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THE NUMERICAL SOLUTION OF STOCHASTIC
DIFFERENTIAL EQUATIONS

P. E. KLOEDEN and R. A. PEARSON

(Received 14 September 1976)

Abstract

A method is proposed for the numerical solution of Ito stochastic differential
equations by means of a second-order Runge-Kutta iterative scheme rather
than the less efficient Euler iterative scheme. It requires the Runge-Kutta
iterative scheme to be applied to a different stochastic differential equation
obtained by subtraction of a correction term from the given one.

It was observed by Wright [8] that different iterative schemes for the numerical
solution of stochastic differential equations

dxt = a(t, xt) dt+b{t, xt) d£t, (1)

where £, is a Wiener process, converge to different solutions for the same noise
sample and initial condition. This is in contrast to their deterministic counterparts
for ordinary differential equations, which converge to the same solution.

Strictly speaking stochastic differentia] equations (1) are really integral equations

xt = x0+\ a(s,xs)ds+\ b(s,xs)d£s, (2)

where the second integral is either an Ito or Stratonovich stochastic integral, in the
definitions of which the functions are evaluated, respectively, at the left-hand
endpoint and midpoint of each partition subinterval (for example, [4], [6], [7,
chapter 3]). Consequently the Euler iterative scheme

Xn+1 = xn + a(tn> xn) h + b(tn, Xn) £n (3)

converges to a sample path of the Ito solution of (2) whereas the second-order
Runge-Kutta iterative scheme

,a(tn, xn) + a(tn+1, xn+a{tn, xn) h+b(tn, xn) £„)} h
*n) + W»+i, *n + <*('«, *n) h + b(tn, Xn) £„)} £n (4)

converges to a sample path of the Stratonovich solution of (2). In these iterative
schemes a partition to<t1< ...<tN is used with uniform step length h = ti+1—tt

and an N^O,^) distributed noise sample £0>£i> •••>£#-!> where £t represents the
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change in noise between points tt and ti+1. The above convergences can be proved by
similar arguments to those in Theorems 8.1 and 11.1 of [4]. Moreover, it can be
shown by straightforward but tedious error analysis, as in [5], that the Euler
iterative scheme (3) is of order 0P(M) and the second-order Runge-Kutta iterative
scheme (4) is of order Op(h*), where Op(h") for some v > 0 means

lim h~" Prob{| error I ̂  e} = 0

for all e > 0. The fundamental feature of such error analysis is that for such noise
changes ^ as above

for m = 1,2,3,....
Most applications of stochastic differential equations use the Ito solution as it is a

Markov process. Consequently, the Euler iterative scheme is used to obtain
numerical solutions (for example, [1]). The second-order Runge-Kutta iterative
scheme (4) would be more efficient, but leads to the Stratonovich solution rather
than the required Ito solution. However, the Ito solution of (2) coincides with the
Stratonovich solution of a different stochastic integral equation

f'f 8b ) C'

xt = x0+ \ a(s, x8) - %b(s, x8) -T- (s, xs) }ds + b(s, x8) d{j8. (5)

This follows from the relationship

(5) {'b(s,xs)dis = (I) fV*s)<%+i [ b(s,xAs,x8)ds
between the Stratonovich and Ito stochastic integrals [6, equation 7']. The second-
order Runge-Kutta iterative scheme applied to (5) will converge to a sample path
of the Stratonovich solution of (5) or equivalently to a sample path of the Ito
solution of (2). Hence it is proposed that in order to solve (2) numerically for its ltd
solution, the second-order Runge-Kutta iterative scheme for (5) should be used.

To illustrate the improved efficiency offered by this proposal, a sample path with
initial condition *0 = 1 of the Ito solution of the stochastic differential equation

dxt = xtd{t (6)

was determined numerically by both the Euler iterative scheme for (6) and the
second-order Runge-Kutta iterative scheme for

df;t (7)

over the time interval 0 < / < 1. Equation (6) was chosen because its Ito solution is
known analytically, namely

/). (8)
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In order to compare convergence rates the calculations were repeated for
successively finer approximations to the same noise sample by successively doubling
the number of partition subintervals in such a way that the value of an approxima-
tion to the Wiener process g(t) at any partition point tf equalled the values of finer
approximations at tt. The computed values of the sample path at time t = 1 from
both schemes are plotted against the number of partition subintervals in Fig. 1 and
are compared with the analytic solution (8) calculated with the approximation to
the Wiener process at time / = 1. In Fig. 2 the logarithm of the error for each
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Fig. 1. The solution at t = 1, h = £n. • , Euler method; • , Runge-Kutta second
order; • • • • • Runge-Kutta fourth order with Gill's coefficients.
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Fig. 2. The error in the solution. • , Euler method; A, Runge-Kutta second order; • , Runge-
Kutta fourth order with Gill's coefficients; , corresponds to an error Oh(h*); ,

corresponds to an error Op(h
l); • • • •, corresponds to an error Os(/i»).
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scheme is plotted against the logarithm of the step length h. The graphs of the Euler
and second-order Runge-Kutta iterative schemes have approximate slopes | and §,
respectively, which is in accord with their respective error bounds of OpQi*) and

The two figures also include analogous results for the fourth-order Runge-Kutta
iterative scheme with Gill coefficients (for example, [2]) applied to equation (8).
This seems to converge to the Stratonovich solution of (8) with error bound OJhP)
(the flattening out of its graph in Fig. 2 is due to rounding off the irrational Gill
coefficients). This and other fourth-order Runge-Kutta iterative schemes (for
example, [2], [3], [8]) converge much more rapidly than the second-order Runge-
Kutta iterative scheme, but it has not yet been theoretically established to which
solution of a stochastic differential equation they converge. For instance, it was
found that the fourth-order Runge-Kutta iterative schemes with Runge [2] or
Kutta [3] coefficients applied to equation (8) did not converge to the Stratonovich
solution of equation (8).

References

[1] D. J. Clements and B. D. O. Anderson, "Well-behaved ltd equations with simulations
always misbehaved", IEEE Trans. Automatic Control AC-IS (1973), 676-677.

[2] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, John Wiley
and Sons, New York (1965).

[3] S. S. Kuo, Computer Applications of Numerical Methods, Addison-Wesley, Reading,
Mass. (1972).

[4] E. J. McShane, "Stochastic differential equations and models of random processes", in
Proc. Sixth Berkeley Symp. Probability and Mathematical Statistics (1971) 263-294.

[5] N. J. Rao, J. D. Borwankar and D. Ramkrishna, "Numerical solution of ltd integral
equations", S1AMJ. Control 12 (1974), 124-139.

[6] R. L. Stratonovich, "A new representation for stochastic integrals and equations", SIAM
J. Control 4 (1966), 362-371.

[7] E. Wong, Stochastic Processes in Information and Dynamical Systems, McGraw-Hill,
New York (1971).

[8] D. J. Wright, "The digital simulation of stochastic differential equations," IEEE Trans.
Automatic Control AC-19 (1974), 75-76.

Department of Mathematics
Monash University
Clayton, Vic. 3168
Australia

https://doi.org/10.1017/S0334270000001405 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001405

