ Type
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such that if we have an equation of the form (22), then

ψ•(Wa) =
∧

(s′ ,s′′)∈argres(a,R)

((ψ• ◦ f(s′))→ (ψ• ◦ f(s′′))),

where

ψ• : EquationType(R)→ Type

is the unique extension of ψ to a type-homomorphism:

ψ•(⊥) = ⊥
ψ•(Int) = Int

ψ•(Wa) = ψ(Wa)

ψ•(τ1 ∨ τ2) = ψ•(τ1) ∨ ψ•(τ2).

Unique solution: every equation system TypeEqSys(R) has a unique solution

(Courcelle, 1983). To see that, notice that for every variable in the equation

system, there is exactly one equation with that variable as left-hand side.

Moreover, on the right-hand sides of the equations, all type variables occur

below at least one function type constructor. Thus, intuitively, we obtain the

unique solution by using each equation as an unfolding rule, possibly infinitely

often.

Lemma 5.5

The following are true:

1. If s ⊆ s′, then f(s) 61 f(s′).
2. If τ 61 τ

′, then ψ•(τ) 61 ψ
•(τ′).

3. ψ• ◦ f ◦ (ρ[x : s]) = (ψ• ◦ f ◦ ρ)[c : (ψ• ◦ f)(s)].

4. If we can derive A ` e : ψ•◦f(s), and s ⊆ s′, then we can derive A ` e : ψ•◦f(s′).

Proof

The properties (1), (2), (3) are immediate. For property 4, notice that s ⊆ s′ and

the properties (1), (2) imply ψ• ◦ f(s) 61 ψ
• ◦ f(s′). So, from A ` e : ψ• ◦ f(s) and

Rule (15), we can derive A ` e : ψ• ◦ f(s′). q

Theorem 5.6

If E is F-flow-safe, then E is typable in T61
.

Proof

From E being F-flow-safe we have an F-analysis R of E such that R is safe,

finitary and analyzes all its closure bodies. Since R is finitary and analyzes all its

closure bodies, we can construct TypeEqSys(R). Let ψ be the unique solution of

TypeEqSys(R). We will show

∀e ∈ Exp(E) : ∀ρ, s :

if (ρ, e, s) ∈ R,
then T61

. ψ• ◦ f ◦ ρ ` e : ψ• ◦ f(s).

From R being an F-analysis of E we have that there exist ρ, s such that (ρ, E, s) ∈ R,

so from the property just stated we have that E is typable in T61
.
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To prove the stated property, we proceed by induction on the structure of e. We

will use repeatedly that since R is an analysis of E, then R ⊆ F(R). Furthermore, we

will use that Int = ψ• ◦ f({Int}). Finally, we will use that R is safe.

There are now six cases depending on e.

• e ≡ xl . From (ρ, xl , s) ∈ R ⊆ F(R) we have ρ ≡ ρ′[x : s′] and s′ ⊆ s. ¿From

Lemma 5.5, item (3), we have ψ• ◦ f ◦ ρ = (ψ• ◦ f ◦ ρ′)[x : (ψ• ◦ f)(s′)], so we

can derive

ψ• ◦ f ◦ ρ ` xl : ψ• ◦ f(s′)
ψ• ◦ f ◦ ρ ` xl : ψ• ◦ f(s)

using Rule (9) and Lemma 5.5, item (4).
• e ≡ (λx.e1)l . From (ρ, (λx.e1)l , s) ∈ R ⊆ F(R) we have a ∈ s where a =

〈(λx.e1)l , ρ〉, so a ∈ collect(R) ∩ Closure(E). Since R analyzes all its closure

bodies, we have argres(a, R) 6= ∅, and for all (s′, s′′) ∈ argres(a, R), we have

(ρ[x : s′], e1, s
′′) ∈ R. From the induction hypothesis we have that we can

derive, for every (s′, s′′) ∈ argres(a, R),

ψ• ◦ f ◦ (ρ[x : s′]) ` e1 : ψ• ◦ f(s′′).

This can also be written

(ψ• ◦ f ◦ ρ)[x : ψ• ◦ f(s′)] ` e1 : ψ• ◦ f(s′′).

Derive

ψ• ◦ f ◦ ρ ` (λx.e1)l :
∧

(s′ ,s′′)∈argres(a,R)

(ψ• ◦ f(s′))→ (ψ• ◦ f(s′′))

using Rule (10). In TypeEqSys(R) we have

Wa =
∧

(s′ ,s′′)∈argres(a,R)

(f(s′)→ f(s′′)).

so we can rewrite the previous type judgment as

ψ• ◦ f ◦ ρ ` (λx.e1)l : ψ•(Wa).

Derive

ψ• ◦ f ◦ ρ ` (λx.e1)l : ψ• ◦ f(s)

using a ∈ s and Lemma 5.5, item (4).
• e ≡ (e1e2)l . From (ρ, (e1e2)l , s) ∈ R ⊆ F(R) we have s1, s2 such that

(ρ, e1, s1), (ρ, e2, s2) ∈ R and

∀〈(λx.e3)l
′
, ρ′〉 ∈ s1 : ∃C ∈ Cover(E) :

s2 ⊆
⋃
C and

∀s′ ∈ C : ∃s′′ : (ρ′[x : s′], e3, s
′′) ∈ R and s′′ ⊆ s

Since R is safe we have Int 6∈ s1. From the induction hypothesis we have that

we can derive

ψ• ◦ f ◦ ρ ` e1 : ψ• ◦ f(s1)

ψ• ◦ f ◦ ρ ` e2 : ψ• ◦ f(s2).
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Choose an index set I such that { ai | i ∈ I } = s1 ⊆ Closure(E), and write

ai = 〈(λx.e′i)li , ρi〉 for all i ∈ I . For all i ∈ I , let Ki be an index set such that,

for k ∈ Ki, (s′ik, s′′ik) are the elements of argres(ai, R). For all i ∈ I , choose

Ci ∈ Cover(E) such that

s2 ⊆
⋃
Ci and

∀s′ ∈ Ci : ∃s′′ : (ρi[x : s′], e′i, s′′) ∈ R and s′′ ⊆ s.
For all i ∈ I , we have

Ci ⊆ { s′ik | (s′ik , s′′ik) ∈ argres(ai, R) }
so choose Ji such that Ji ⊆ Ki and Ci = { s′ik | k ∈ Ji }. For all i ∈ I , we

derive from the properties of Ci that

s2 ⊆ ⋃
k∈Ji

s′ik⋃
k∈Ji

s′′ik ⊆ s.

Notice

ψ• ◦ f(s1) = ψ•
(∨
i∈I
Wai

)
=

∨
i∈I

∧
(s′ ,s′′)∈argres(ai,R)

((ψ• ◦ f(s′))→ (ψ• ◦ f(s′′)))

=
∨
i∈I

∧
k∈Ki

((ψ• ◦ f(s′ik))→ (ψ• ◦ f(s′′ik)))

61 (ψ• ◦ f(s2))→ (ψ• ◦ f(s))

where the inequality is obtained from Lemma 3.10 because for all i ∈ I we

have ψ• ◦ f(s2) 61

∨
k∈Ji(ψ

• ◦ f(s′ik)) and
∨
k∈Ji(ψ

• ◦ f(s′′ik)) 61 ψ
• ◦ f(s) and

Ji ⊆ Ki. Finally, derive

ψ• ◦ f ◦ ρ ` (e1e2)l : ψ• ◦ f(s)

using Rules (15), (11).

• e ≡ cl . From (ρ, cl , s) ∈ R ⊆ F(R) we have Int ∈ s. Derive

ψ• ◦ f ◦ ρ ` cl : Int

ψ• ◦ f ◦ ρ ` cl : ψ• ◦ f(s)

using Rule (12) and Lemma 5.5, item (4).

• e ≡ (succ e1)l . From (ρ, (succ e1)l , s) ∈ R ⊆ F(R) we have Int ∈ s and we have

s1 such that (ρ, e1, s1) ∈ R. From R being safe we have s1 ⊆ {Int}. From the

induction hypothesis, Lemma 5.5, item (4), Rule (13), and again Lemma 5.5,

item (4), derive

ψ• ◦ f ◦ ρ ` e1 : ψ• ◦ f(s1)

ψ• ◦ f ◦ ρ ` e1 : Int

ψ• ◦ f ◦ ρ ` (succ e1)l : Int

ψ• ◦ f ◦ ρ ` (succ e1)l : ψ• ◦ f(s)
.
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• e ≡ (if0 e1 e2 e3)l . From (ρ, (if0 e1 e2 e3)l , s) ∈ R ⊆ F(R) we have s1, s2, s3 such

that (ρ, e1, s1), (ρ, e2, s2), (ρ, e3, s3) ∈ R and s2 ⊆ s and s3 ⊆ s. From R being safe

we have s1 ⊆ {Int}. The induction hypothesis provides derivations of

ψ• ◦ f ◦ ρ ` e1 : ψ• ◦ f(s1)

ψ• ◦ f ◦ ρ ` e2 : ψ• ◦ f(s2)

ψ• ◦ f ◦ ρ ` e3 : ψ• ◦ f(s3),

and we can then use Lemma 5.5, item (4) to derive

ψ• ◦ f ◦ ρ ` e1 : Int

ψ• ◦ f ◦ ρ ` e2 : ψ• ◦ f(s)

ψ• ◦ f ◦ ρ ` e3 : ψ• ◦ f(s).

Finally use Rule (14) to derive

ψ• ◦ f ◦ ρ ` (if0 e1 e2 e3)l : ψ• ◦ f(s).

q

We now complete the example from Section 1, using the R defined in section 4.3

which we have established is an F-analysis of E. It is straightforward to show that

R is safe, finitary and analyzes all its closure bodies. Recall that

aλf = 〈(λf.(succ ((f1f2)304)5)6)7, ∅〉
aλx = 〈(λx.x8)9, ∅〉
aλy = 〈(λy.(λz.z10)11)12, ∅〉
ρ20 = ∅[y : {〈(λy.(λz.z10)11)12, ∅〉}]
aλz = 〈(λz.z10)11, ρ20〉.

We have

collect(R) = { aλf, aλx, aλy, aλz, Int }
argres(aλf, R) = { ({aλx}, {Int}), ({aλy}, {Int}) }
argres(aλx, R) = { ({Int}, {Int}), ({aλx}, {aλx}) }
argres(aλy, R) = { ({aλy}, {aλz}) }
argres(aλz, R) = { ({Int}, {Int}), }

The equation system TypeEqSys(R) contains the following four equations:

Waλf = (Waλx → Int) ∧ (Waλy → Int)

Waλx = (Int→ Int) ∧ (Waλx →Waλx )

Waλy = Waλy →Waλz

Waλz = Int→ Int
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Here is the unique solution ψ of TypeEqSys(E):

ψ(Waλf ) = (σ → Int) ∧ (τ→ Int)

ψ(Waλx ) = σ

ψ(Waλy ) = τ

ψ(Waλz ) = Int→ Int

where

σ = µα.((Int→ Int) ∧ (α→ α))

τ = µβ.(β → (Int→ Int)).

We invite the reader to revisit the example in section 1 to see again how σ and τ

indeed yield a type derivation which shows T61
. ∅ ` E : Int.

5.3 From types to flows

We use TypeDerivation(T6) to denote the set of type derivations that are possible

in T6. Define

types ∈ TypeDerivation(T6)→ P(Type)

types(D) = { σ | ∃A, e, τ : (A ` e : τ) occurs in D, and either

− τ = σ ∨ τ′, or

− A(x) = σ ∨ τ′, and x ∈ dom(A) }
lamenv ∈ (Type × TypeDerivation(T6))→ P(Abs × TypeEnv )

lamenv (τ, D) = { ((λx.e)l , A) | ∃σ : (A ` (λx.e)l : σ) occurs in D and σ 6 τ }.
Given D ∈ TypeDerivation(T6), where the root of D is ∅ ` E : τ for some type τ,

we define a system of set equations SetEqSys(D):

• Set variables: in SetEqSys(D) the set of set variables ranging over ValSet(E)

is denoted by Z(D) and it consists of one set variable ZT for each T ∈
types(D) ∩ IntersectionType. Notice that Z(D) is a finite set because types(D)

is finite.
• Auxiliary Function: The function g maps types in types(D) to set expressions:

g(⊥) = ∅
g(Int) = {Int}
g(T ) = ZT (T ∈ IntersectionType)

g(τ1 ∨ τ2) = g(τ1) ∪ g(τ2).

Notice that g(σ) is a finite union. For example,

g(Int ∨ (Int→ Int)) = {Int} ∪ ZInt→Int.

• Equations: for each T ∈ types(D)∩ IntersectionType, SetEqSys(D) contains the

equation

ZT =
⋃

((λx.e)l ,A)∈lamenv (T ,D)

{〈(λx.e)l , g ◦ A〉}, (23)
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where the occurrence of g should be applied to all types in A to obtain the

actual equation. Notice that the union is finite, and that there are finitely many

equations.

• Solutions: a solution of SetEqSys(D) is a mapping ϕ from elements of Z(D)

to elements of ValSet(E) such that if we have equation of the form (23), then

ϕ•(ZT ) =
⋃

((λx.e)l ,A)∈lamenv (T ,D)

{〈(λx.e)l , ϕ• ◦ g ◦ A〉}

where ϕ• is the unique extension of ϕ to a set-expression-homomorphism:

ϕ•(∅) = ∅
ϕ•({Int}) = {Int}
ϕ•(ZT ) = ϕ(ZT )

ϕ•(s1 ∪ s2) = ϕ•(s1) ∪ ϕ•(s2).

Unique solution: every equation system SetEqSys(D) has a unique solution. To

see that, notice that for every variable in the equation system, there is exactly

one equation with that variable as left-hand side. Moreover, on the right-hand

sides of the equations, all set variables occur below at least one constructor.

Thus, intuitively, we obtain the unique solution by using each equation as an

unfolding rule, possibly infinitely often.

Lemma 5.7

Given D ∈ TypeDerivation(T61
), and σ, τ ∈ types(D), let ϕ be the unique solution

of SetEqSys(D). If σ 61 τ, then ϕ• ◦ g(σ) ⊆ ϕ• ◦ g(τ).

Proof

From Lemma 3.10 we have that there are two cases:

• First, suppose τ = σ ∨ τ′. From the definitions of ϕ• and g we have

ϕ• ◦ g(τ)

= ϕ• ◦ g(σ ∨ τ′)
= ϕ•(g(σ) ∪ g(τ′))
= (ϕ• ◦ g(σ)) ∪ (ϕ• ◦ g(τ′))
⊇ ϕ• ◦ g(σ).

• Secondly, suppose σ =
∨
i∈I
∧
k∈Ki

(σik → σ′ik), and τ = (τ1 → τ2) ∨ τ′, and

∀i ∈ I : ∃Ji : [ τ1 61

∨
k∈Ji σik , and

∨
k∈Ji σ

′
ik 61 τ2, and Ji ⊆ Ki ]. For all i ∈ I ,

define

Ti =
∧
k∈Ki

(σik → σ′ik).

Notice that, for all i ∈ I , we have Ti ∈ types(D) ∩ IntersectionType, and

Ti 61 τ1 → τ2. We can now use the above together with the definitions of

ϕ• and g to do the following calculation. We will use that if σ 61 τ, then

lamenv (σ, D) ⊆ lamenv (τ, D).
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ϕ• ◦ g(σ)

= ϕ• ◦ g(
∨
i∈I

∧
k∈Ki

(σik → σ′ik))

= ϕ• ◦ g(
∨
i∈I
Ti)

= ϕ•(
⋃
i∈I
g(Ti))

= ϕ•(
⋃
i∈I
ZTi)

=
⋃
i∈I
ϕ•(ZTi)

=
⋃
i∈I

⋃
((λx.e)l ,A)∈lamenv (Ti,D)

{〈(λx.e)l , ϕ• ◦ g ◦ A〉}

⊆ ⋃
i∈I

⋃
((λx.e)l ,A)∈lamenv (τ1→τ2 ,D)

{〈(λx.e)l , ϕ• ◦ g ◦ A〉}

=
⋃
i∈I
ϕ•(Zτ1→τ2

)

= ϕ•(Zτ1→τ2
)

= ϕ• ◦ g(τ1 → τ2)

⊆ (ϕ• ◦ g(τ1 → τ2)) ∪ (ϕ• ◦ g(τ′))
= ϕ•(g(τ1 → τ2) ∪ g(τ′))
= ϕ• ◦ g((τ1 → τ2) ∨ g(τ′))
= ϕ• ◦ g(τ).

q

Theorem 5.8
If E is typable in T61

, then E is F-flow-safe.

Proof
From E being typable in T61

we have a canonical-form type derivation DE ∈
TypeDerivation(T61

) with root ∅ ` E : τE for some type τE . Let ϕ be the unique

solution of SetEqSys(DE). Define R ∈ FlowJudgmentSet(E) such that

R = { (ϕ• ◦ g ◦ A, e, ϕ• ◦ g(τ)) | (A ` e : τ) occurs in DE }
Notice that (∅, E, ϕ• ◦ g(τE)) ∈ R.

We have

collect(R) ⊆ {Int} ∪
 ⋃
T∈types(DE )∩IntersectionType

ϕ•(ZT )

 .

Notice that types(DE) ∩ IntersectionType is finite, and that each ϕ•(ZT ) is finite, so

collect(R) is finite, hence R is finitary. Notice also that for every (λx.e)l ∈ Exp(E),

we have in DE:

∀k ∈ K : A[x : σk] ` e : τk
A ` (λx.e)l :

∧
k∈K(σk → τk)
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so 〈(λx.e)l , ϕ• ◦ g ◦ A〉 ∈ collect(R) ∩ Closure(E), and, for all k ∈ K ,

((ϕ• ◦ g ◦ A)[x : ϕ• ◦ g(σk)], e, ϕ
• ◦ g(τk)) ∈ R,

so argres(〈(λx.e)l , ϕ• ◦ g ◦ A〉, R) 6= ∅, hence R analyzes all its closure bodies.

To show that R is safe, consider (e1 e2)l ∈ Exp(E). Notice that every occurrence

of a judgment in DE with e1 as the second component is of the form A ` e1 : δ,

where δ 61 σ → τ, hence every judgment in R with e1 as the second component is

of the form

(ϕ• ◦ g ◦ A, e1, ϕ
• ◦ g(δ)).

From Lemma 3.10 and δ 61 σ → τ we have that either δ = σ → τ, or δ =
∨
i∈I Ti,

where, for all i ∈ I , Ti ∈ IntersectionType. From the definitions of ϕ• and g, we

have Int 6∈ ϕ• ◦ g(δ). Similar arguments can be given for occurrences of (succ e)l ,

(if0 e1 e2 e3)l , so we conclude that R is safe.

To show that E is F-flow-safe, it remains to be shown that R ⊆ F(R). It is

sufficient to show

∀D ∈ TypeDerivation(T61
) : ∀A : ∀e : ∀τ :

if D is a subtree of DE, and D has root A ` e : τ,

then (ϕ• ◦ g ◦ A, e, ϕ• ◦ g(τ)) ∈ F(R).

To prove this, we proceed by induction on the structure of D.

There are now seven subcases depending on which one of Rules (9)–(15) was the

last one used in the derivation of A ` e : τ.

• Rule (9). We have e ≡ xl and the derivation of A ` e : τ if of the form

A′[x : τ] ` xl : τ. Notice that

ϕ• ◦ g ◦ (A′[x : τ]) = (ϕ• ◦ g ◦ A′)[x : (ϕ• ◦ g(τ))],

and hence we have (ϕ• ◦ g ◦ (A′[x : τ]), xl , ϕ• ◦ g(τ)) ∈ F(R).

• Rule (10). We have e ≡ (λx.e1)l , and the last judgment of the derivation of

A ` e : τ is of the form A ` (λx.e1)l : τ. We have ((λx.e1)l , A) ∈ lamenv (τ, DE),

so 〈(λx.e1)l , ϕ• ◦ g ◦ A〉 ∈ ϕ•(Zτ) = ϕ• ◦ g(τ), and hence (ϕ• ◦ g ◦A, (λx.e1)l , ϕ• ◦
g(τ)) ∈ F(R).

• Rule (11). We have e ≡ (e1 e2)l , and the last part of the derivation of A ` e : τ

is of the form
A ` e1 : σ → τ A ` e2 : σ

A ` (e1e2)l : τ

From the two hypotheses of this, and from the definition of R, we have

(ϕ• ◦ g ◦ A, e1, ϕ
• ◦ g(σ → τ)) ∈ R

(ϕ• ◦ g ◦ A, e2, ϕ
• ◦ g(σ)) ∈ R.

Suppose 〈(λx.e3)l
′
, ρ′〉 ∈ ϕ• ◦ g(σ → τ) = ϕ(Zσ→τ). From the definition of ϕ we

have that ρ′ = ϕ• ◦ g ◦ A′ for some A′, and ((λx.e3)l
′
, A′) ∈ lamenv (σ → τ, DE).

From the definition of lamenv we have that there exists a type δ such that

δ 61 (σ → τ) and A′ ` (λx.e3)l
′

: δ occurs in DE , and the last rule used to
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derive this judgment is Rule (10). We can write δ =
∧
k∈K(σk → τk). The last

part of the derivation of A′ ` (λx.e3)l
′
: δ is of the form

∀k ∈ K : A′[x : σk] ` e3 : τk
A′ ` (λx.e3)l

′
:
∧
k∈K(σk → τk)

From the hypotheses of this rule and definition of R we have, for all k ∈ K ,

(ϕ• ◦ g ◦ (A′[x : σk]), e, ϕ
• ◦ g(τk)) ∈ R.

Notice that, for all k ∈ K , ϕ• ◦ g ◦ (A′[x : σk]) = (ϕ• ◦ g ◦A′)[x : ϕ• ◦ g(σk)]. We

thus have, for all k ∈ K , ((ϕ• ◦ g ◦ A′)[x : ϕ• ◦ g(σk)], e, ϕ
• ◦ g(τk)) ∈ R. Define

CJ = { ϕ• ◦ g(σk) | k ∈ J }. It is now sufficient to show that there exists J such

that J ⊆ K and

ϕ• ◦ g(σ) ⊆ ⋃
k∈J

(ϕ• ◦ g(σk))⋃
k∈J

(ϕ• ◦ g(τk)) ⊆ ϕ• ◦ g(τ).

From Lemma 3.10 and δ 61 σ → τ we have that there are two cases:

1. If δ = σ → τ, then K is a singleton set, so we choose J = K and the two

properties are immediate.

2. If we have J such that J ⊆ K and σ 61

∨
k∈J σk and

∨
k∈J τk 61 τ, then we

use that particular J and then the two properties follow from Lemma 5.7.

• Rule (12). We have e ≡ cl , and the derivation of A ` e : τ is of the form

A ` cl : Int. Notice that ϕ• ◦ g(Int) = {Int}, and hence we have (ϕ• ◦ g ◦
A, cl , ϕ• ◦ g(Int)) ∈ F(R).

• Rule (13). We have e ≡ (succ e1)l , and the last step of the derivation of

A ` e : τ is of the form

A ` e1 : Int

A ` (succ e1)l : Int

From A ` e1 : Int and the definition of R we have (ϕ• ◦g◦A, e1, ϕ
• ◦g(Int)) ∈ R.

Notice that ϕ• ◦ g(Int) = {Int}, so (ϕ• ◦ g ◦ A, (succ e1)l , {Int}) ∈ F(R).

• Rule (14). We have e ≡ (if0 e1 e2 e3)l , and the last part of the derivation of

A ` e : τ is of the form

A ` e1 : Int A ` e2 : τ A ` e3 : τ

A ` (if0 e1 e2 e3)l : τ

From the three hypothesis of this, and from the definition of R, we have

(ϕ• ◦ g ◦ A, e1, ϕ
• ◦ g(Int)) ∈ R,

(ϕ• ◦ g ◦ A, e2, ϕ
• ◦ g(τ)) ∈ R,

(ϕ• ◦ g ◦ A, e3, ϕ
• ◦ g(τ)) ∈ R,

so

(ϕ• ◦ g ◦ A, (if0 e1 e2 e3)l , ϕ• ◦ g(τ)) ∈ F(R).
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• Rule (15). The last part of the derivation of A ` e : τ is of the form

A ` e : σ

A ` e : τ
(σ 61 τ)

From A ` e : σ and the induction hypothesis we have

(ϕ• ◦ g ◦ A, e, ϕ• ◦ g(σ)) ∈ F(R).

From σ 61 τ and Lemma 5.7 we have ϕ• ◦ g(σ) ⊆ ϕ• ◦ g(τ), and from this and

Lemma 4.1 we have

(ϕ• ◦ g ◦ A, e, ϕ• ◦ g(τ)) ∈ F(R).

q

In the proof of Theorem 5.8, the induction hypothesis is used only in the case of

Rule (15). It is particularly important for the case of Rule (11) where e ≡ (e1 e2)l

that the induction hypothesis is not used to prove anything about (λx.e3)l
′
, because

(λx.e3)l
′

needs not be a subterm of e; it could occur anywhere.

Franklyn Turbak and Torben Amtoft have observed that the translation from

flows to types and back to flows can lose precision. For example, consider the λ-term

E = ((λx.101)2 ((λy.303)4 505)6)7

and the F-analysis

R = {(∅[x : {Int}], 101, {Int}),
(∅, (λx.101)2, {〈(λx.101)2, ∅〉}),
(∅[y : {Int}], 303, {Int}),
(∅, (λy.303)4, {〈(λx.101)2, ∅〉}),
(∅, 505, {Int}),
(∅, ((λy.303)4 505)6, {Int}),
(∅, E, {Int})}.

The translation from flows to types maps R into the type derivation D:

∅[x : Int] ` 101 : Int

∅ ` (λx.101)2 : Int→ Int

∅[y : Int] ` 303 : Int

∅ ` (λy.303)4 : Int→ Int
∅ ` 505 : Int

∅ ` ((λy.303)4 505)6 : Int

∅ ` E : Int

Notice that (λx.101)2, (λy.303)4 both have type Int→ Int in D. The translation from

types to flows maps Int→ Int to the set

s = { 〈(λx.101)2, ∅〉, 〈(λy.303)4, ∅〉 }
and it maps D into an F-analysis that contains the judgments:

(∅, (λx.101)2, s)

(∅, (λx.303)4, s),

i.e. a less precise F-analysis than R.
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6 Example

We will now illustrate how different flow analyses lead to different typings. We will

give details of the flow analysis and typing of the λ-term

E = ((λg.(if0 c (g1 g2)3 (g4 (λy.(y506)7)8)9)10)11 (λf.(f12 (λx.x13)14)15)16)17.

This λ-term was suggested by Joe Wells, and it illustrates a key difference between

0-CFA and Schmidt’s analysis. Like in the earlier example of the paper, we assume

that the condition c of the if0-expression does not cause any run-time error. Written

without the labels and with the notation let x = e in e′ standing for (λx.e′)e, the

λ-term E looks like:

let g = λf.f(λx.x)

in if0 c (gg) (g(λy.y0)) .

We present two flow analyses of E. One will be in the style of 0-CFA and one will

be in the style of Schmidt, and we will show that they lead to different typings.

First, we do a 0-CFA-style analysis of the λ-term. Define aλg, aλy, aλf, aλx ∈
Closure(E), ρ ∈ FlowEnv (E) to be the unique solution to the next five equations,

and define next R0-CFA:

aλg = 〈(λg.(if0 c (g1 g2)3 (g4 (λy.(y506)7)8)9)10)11, ρ〉
aλy = 〈(λy.(y506)7)8, ρ〉
aλf = 〈(λf.(f12 (λx.x13)14)15)16, ρ〉
aλx = 〈(λx.x13)14, ρ〉
ρ = ∅[g : {aλf}][y : {aλx}][f : {aλf, aλy, aλx}][x : {aλx, Int}]

R0-CFA = { (ρ, g1, { aλf }),
(ρ, g2, { aλf }),
(ρ, (g1 g2)3, { aλx, Int }),
(ρ, g4, { aλf }),
(ρ, y5, { aλx }),
(ρ, 06, { Int }),
(ρ, (y5 06)7, { aλx, Int }),
(ρ, (λy.(y506)7)8, { aλy }),
(ρ, (g4 (λy.(y506)7)8)9, { aλx, Int }),
(ρ, (if0 c (g1 g2)3 (g4 (λy.(y506)7)8)9)10, { aλx, Int }),
(ρ, (λg.(if0 c (g1 g2)3 (g4 (λy.(y506)7)8)9)10)11, { aλg }),
(ρ, f12, { aλf, aλy, aλx })
(ρ, x13, { aλx, Int }),
(ρ, (λx.x13)14, { aλx }),
(ρ, (f12 (λx.x13)14)15, { aλx, Int }),
(ρ, (λf.(f12 (λx.x13)14)15)16, { aλf }),
(ρ, E, { aλx, Int }),
}
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Notice that we have (ρ, (y5 06)7, { aλx, Int }) rather than (ρ, (y5 06)7, { Int }).
This is because y can evaluate to (λx.x13)14, and (λx.x13)14 is applied to both

(λx.x13)14 and an integer, so the flow information for x is {aλx, Int}. Similarly, we

have (ρ, (g1 g2)3, {aλx, Int}) rather than (ρ, (g1 g2)3, {aλx}). The reader is invited to

check that R0-CFA ⊆ F(R0-CFA), R0-CFA is safe, and R0-CFA analyzes all its closure

bodies.

Notice that

collect(R0-CFA) = { aλg, aλf, aλy, aλx, Int }.
Notice also that

argres(aλg, R0-CFA) = { ({aλf}, {aλx, Int}) }
argres(aλy, R0-CFA) = { ({aλx}, {aλx, Int}) }
argres(aλf, R0-CFA) = { ({aλf, aλy, aλx}, {aλx, Int}) }
argres(aλx, R0-CFA) = { ({aλx, Int}, {aλx, Int}) }

The equation system TypeEqSys(R0-CFA) contains the following four equations:

Waλg = Waλf → (Waλx ∨ Int)

Waλy = Waλx → (Waλx ∨ Int)

Waλf = (Waλf ∨Waλy ∨Waλx )→ (Waλx ∨ Int)

Waλx = (Waλx ∨ Int)→ (Waλx ∨ Int)

Here is a solution ψ of TypeEqSys(R0-CFA):

ψ(Waλg ) = τ′ → σ

ψ(Waλy ) = (σ → σ)→ σ

ψ(Waλf ) = τ′

ψ(Waλx ) = σ → σ

where

τ = µα.((α ∨ Int)→ (α ∨ Int))

σ = τ ∨ Int

τ′ = µα.((α ∨ ((σ → σ)→ σ) ∨ (σ → σ))→ σ).

Notice that σ → σ = τ 6 σ. To see that τ′ is a type for (λf.(f12 (λx.x13)14)15)16,

notice that

τ′ = [τ′ ∨ ((σ → σ)→ σ) ∨ (σ → σ)]→ σ

and from Lemma (3.10) we have

τ′ ∨ ((σ → σ)→ σ) ∨ (σ → σ) 61 (σ → σ)→ σ.

From this we conclude that f12 has type (σ → σ)→ σ, and moreover (λx.x13)14 has

type σ → σ, so (f12 (λx.x13)14)15 has type σ, as required.

Next, we will do a Schmidt-style analysis of the λ-term. It turns out that for E,

the Schmidt-style analysis gives the same result as an Agesen-style analysis, since
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the argument sets of all the argument-result pairs are singletons, see below. Define

a1
λg, a

1
λy, a

1
λf, a

1
λx, a

2
λx, a

3
λx ∈ Closure(E),

ρ21, ρ22, ρ23, ρ24, ρ2h, ρ26, ρ27, ρ28 ∈ FlowEnv (E),

RSchmidt ∈ FlowJudgmentSet(E)

as follows:

a1
λg = 〈(λg.(if0 c (g1 g2)3 (g4 (λy.(y506)7)8)9)10)11, ∅〉
a1
λy = 〈(λy.(y506)7)8, ρ21〉
a1
λf = 〈(λf.(f12 (λx.x13)14)15)16, ∅〉
a1
λx = 〈(λx.x13)14, ρ22〉
a2
λx = 〈(λx.x13)14, ρ23〉
a3
λx = 〈(λx.x13)14, ρ25〉
ρ21 = { g : {a1

λf} }
ρ22 = { f : {a1

λf} }
ρ23 = { f : {a1

λy} }
ρ24 = ρ21[y : {a2

λx}]
ρ25 = { f : {a1

λx} }
ρ26 = ρ22[x : {a3

λx}]
ρ27 = ρ23[x : {Int}]
ρ28 = ρ25[x : ∅]

RSchmidt = { (ρ21, g
1, { a1

λf }),
(ρ21, g

2, { a1
λf }),

(ρ21, (g
1 g2)3, { a3

λx }),
(ρ21, g

4, { a1
λf }),

(ρ24, y
5, { a2

λx }),
(ρ24, 0

6, { Int }),
(ρ24, (y

5 06)7, { Int }),
(ρ21, (λy.(y

506)7)8, { a1
λy }),

(ρ21, (g
4 (λy.(y506)7)8)9, { Int }),

(ρ21, (if0 c (g1 g2)3 (g4 (λy.(y506)7)8)9)10, { a3
λx, Int }),

(∅, (λg.(if0 c (g1 g2)3 (g4 (λy.(y506)7)8)9)10)11, { a1
λg }),

(ρ22, f
12, { a1

λf })
(ρ23, f

12, { a1
λy })

(ρ25, f
12, { a1

λx })
(ρ26, x

13, { a3
λx }),

(ρ27, x
13, { Int }),

(ρ28, x
13, ∅),
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(ρ22, (λx.x
13)14, { a1

λx }),
(ρ23, (λx.x

13)14, { a2
λx }),

(ρ25, (λx.x
13)14, { a3

λx }),
(ρ22, (f

12 (λx.x13)14)15, { a3
λx }),

(ρ23, (f
12 (λx.x13)14)15, { Int }),

(ρ25, (f
12 (λx.x13)14)15, { a3

λx }),
(∅, (λf.(f12 (λx.x13)14)15)16, { a1

λf }),
(∅, E, { a3

λx, Int }),
}

Notice that (ρ28, x
13, ∅) ∈ RSchmidt , reflecting that E can evaluate to a copy of (λx.x13)14

that is never applied. The judgment (ρ28, x
13, ∅) helps ensure that RSchmidt analyzes all

its closure bodies. The reader is invited to check that RSchmidt ⊆ F(RSchmidt ), RSchmidt

is safe, and RSchmidt analyzes all its closure bodies.

Notice that

collect(RSchmidt ) = { a1
λg, a

1
λf, a

1
λy, a

1
λx, a

2
λx, a

3
λx, Int }.

Notice also that

argres(a1
λg, RSchmidt ) = { ({a1

λf}, {a3
λx, Int}) }

argres(a1
λy, RSchmidt ) = { ({a2

λx}, {Int}) }
argres(a1

λf, RSchmidt ) = { ({a1
λf}, {a3

λx}), ({a1
λy}, {Int}), ({a1

λx}, {a3
λx}) }

argres(a1
λx, RSchmidt ) = { ({a3

λx}, {a3
λx}) }

argres(a2
λx, RSchmidt ) = { ({Int}, {Int}) }

argres(a3
λx, RSchmidt ) = { (∅, ∅) }

The equation system TypeEqSys(RSchmidt ) contains the following six equations:

Wa1
λg

= Wa1
λf
→ (Wa3

λx
∨ Int)

Wa1
λy

= Wa2
λx
→ Int

Wa1
λf

= (Wa1
λf
→Wa3

λx
) ∧ (Wa1

λy
→ Int) ∧ (Wa1

λx
→Wa3

λx
)

Wa1
λx

= Wa3
λx
→Wa3

λx

Wa2
λx

= Int→ Int

Wa3
λx

= ⊥ → ⊥
Here is a solution ψ of TypeEqSys(RSchmidt ):

ψ(Wa1
λg

) = τ′′ → ((⊥ → ⊥) ∨ Int)

ψ(Wa1
λy

) = (Int→ Int)→ Int

ψ(Wa1
λf

) = τ′′

ψ(Wa1
λx

) = (⊥ → ⊥)→ (⊥ → ⊥)

ψ(Wa2
λx

) = Int→ Int

ψ(Wa3
λx

) = ⊥ → ⊥
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where

τ′′ = µα.((α→ (⊥ → ⊥)) ∧
(((Int→ Int)→ Int)→ Int) ∧
(((⊥ → ⊥)→ (⊥ → ⊥))→ (⊥ → ⊥))).

The typing produced via the Schmidt-style analysis is more precise. For example,

it gives λy.y0 the type (Int→ Int)→ Int, where 0-CFA leads to the type (σ → σ)→ σ,

where σ = τ ∨ Int, and τ = µα.((α ∨ Int)→ (α ∨ Int)).

Palsberg and O’Keefe (1995) presented a mapping from 0-CFA flow information

to the types of Amadio and Cardelli (1993). The type system of Amadio and Cardelli

(1993) involves subtyping and recursive types but not intersection and union types.

We will now compare the mapping of this paper with the mapping of Palsberg and

O’Keefe. We do this by showing the result of mapping the 0-CFA flow information

for the λ-term E studied in this section to the types of Amadio and Cardelli using

the mapping of Palsberg and O’Keefe. For our purposes here, we will not need the

recursive types so we only recall the non-recursive fragment of the Amadio/Cardelli

type system. Types are defined by the following grammar:

t, u ::= t→ t | Int | ⊥ | >.
The type rules are the same as in section 3, with the straightforward modification

that Rule (10), that is, the rule for λ-abstraction, introduces just a single function

type rather than an intersection of function types. Subtyping is defined by the rules:

t′ 6 t u 6 u′

t→ u 6 t′ → u′
⊥ 6 t t 6 > Int 6 Int.

It is straightforward to show that 6 is reflexive and transitive.

The mapping of Palsberg and O’Keefe maps the 0-CFA flow information for E

to a type derivation for E which we sketch here:

A = ∅[g : ((> → >)→ >)→ >,
y : > → >,
f : (> → >)→ >,
x : >]

A ` (g1 g2)3 : >
A ` 06 : >
A ` (λy.(y506)7)8 : (> → >)→ >
A ` (λg.(if0 c (g1 g2)3 (g4 (λy.(y506)7)8)9)10)11 :

(((> → >)→ >)→ >)→ >
A ` (λx.x13)14 : > → >
A ` (λf.(f12 (λx.x13)14)15)16 : (((> → >)→ >)→ >
A ` E : >.
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Subtyping is needed twice in that type derivation: 1) to show A ` (g1 g2)3 : > we

need

((> → >)→ >)→ > 6 (> → >)→ >,
and 2) to show A ` 06 : > we need Int 6 >.

Compared with the previous 0-CFA-based typing, the biggest difference is the

type for (λf.(f12 (λx.x13)14)15)16. The type > plays the role of σ = τ ∨ Int.

It is straightforward to show that E cannot be typed in the fragment of the

Amadio/Cardelli type system which excludes the rule for comparing function types.

This was noticed by Joe Wells.

7 A flow-type system

In a flow-type system, types and flow information are combined. Such flow-type

systems have been studied by numerous authors (Tang and Jouvelot, 1994; Heintze,

1995; Banerjee, 1997; Wells et al., 1997; Turbak et al., 1997; Dimock et al., 1997).

A flow-type system is useful as an interface between a flow-analysis algorithm and

a program optimizer. We will use our equivalence theorem to guide the design of a

new flow-type system. Our flow-type system is based on three design decisions:

1. We want the set of typable terms to be the same as the set of terms typable in

T61
. We achieve that by annotating the types fromT61

with flow information.

2. We want to annotate the types in a way which is suggested by the mapping

from flows to types in section 5.2. The key property of that mapping is that

a closure is mapped to an intersection type. Thus, we choose to annotate the

intersection types.

3. Following Wells et al. (1997), we want to annotate the intersection types with

sets of labels, not sets of closures.

We use π to range over finite sets of labels. Flow types are of one of the forms:∨
i∈I

(∧
k∈K

(σik → σ′ik)

)πi

(∨
i∈I

(∧
k∈K

(σik → σ′ik)

)πi
)
∨ Int.

A precise definition of the set of types and of type equality can be given like in

section 3, we omit the details. We use FlowType to denote the set of flow types.

We use δ, σ, τ to range over flow types. We use FlowIntersectionType to the denote

the set of flow types of the form (
∧
k∈K(σk → σ′k))π . We use Q to range over

FlowIntersectionType. We use T to range over phrases of the form
∧
k∈K(σik → σ′ik).

We use u to range over type expressions of the forms Int and Q.

Definition 7.1

(Acceptable Flow-Type Orderings) We say that an ordering 6 on flow types is

acceptable if and only if 6 satisfies the five conditions:

1. 6 is reflexive,
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2. 6 is transitive,

3. if (
∧
k∈K(σk → σ′k))π 6 (τ1 → τ2)π

′
, and u 6 τ1, then there exists k0 ∈ K such

that u 6 σk0
and σ′k0

6 τ2,

4. (
∧
k∈K(σk → τk))

π 66 Int, and

5. Int 66 (σ → τ)π .

As in section 3.4, the type system is parameterized by a type ordering. Given

a type ordering 6, we will inductively define the set TF
6 of valid type judgments.

Rules are (9)–(15), except that the rules for abstraction and application are modified

to look as follows:

∀k ∈ K : A[x : σk] ` e : τk
A ` (λx.e)l : (

∧
k∈K(σk → τk))π

(l ∈ π) (24)

A ` e1 : (σ → τ)π A ` e2 : σ

A ` (e1e2)l : τ
(25)

To obtain a type preservation result, we can repeat the proofs of Theorem 3.6 and

the associated lemmas, with small modifications, and obtain the following result. We

omit the proof.

Theorem 7.2

(Flow-Type Preservation) For an acceptable flow-type ordering 6, if TF
6 . A ` e : τ

and e→V e
′, then TF

6 . A ` e′ : τ.

Define

LabSet : FlowType → P(Lab)

LabSet(Int) = ∅
LabSet(⊥) = ∅

LabSet(τ ∨ τ′) = LabSet(τ) ∪ LabSet(τ′)
LabSet(Tπ) = π

We say that an ordering 6 on flow types respects flow if and only if

if σ 6 τ, then LabSet(σ) ⊆ LabSet(τ).
Theorem 7.3

(Flow Soundness) For an acceptable flow-type ordering 6 which respects flow, if

TF
6 . A ` e : τ and e→∗V (λx.e′)l , then l ∈ LabSet(τ).

Proof

From Theorem 7.2 and an induction argument we have TF
6 . A ` (λx.e′)l : τ. There

are now two cases depending on which flow-type rule was the last one used in the

derivation of A ` (λx.e′)l : τ.

• Rule (24). We have τ = (
∧
k∈K(σk → τk))

π , where l ∈ π = LabSet(τ).
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• Rule (15). The last part of the derivation of A ` (λx.e′)l : τ is of the form

A ` e : σ

A ` e : τ
(σ 6 τ)

where σ = (
∧
k∈K(σk → τk))

π , and l ∈ π = LabSet(σ) ⊆ LabSet(τ).
q

We now define an acceptable flow-type ordering 62 which respects flow. We write

σ 62 τ if and only if we can derive σ 62 τ using the following rules.

σ 62 δ δ 62 τ

σ 62 τ

σ 62 σ ∨ τ′

∀i ∈ I : σi 62 (τ1 → τ2)π∨
i∈I σi 62 (τ1 → τ2)π

τ1 62 σ1 σ2 62 τ2

(σ1 → σ2)π
′ 62 (τ1 → τ2)π

(π′ ⊆ π)

(
∧
k∈K(σk → σ′k))π

′
62 (τ1 → τ2)π

(
∧
k∈K ′(σk → σ′k))π

′ 62 (τ1 → τ2)π
(K ⊆ K ′)

(∧
k∈K

(σk → σ′k)

)π

62

((∨
k∈K

σk

)
→
(∨
k∈K

σ′k

))π

Theorem 7.4

The relation 62 is an acceptable flow-type ordering which respects flow.

We omit the proof; it is similar to the proof of Theorem 3.12 with a straightforward

extension to show that 62 respects flow.

It is straightforward to show that a program is typable in T61
if and only if it

is typable in TF
62

. From this observation and Corollary 3.9, we get that a program

typable in TF
62

cannot go wrong.

We invite the reader to construct a flow-type derivation for the example program

in section 6.

This completes our development of the flow-type system. Let us now compare it

with the one of Wells et al. (1997). Notable differences include:

• In Wells et al. (1997), there is a general ∧-introduction rule. In our system, ∧
can only be introduced at the point of typing a λ-abstraction.

• In Wells et al. (1997), individual function types are annotated. In our system,

intersection types (possibly consisting of just one function type) are annotated.

• In Wells et al. (1997), the types are annotated with two labels sets, one for

abstraction labels and one for call-site labels. In our system, the types are

annotated with just one label set, although it is straightforward to extend our

system to annotate in the style of Wells et al. (1997).
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• In Wells et al. (1997), the calculus is explicitly typed. Our calculus is implicitly

typed. It should be possible to construct an explicitly-typed version of our

calculus, using ideas from Wells et al. (1997).

• In Wells et al. (1997), subtyping for function types allows adding abstraction

labels and removing call-site labels. Our notion of subtyping also allows adding

abstraction labels and, in addition, it allows ‘deep subtyping’, i.e. changes to

the argument and the result type.

• In Wells et al. (1997), intersection and union types do not enjoy any algebraic

laws like they do in our calculus. The design choice in Wells et al. (1997) has

advantages in the setting of program optimization; see Wells et al. (1997) for

details.

In spite of these differences, the calculi in Wells et al. (1997) and this paper are quite

similar. Derived systematically via our equivalence theorem, our flow-type system

should be a good interface to the family of polyvariant analyses that we study.
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