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THE ALGEBRAIC INDEPENDENCE OF CERTAIN 
EXPONENTIAL FUNCTIONS 

W. DALE BROWNAWELL 

In 1897 E. Borel proved a general theorem which implied as a special case the 
following result equivalent to his celebrated generalization of Picard's theorem 
[2]: Iffij . . . ,fm are entire functions such that for each 1 ^ i < j ^ m,f \ — fj$. 
C, then the functions exp/i, . . . , exp/m are linearly independent over C. In 1929 
R. Nevanlinna [6] extended Borel's theorem to consider arbitrary C-linearly 
independent meromorphic functions <pi, . . . , <pm satisfying <pi + . . . + (pm = 1. 

Recently R. Narasimhan [5] has applied Nevalinna's basic approach to show 
that if / i (z ) , . . . , /w(z) are entire functions such that for each 1 5J i < j ^ m, 
fi~fj& C, then exp/i, . . . , exp/m are linearly independent over C[z]. Here z 
will denote the w-tuple (zi, . . . , zn), C[z] will denote the polynomial ring in 
zi, . . . , zn) and z0 will denote the {n + 1)-tuple (z0, zi, • • , zn). Narasimhan 
took complex lines through the origin to reduce the general n variable case to 
n — 1. 

More recently P. Bundschuh [3] has suggested that i / / i ( z ) , . . . , /m(z) are 
entire and for each 1 ^ i < j ^ m, ft — /) ? C[z], //̂ ew exp/i , . . . , exp/m arg 
linearly independent over the ring of functions of finite order. Unfortunately his 
proof for n > 1 is inconclusive. As usual, we say that the entire function F(z) 
has order 

rv\ v log+ log+ M(r, F) 
p(^) = hm sup —- f ——-

log r 
where 

M(r, F) = max | F « | and log-* = {%** ff J ^ < L 

The purpose of this note is threefold: First of all, we will establish a theorem 
which includes the above results by explicitly relating the degree of ft — fj to 
the order of the functions which are coefficients in a dependence relation. 
Secondly, we will prove a general theorem which can cope with dependence 
relations having as coefficients certain entire functions which are not of finite 
order with respect to a distinguished variable. Finally we note that theft can be 
meromorphic functions. 

For pi, . . . , pw G R^o, let RPlt...tPn be the ring of entire functions F{z) such 
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that for all fixed ziy . . . , zu . . . , zn 6 C, 

r log+ log+ M(r, F) . 1 . . . 
lim sup — f ^ Pu I ^ i ^ n. 

r^œ lug r ~ H - ~ 

THEOREM 1. Let fi(z),... , /m(z) be mer ornorphic functions. Let pl, ..., pn 6 R^o. 
77&ew exp (/i), . . . , exp (/m) are linearly dependent over RPl,...,Pn if and only if 
for some 1 ^ k < I ^ m, fk(z) - / , (z) G C[z] with degzJk(z) - / , ( z ) ^ P l, 
/or a// '̂, 1 ^ i ^ n. 

Narasimhan's result follows on taking pi = . . . = p„ = 0; Bundschuh's on 
considering the ring R = UJLi RPt...tP. 

It may be somewhat unsatisfying that the coordinates chosen should play 
such a special role in Theorem 1. However one can deduce as a corollary the 
following result which does not depend on the selection of any particular co­
ordinates. 

COROLLARY. Letfx(z), . . . , /m(z) be mer ornorphic functions. Then exp/i, . . . , 
exp fm are linearly dependent over the ring of entire functions of order ^ p if and 
only if\ for some 1 ^ k < I ^ m,fk(z) —ft(z) £ G[z] with total degree at most p. 

To see this, we introduce a linear change of variables by %\ = s / , Z2 = 22' + 
X2s

,i, . . . , zn — z'n + \nz'i, with each 0 < |X |̂ ^ 1. By the Weierstrass Prepa­
ration Theorem, we can easily choose the X* such that whenever fk(z) — fi(z) 
is a polynomial, then after the change of variables, the degree with respect to 
z\ is the total degree of fk — ft. Since for F(z') = .F(z), 

M(r, F(z)) ^ M(2r, F(zf)) S M(±r, F(z)), 

the coefficients of a linear dependence relation have order < pas functions of 
z exactly when they do as functions of z'. Consequently by Theorem 1, for 
some 1 ^ k < l S w, /jfe(z') — fi{zr) £ C[z'] with degree with respect to z\ 
at most p. By changing the variables back to 2, we see that/fc(z) — / i(z) Ç C[z] 
has total degree ^ p. 

A. Ehrenfeucht has pointed out to me that one can also show by a Baire 
category argument that an entire function which is a polynomial of degree S p 
on each complex line through the origin is a polynomial of degree ^ p. Thus 
one could give a proof more in the spirit of Narasimhan's approach of reducing 
the question in n variables to the corresponding one in one variable. 

To state the second theorem mentioned above, it is necessary to state a few 
conventions. Let X : R>0 —> R>o be monotonically increasing and, if non-con­
stant, log r = 0(X(r)). Here, as below, by / = 0(g) we mean that there is a 
constant C > 0 such that off a subset of R>o of finite measure, f(r) < Cg(r). 
It follows from the standard inequalities of Nevanlinna theory (see Section I 
below) that the set 0\ of meromorphic functionsf{z) with T(r,f) = 0(\(r)) is 
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a differential field, where T(r,f) denotes the Nevanlinna characteristic func­
tions. 

For pi, . . . , pn £ R^o, let 0\tP Pn denote the field of meromorphic func­
tions /(z0) such that 

a) T(r,f) = 0(\(r)) for every fixed zh . . . , zn f C 

b) lim sup ——. — g pi for every fixed z0, Si, . . . , zt, . . . , zn £ C 

It is a fundamental result [4, Theorem 1.7] that for an entire function/(z) of 
order p, 

r log 7 > , / ) 
p = lim sup —~——— . 

r-*» log r 
Thus condition b) says that as a function of z* alone,/ is of order ^ pi} whether 
/ is entire or not. Actually Theorem 1 holds over the field 0Pl,...,Pn of meromor­
phic functions of order ^ pt with respect to zt, 1 ^ i ^ w, as one sees from the 
following result. 

THEOREM 2. Le/ / i (z 0) , . . . , /m(z0) fre meromorphic functions. Then 
exp(/i), . . . , exp(/w) are linearly dependent over 0\tPl ...,Pn if and only if, for 
some 1 ^ k < I ^ m, 

/*(z0) - / j ( z o ) = Vvbv(z*)zv 

w&ere 0 ^ J>* ^ p<, 1 S i S n> and each bp(zo) is entire with exp(5„) G Ox. i/ere, 
a5 èe/era;, y = {yu • . • , vn) and zv = Z\l . . . zn"

n. 

Theorems 1 and 2 are equivalent to theorems about the algebraic indepen­
dence of certain exponential functions. For example, Theorem 1 is equivalent 
to the following result. 

THEOREM la. Let / i (z ) , . . . , /m(z) be meromorphic functions. Then 
exp(/i), . . . , exp(/m) are algebraically dependent over 0Pl,...,Pn if and only if 
there are integers rly . . . , rmj not all zero, with 

fx/iCz) + . . . +rmfm(z) e C[z] 

having degree at most pi with respect to zu 1 = i = w. 

Clearly the conditions listed in the theorems are sufficient to guarantee 
dependence. The proofs below will only be concerned with necessity. 

Moreover Theorem 2 for the n variables zo, Z\, . . . , zn-\ implies Theorem 1 
for the n variables zi, . . . , zn\ We simply rename Zo to be zn and take the special 
case X(r) = rpn+€, 0 < e < 1. The linear dependence implies that each bv(zn) 
is entire and by the remark at the end of Section I, 

Mir, bv) ^ 6T(2r, eb>) + 0(1) = 0 ( W - ) . 
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Consequently bv is a polynomial of degree at most pn by the Cauchy inequal­
ities. 

For the case n = 0, we indicate briefly below the changes necessary in 
Nevanlinna's classical proof of Borel's theorem to achieve the desired result. 
To obtain a correlation between the growth and degree in each of the n + 1 
variables and to allow more general growth in a distinguished variable, we had 
to abandon Narasimhan's technique for reduction to one variable. Instead we 
induct on the number of variables, employing a variation on Hurwitz's proof, 
as it appears in [1], of the theorem enunciated by Weierstrass that an entire 
function which is a polynomial in each variable separately is indeed a poly­
nomial. 

This paper is based on work done while the author had a visiting position at 
the University of Colorado. He wishes to express his thanks to his colleagues 
there for their hospitality and to K. T. Hahn for pointing out the classical 
roots of the problem of linear dependence of functions. 

I. Estimates from Nevanlinna theory. We collect here the estimates used 
to show that 0\ is a different field. For meromorphic/(s) and r ^ 0, set 

m{r,f)=~- r\og+\f(reie)\dd 
Zw J o 

N(r,f) = f {n{t J) - n(0J))dt/t + n(0,f) log r, 
•/ 0 

where n(t,f) is the number of poles of f(z), counting multiplicités, in |z| S t. 
Then the characteristic function of f is defined to be 

T(r,f) = m(r,f) + N(r,f). 

Evidently for entire functions, T(r,f) = ni(r,f). 
When/(s) is meromorphic and r ^ 0, we have 

T(T, t.f)^È T(r,ft) + log p 

T(T, n /<) é E T(r,ft) 
\ i= l / i= l 

and the corresponding inequalities on replacing T by m [4, p. 5] from the corre­
sponding inequalities on log+ applied to sums and products. 

If f(z) is a meromorphic function with a zero (or pole) of order X ^ 0 
(or —X ^ 0) at z = 0, then Jensen's formula applied to rxf(z)/zx on the circle 
\z\ = r shows that 

T(r,l/f) = T(r,f) - log|Cx| 

where C\ is the first non-zero coefficient of the Laurent series expansion for/(z) 
about z = 0 [4, pp. 3, 4]. 
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If f{z) is meromorphic and not constant, then outside a set E(f) of finite 
length in R^0, we have [4, p. 40] 

fn(r,f'/f) ^ 101og+ T(rJ) + 10 log r. 

Of course if f(z) is a non-zero constant, then m(r}f/f) = 0. In particular we 
conclude that for / entire, 

m(r,f) ^ 10 log+ m(r, ef) + 10 log r 

outside an exceptional set. 
Moreover, when/(s) is meromorphic with only finitely many zeros and poles 

and T(r,f) = O(logr), then/(z) is a rational function [4, p. 21].. 
Finally, when f(z) is entire with real part u(z), we consider Schwarz's 

Formula in polar coordinates for \z\ = r < R: 

On taking R = 2r, we find that 

\m\e~- fT\u(2reie)\dff 
Air */ o 

^ ~ f 2 ' log + |exp/(2re<s)[ + Iog+ |exp (-f(2reie))\d6 

^ 37\2r, ef) + 3T(2rt e~f) 

^ $T(2r, ef) + 0(1). 

II. Proof of Theorem 2 when n = 0. The desired result could be deduced 
as a corollary of the following result of R. Nevanlinna [6, p. 116] mentioned 
above : 

THEOREM. Let <pu . . . , <pm be meromorphic functions, linearly independent 
over C, which satisfy the relation 

(1) <pi + . . . + ç>m = 1. 

Then for 1 ^ i' :g m, 

m 

T(r, Vt) < £ N(r, 1/Vt) + N(r, Vi) + N(r, D) 

m 

- Z N(r, <pk) - N(r, \/D) + 0(max log(r, T(r, <p,))), 
k=l j 

where D is the Wronskian of <pi, . . . , <pm. 

To apply Nevanlinna's result to our situation, we assume that we have a 

https://doi.org/10.4153/CJM-1976-094-9 Published online by Cambridge University Press

file:///m/e~-
https://doi.org/10.4153/CJM-1976-094-9


EXPONENTIAL FUNCTIONS 973 

minimal non-trivial linear dependence 

g\ e x p / i + . . . + gm+i e x p / w + i = 0 

with gt G 0\. Then define, for 1 ^ i ^ m, 

(2) <p* = -g i /g r o +i exp(fi - fm+1) 

to obtain a relation of the form (1). By the minimality of our relation, the <pf 

are C-linearly independent (even 0\-linearly independent) . We can apply 
Nevanl inna 's theorem as soon as we know the <pt are meromorphic. However, 
after differentiating our relation (1) m times, we obtain a system of linear 
equations in the exp(/* — / m +i ) . T h e determinant of coefficients is equal to the 
(non-zero) Wronskian D multiplied by n (exp( / m +i — ft) and is thus a rational 
function in the guf't — f'm+i a n d their derivatives. Since the de terminant of 
coefficients is non-zero, we can solve for each exp(/< — /m+i) by Cramer 's rule 
to show tha t it is a rational function in the gu f i — f'm+i a n d derivatives, and 
hence is a meromorphic function. Consequently e a c h / i — fm+i is entire, which 
is wha t we needed to apply Nevanlinna 's result. However, the a rgument we 
have jus t given is essentially the first par t of Nevanlinna 's proof. (So the reader 
may consult [6, Chapter V] for details if need be.) I t thus comes as no surprise 
t ha t we can now just as easily finish the argument directly as to appeal to 
Nevanl inna 's result. 

For since each exp(/* — fm+i) is a rational function in the guf'i — f'm+i a r , d 
derivatives, the inequalities of Section I show tha t each 

T(r, exp( / i - / r o + i ) ) = 0(X(r) + max , T(r,f', - f'm+i)) 

= 0(\(r) +\ogr 

+ max,- log T(r, e x p ( / , - fm+i))). 

T h u s if s o m e / j — fm+\ is not a constant (the only way exp(fi — fm+i) could be 
a rational function), 

max,. T(r, exp(ft - fm+i)) ^ 0(\(r)) 

as claimed. 

III . Proof of T h e o r e m 2. T h e proof proceeds by induction on n. We may 
thus assume Theorem 2 for n = 0 and Theorem 1 for arbi t rary n in order to 
prove Theorem 2 for n. In the following discussion v = (vi, . . . , vn) will run 
through all possibilities with 0 ^ vt ^ pi} 1 S i S n. 

Let every proper subset of {exp(/i) , . . . , exp(/w)} be linearly independent 
over 0x,Pl PB, but 

(3) g!(zo)exp(/i(z0)) + . . . + gm (z 0 )exp(/m (z 0 ) ) = 0 

be a non-trivial dependence relation over 0x tP l,... fPn. Since by the Weierstrass 
Preparat ion Theorem, the zeros of non-constant holomorphic functions locally 
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form finitely many hyper-surfaces, there is an open set 0 T^- D0 X Dn Ç Cw+1 

with Do open in C and Dn open in Cn such that none of the gi(z0), . . . , g™(z0) 
vanish anywhere on D0 X Dn and such that / i (z 0 ) , . . . ,/m(z0) remain bounded 
there. 

A. Let [ /be a non-empty open subset of Dn. For fixed u £ U, define an 
equivalence relation on / i , . . . , /m by /* ^ / ^ if and only if /*(zo, u) -fj(zo, u) 
is an entire function of z0 and, as a function of z0, exp(/i(s0, w) -fj(zo, u)) 6 0\. 
If there are r equivalence classes, then we select representatives /iA. for the 
classes and deduce from (3) that for z0 = (s0, w), s0 G C arbitrary, 

r 

(4) £ G,(zo)exp/J t(zo) = 0, 

where 

Gk = Z ^ e x p ( / ; - - / t t ) 

and the sum for Gk is over all j having/^ ~ fik with respect to this particular u. 
Then, as a function of s0 alone, each Gk £ 0\. By Theorem 2 in the case 

n = 0, we conclude that each Gk(zo, u) vanishes identically as a function of 
ZQ, else some/^ ~fn,k ^ J, contrary to our selection of representatives. Mul­
tiplying by exp(/^(z0, u) gives, for our u, a subrelation 

(5) Z gj(*o, u)expfj(z0, u) = 0 

for all zo, where the sum is over all j with /,- ~ fik at w. 
By continuity in the last n variables, we see that the set of u G U for which 

each subrelation (5) holds is closed in U. But for given u G U and given k, 
1 ^ k ^ m, fk is involved in at least one subrelation (5) derived in the above 
manner. Thus for fixed k, £7 can be written as a finite union of relatively closed 
subsets indexed by the relations (5) which hold on them. (That is, to each 
sub-relation (5) which comes from the relations at any point u of U and which 
involves/#, there corresponds the subset of U on which (5) holds.) 

Consequently we know that for given fk, there is a relation (5) holding on 
some subset Uk of U with a non-empty interior / . By construction we know 
that there is a Uo £ Uk, but, as far as we know thus far, not necessarily in / such 
that for all /^ involved in the relation (5) corresponding to Uk, fj ~ fk at UQ. 

Since (5) holds on C X / , it holds on any open connected set containing 
C X / where the fj involved remain finite by the Monodromy Theorem. We 
conclude that (5) holds on all of Cn+1. But by the minimality of (3), equations 
(3) and (5) must be the same. Since U was an arbitrary open subset of Dn and 
since k was arbitrary, we have just shown that there is a dense set 5 of points 
u £ Dn such that for any 1 ^ k ^ m and any u G S, 

exp(fk(zQ,u) —fm(z0,u)) e 0\. 

Let N = IIJU (1 + [Pi]). Since 5 X . . . X 5 is dense in Dn X . . . X Dni the 

https://doi.org/10.4153/CJM-1976-094-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-094-9


E X P O N E N T I A L FUNCTIONS 975 

Weierstrass Preparat ion Theorem shows tha t we can choose Zi, . . . , zN G 5 
such tha t 

(6) det 

Hi) 

Hi) 

HN) 

HN) 

^ 0 , 

where the v^) run through the distinct v with 0 ^ ^ ^ pi, 1 ik i S n. 

B. Now for any fixed w G Do, we know from Theorem 1 for n t h a t there is a 
ky 1 S k ^ m — 1, and there are complex numbers av>k(w) such t ha t 

(7) / * ( w , z ) -fm(w,z) = E » . ^ * W z F 

for all z G C*. We can write aVjk(w) = bV)k(w)/ck(w) where 

(8) k(w)|2 + E, K*(«0I2 = i. 

Take a convergent sequence {^j^Li from Z>0 for which (7) involves the same 

k. Then from (8), there is a subsequence {T£/^-}°°=I with 

c*Ov) —> c ^ 0, bVtk(wtj) —> &„,*. 

Then by the continuity of fk(Zo) — /m(Zo) in £0, (7) still holds in the limit. So 
the set .S* of w G Do for which (7) involves the same k is closed in D0. Bu t 
Do = W ^ i 1 S * . So for a t least one k, Sk contains a non-empty open set J0, and (7) 
holds on the whole open set IQ X C", where aPyk(w) varies with w G Io-

C. Now for any z0 = (zo, z ) G Io X Ai» (7) shows tha t the de terminant is zero: 

(9) det 

, K O fk(zo, z) -fm(z0, z) z 
Mzo, Zi) -fm(zo, zx) ZiK l ) 

,KiV) 

Z i HN) 

fk(Z0> ZN) — fm(Zo, ZN) H\) HN) 

= 0. 

T h u s (9) holds on an open set in Cw + 1 and, by the Monodromy Theorem, on all 
of Gn+1. In the usual expansion of this determinant , the coefficient of fk(z0) — 
fm{Zo) is the non-zero constant of (6). But this gives the desired expression for 
fk(zo) — fm(Zo), for we know tha t Zi, . . . , zB Ç S and thus, as a function of 
zo, each 

exp(/*(s0 , z«) —fm(zQ,Zi)) G Ox. 

I t is an open problem to determine to what extent more rapid growth can be 
allowed with respect to z\, . . . , zn in the coefficients of a dependence relation. 
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