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Abstract. We present a review of the different methods currently developed to determine the
deflection of light rays due to gravity. The aim of these methods is primarily to calculate the
angular distances with an accuracy of the order of microarcsecond.
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1. Introduction
Space astrometric missions like Gaia or SIM are aimed to reach an accuracy of the

order of microarcsecond (μas) in the measurements of the positions of celestial objects.
We give a review of the main methods which are at our disposal to treat the high-accuracy
propagation of light in the framework of metric theories of gravity.

2. Newtonian approach
The idea that light might be deflected by a gravitating body has appeared a long time

before Einstein. A Newtonian deflection δ̂N was calculated for an unbound orbit in the
field of an isolated, spherically symmetric body of mass M around 1784 by Cavendish
and then by Soldner in 1801 (see Will 1988). These old results are equivalent to the exact
formula

sin
δ̂N

2
=

GM

V 2b

[
1 +

(
GM

V 2b

)2
]−1/2

, (2.1)

where G is the gravitational constant, V is the speed of light at infinity and b the impact
parameter of the ray. For a ray grazing the surface of the Sun, Eq. (2.1) yields approxi-
matively half the value predicted by general relativity, that is δ̂N = 0.875 arcsecond.

It may be concluded from Eq. (2.1) that the gravitational deflection of light should be
taken into account in modern astrometry even if Newtonian theory was right.

3. Modern, relativistic approach: metric theories
Newton’s theory is now replaced by the so-called relativistic metric theories. So we

suppose henceforth that space-time V4 is endowed with a Lorentzian metric g describing
gravity. Recall that this metric enables to define the scalar product X.Y of two vectors
X and Y at a given point: in any coordinate system (xα ), one has X.Y = gαβ XαY β =
gαβ XαYβ . We put X2 = X.X = gαβ XαXβ . The signature chosen for g is (+,−,−,−).

At the 1 μas level of accuracy, the propagation of light may be analyzed within the
geometric optics approximation. Then light rays are null geodesics of space-time (see
Section 5). Recall that a curve is said to be null when its tangent vector lα is a null
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vector, that is a vector such that

l2 = gαβ lα lβ = 0. (3.1)

Null geodesics were determined in a closed-exact form for Schwarzschild metric in de
Jans (1922). However, this exact solution is expressed in terms of elliptic functions which
are difficult to handle, so that only perturbation solutions are used in practice. The total
deflection of a light ray coming from infinity with an impact parameter b � 2GM/c2 is
given by

δ̂ =
4GM

c2b
+

15π

4

(
GM

c2b

)2

+ O(1/c6). (3.2)

It must be noted that the validity of the formula (3.2) is independent of the coordinate
system because the impact parameter is a length defined for an (ideal) observer at rest
at infinity, where space-time is Minkowskian.

For a ray grazing the Sun, the term of order c−4 in Eq. (3.2) amounts to 11 μas. Since
the angle between the spacecraft rotation axis and the Sun direction is equal to 45 deg,
the contribution of this term will remain completely unobservable by Gaia mission.

In what follows we examine how the gravitational deflection of light can be calculated
for more general gravitational fields.

4. Angular distances in metric theories
Consider two light rays Γ and Γ′ arriving at a point xo ∈ V4 . We assume that Γ and Γ′

are emitted by point-like sources E and E ′, respectively. Let O(u) be an observer passing
through xo with a unit 4-velocity u, i.e. the vector of components uμ = dxμ/ds.

Space relative to O(u) at xo is defined as the set Πxo
(u) of the tangent vectors orthog-

onal to the 4-velocity of O(u). As a consequence, the angular distance between E and
E ′ as measured by O(u) is defined as the angle φu between the orthogonal projections
of the rays Γ and Γ′ on Πxo

(u) (see Soffel 1989 or Brumberg 1991). Let l and l′ denote
vectors tangent to Γ and Γ′ at xo , respectively. Taking into account that l and l′ are null
vectors, it may be seen that the angular distance φu is determined by the relation

sin2 φu

2
= − (l′ − l)2

4(u.l)(u.l′)
, 0 � φu � π. (4.1)

Two kinds of descriptions may be envisaged in modeling astrometric measurements.
1. One can introduce an orthonormal tetrad eα along the worldline of O(u) such that

e0 = u, u.ei = 0, ei .ej = −δij , (i = 1, 2, 3).

The direction of the ray Γ is then defined by the spacelike components of the tangent
vector l relative to the triad ei :

li = −(l.ei).
Then φu may be obtained as a function of the direction of each ray by inserting

l = (l.u)u+ liei and l′ = (l′.u)u+ l′j ej into Eq. (4.1). This procedure may be very useful
when it is necessary to take into account the attitude of the space station on which the
measurements are performed, as in models RAMOD for Gaia (see, e.g., de Felice et al.
2006).

2. However, the angular distance may also be directly obtained by carrying out the cal-
culation of sin2 φu/2 in the chosen reference frame (xα ) without introducing any tetrad.
This point of view is close to the spirit of GREM model elaborated by the Dresden group
working on Gaia (see Klioner 2003). It is the point of view chosen here.
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Throughout this paper we assume that space-time may be covered by some global
quasi-Galilean coordinate system xα = (x0 ,x) in which the metric is written as

gμν = ημν + hμν , ημν = diag (1,−1,−1,−1) (4.2)

and we denote by xe = (x0
e ,xe) and xe′ = (x0

e′ ,xe′) the points where Γ and Γ′ are
emitted, respectively. In what follows, the coordinate system may be identified with the
BCRS recommended by IAU2000 resolutions.

We use the vector notations a = (a1 , a2 , a3) = (ai) and c = (c1 , c2 , c3) = (ci). Then,
given a, b and c, we put a.b = aibi , and a.c = aici , the Einstein convention being
systematically used for repeated indices.

The zeroth-order direction in which Γ is seen by an observer O(U) at rest relative to
the coordinate system (xα ) passing through xo is defined as the vector

N = (Ni), Ni =
xi

e − xi
o

|xe − xo |
. (4.3)

Of course, an analogous vector N ′ may be defined for Γ′. We shall call φ
(0)
U the angle

between N and N ′.
We put

β = (βi), βi =
dxi

dx0 , β2 = δij β
iβi, (4.4)

where the derivatives dxi/dx0 are taken along the worldline of O(u).
In the presence of gravity, the ratio (li/l0)xo

is slightly different from Ni . As long as
we may assume that there exists one and only one null geodesic between a source located
at xe and xo , the difference (li/l0)xo

−Ni is a function of xe , to and xo . So we define the
(gravitational) deflection vector as

λ(xe , to ,xo) = (λi(xe , to ,xo)), λi(xe , to ,xo) =
(

li
l0

)
xo

− Ni. (4.5)

It is shown in Teyssandier & Le Poncin-Lafitte (2006) that the angular distance φu is
determined by the equation

sin2 φu

2
= Ku/U (E , E ′) sin2 φU

2
, (4.6)

where Ku/U (E , E ′) is given by

Ku/U (E , E ′) =
1

1 + h00

1 − β2 + h00 + 2h0kβk + hklβ
kβl

[1 + β.(N + λ)][1 + β.(N ′ + λ′)]
(4.7)

and φU is the angular distance between E and E ′ as measured by O(U). It may be shown
that

sin2 φU

2
= (1 + h00)

[
sin2 φ

(0)
U

2
+

1
2
(λ′ − λ).(N ′ − N) − 1

4
kij (N ′i − Ni)(N ′j − Nj )

+
1
4
(λ′ − λ)2 − 1

2
kij (λ′

i − λi)(N ′j − Nj ) − 1
4
kij (λ′

i − λi)(λ′
j − λj )

]
, (4.8)

with

kij = gij − ηij = −hij + ηαβ hiαhjβ + O(h3). (4.9)
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It is clear that the factor Ku/U (E , E ′) describes the aberration due to the motion of
the observer O(u) relative to the observer O(U).

Equations (4.6) and (4.8) show that the angular separation φu is theoretically deter-
mined when the deflection vector λ is known. Let us emphasize that Eqs. (4.6)–(4.8) are
rigorous.

Two kinds of procedures are currently available to determine the deflection vector
λ(xe , to ,xo).

1. One can try to solve the differential equations satisfied by the null geodesics: this
method works well when the rays are coming from infinity and can be extended to rays
emitted at a finite distance by some adequate procedure (see, e.g., Brumberg 1991).
This method is summarized in Sections 5 and 6 for rays emitted at infinity within the
weak-field, linearized approximation.

2. One can also use procedures avoiding the integration of geodesic equations. These
methods are particularly convenient when the sources of light rays and the observer are
located at a finite distance. They are also more easy to extend to the higher orders of
approximation. Some results are briefly presented in Sections 7 and 8.

At the level of accuracy required by Gaia or SIM missions, it is sufficient to know
λ(xe , to ,xo) within the weak-field, linearized approximation in almost all the practical
cases (see, e.g., Klioner 2003). The only known exception is the very special case of a ray
grazing giant planets like Jupiter or Saturn (see Section 8). So we shall content ourselves
with the linear approximation in the two next sections.

5. Equations of null geodesics
A geodesic of (V4 , g) is a parametrized curve xρ(ζ) satisfying the variational principle

δ

∫
1
2
gαβ (xρ(ζ))lα lβ dζ = 0, lα =

dxα (ζ)
dζ

. (5.1)

Condition (5.1) means that any geodesic xρ(ζ) satisfies the following Euler-Lagrange
equations

dlμ
dζ

=
1
2

∂hαβ

∂xμ
(xρ(ζ))lα lβ , lμ = gμν lν . (5.2)

Of course, any solution to Eqs. (5.2) representing a null geodesic has to fulfil the
condition (3.1).

We assume henceforth that the gravitational perturbation hμν can be written as a
power series in the gravitational constant G

hμν (x,G) =
∞∑

n=1

Gng(n)
μν (x). (5.3)

So the solutions to Eqs. (5.2) and (3.1) may be written as

xρ(ζ) = xρ
(0)(ζ) +

∞∑
n=1

Gnxρ
(n)(ζ), (5.4)

which implies for the covariant components of the tangent vector

lμ(ζ) = l(0)
μ (ζ) +

∞∑
n=1

Gnl(n)
μ (ζ) (5.5)

and for the deflection vector

λ(xe , to ,xo) =
∞∑

n=1

Gnλ(n)(xe , to ,xo). (5.6)
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After substituting for lμ from Eq. (5.5) into Eqs. (5.2) and (3.1), it is easy to see that
l
(0)
μ is a constant:

l(0)
μ = Kμ, Kμ = const, (5.7)

where the Kμ have to fulfil the condition

ηαβ KαKβ = 0, Kα = ηαμKμ. (5.8)

For any null geodesic of 0th-order direction −N arriving at xo , the constants Ki may
be chosen so that Ki = −Ni . Hence K0 = 1 as a consequence of (5.8). Denoting by ζo

the (arbitrary) value of ζ at point xo , the zeroth-order parametric equations of the null
geodesic are then

x0
(0)(ζ) = ζ − ζo + x0

o , x(0)(ζ) = −(ζ − ζo)N + xo . (5.9)

Taking (5.7) and (5.9) into account, and then adopting the notation

f,μ(x) =
∂f

∂xμ
(5.10)

for the partial differentiation of any function of x, the differential equation satisfied by
l
(1)
μ may be written as

dl
(1)
μ

dζ
=

1
2

[
g

(1)
00,μ − 2g

(1)
0k,μNk + g

(1)
kl,μNkNl

]
x( 0 ) (ζ )

. (5.11)

A straightforward calculation shows that Eq. (3.1) reduces to a constraint equation
which determines l

(1)
0 :

l
(1)
0 =

1
2

[
g

(1)
00 − 2g

(1)
0k Nk + g

(1)
kl NkNl + 2Nll

(1)
l

]
x( 0 ) (ζ )

. (5.12)

As a consequence, the first-order term λ
(1)
i is given by

λ
(1)
i = (δj

i − NiNj )l(1)
j − 1

2
Ni

[
g

(1)
00 − 2g

(1)
0k Nk + g

(1)
kl NkNl

]
. (5.13)

Thus the deflection vector at xo is completely determined when the three spacelike
covariant components l

(1)
i are known. The next section is devoted to the expression of

l
(1)
i and λ

(1)
i for a light ray emitted at infinity.

6. Light rays coming from infinity
In this section, we suppose that the gravitational potentials hμν and their first deriva-

tives tend to zero when |x| → ∞. Assuming that the light ray is emitted at infinity in a
direction −N , an integration of Eqs. (5.11) yields for the value of l

(1)
j at xo

l
(1)
j =

1
2

∫ ζ o

−∞

[
g

(1)
00,j − 2g

(1)
0k,jN

k + g
(1)
kl,jN

kNl
]

x( 0 ) (ζ )
dζ, (6.1)

the integral being taken along the zeroth-order straight line defined by Eqs. (5.9).
We consider that the Solar System is an isolated system constituted by N slowly mov-

ing, self gravitating bodies A (A = 1, 2, . . . , N). The integrals involved in Eqs. (6.1) have
been studied using the technique of retarded potentials (see, e.g., Kopeikin & Schäfer
1999 and Kopeikin et al. 2006). However, it is generally estimated that the deflections
due to the retarded effects are less than 1 μas and can therefore be currently neglected.
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So we may content ourselves with using the parametrized post-Newtonian (1PPN) ap-
proximation developed in Klioner & Soffel (2004), which is a natural extension of the
IAU2000 metric. Since a consistent treatment of light propagation requires to retain only
the metric truncated at 1/c3 , we take

g
(1)
00 = −2w

c2 + O(4), (g(1)
0k ) = (γ + 1)

2w

c3 + O(5), g
(1)
kl = −γ

2w

c2 δkl + O(4), (6.2)

where

w(x0 ,x) =
N∑

A=1

wA (x0 ,x), wA (x0 ,x) =
∫

ρA (x0 ,x′
A )

|x − x′
A |

d3x′
A , (6.3)

w(x0 ,x) =
N∑

A=1

wA (x0 ,x), wA (x0 ,x) =
∫

ρA (x0 ,x′
A )v′

A (x0 ,x′
A )

|x − x′
A |

d3x′
A , (6.4)

ρA and v′
A being the rest-mass density and the velocity-field of the matter constituting

the body A, respectively.
A rough estimate shows that the Sun and the planets may be considered as axially

symmetric bodies slowly spinning about their axis of symmetry. Moreover, the multipole
expansion of the gravitomagnetic potentials wA (x0 ,x) may be completely neglected. We
may content ourselves with the following expressions for wA (x0 ,x) and wA (x0 ,x):

wA (x0 ,x) =
MA

|x − xA |

{
1 − J1ARA

kA .(x − xA )
|x − xA |2

−J2AR2
A

3[kA .(x − xA )]2 − (x − xA )2

2|x − xA |4
+ · · ·

}
(6.5)

wA (x0 ,x) = wA (x0 ,x)vA (x0) +
SA × (x − xA )

2|x − xA |3
+ · · · , (6.6)

where, for each body A, xA is the point on the axis of symmetry supporting the multipole
distribution, MA the mass, J1A , J2A , ... the mass-multipole moments, RA the equatorial
radius, kA the unit vector on the axis of symmetry, SA the intrinsic angular momentum
(SA = SAkA ) and vA = cdxA/dx0 (xA is a function of x0).

The insertion of Eqs. (6.5) and (6.6) in Eqs. (6.1) leads to expressions impossible to
calculate analytically if the full variation in time of xA is taken into account. However,
one can obtain a correct estimate of integrals (6.1) assuming that each body A is fixed at
its position xAo at the moment tAo of the closest approach of the body and the photon
(Klioner & Kopeikin 1992 and Klioner 2003).

Let PAo be the projection of the position of point xAo on the straight line parallel to
N passing through xo . Putting

bAo = xP A o
− xAo, pAo =

bAo

bAo
, qAo = pAo × N , nAo =

xo − xAo

|xo − xAo |
(6.7)

and denoting by αAo the angle between −nAo and N , the deflection vector is given by

λ(1)(N ,xo) =
N∑

A=1

λ
(1)
MA

+ λ
(1)
J1 A

+ λ
(1)
J2 A

+ λ
(1)
SA

+ · · · , (6.8)
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where

λ
(1)
MA

=(γ + 1)
MA

c2bAo
[sinαAoN + (1 + cos αAo)pAo ]+ · · · , (6.9)

λ
(1)
J1 A

=(γ + 1)
MA

c2bAo
J1A

RA

bAo
(1 + cos αAo)

[
(kAo.qAo)qAo − (kAo.pAo)pAo

]
+ · · · , (6.10)

λ
(1)
J2 A

=(γ + 1)
MA

c2bAo
J2A

(
RA

bAo

)2

(1 + cos αAo)
{ [

(kAo.qAo)2 − (kAo.pAo)2] pAo

+2(kAo.pAo)(kAo.qAo)qAo

}
+ · · · , (6.11)

λ
(1)
SA

=(γ + 1)
SA

c3b2
Ao

(1 + cos αAo) [(kAo.qAo)pAo + (kAo.pAo)qAo ]+ · · · , (6.12)

kAo being the vector k at instant tAo and + · · · standing for terms giving negligible
contributions at the 1 μas level (case, e.g., of the translational gravitomagnetic terms).

The contributions of the mass-multipole moments J1 and J2 are analyzed in several
works (see, e.g., Kopeikin & Makarov 2007 and Refs. therein). The contributions of the
other moments Jn are thoroughly calculated in Le Poncin-Lafitte & Teyssandier (2008).

A test of the deflection due to the mass quadrupole moment of Jupiter, say (J2)J up ,
was proposed in Crosta & Mignard (2006) in the context of the Gaia mission (project
GAREX). This test seems feasible since the maximum quadrupolar deflection predicted
for a ray grazing Jupiter amounts to

(
δ̂J2

)
J up

= 240 μas.

A general account of the effects relevant to a 1μas accuracy is given in Klioner (2003).
It must be noted that the deflection due to the gravitomagnetic term λ

(1)
SA

is less than
1 μ as for the Sun and the giant planets.

7. Sources at a finite distance
Let us outline the new methods developed in Le Poncin-Lafitte et al. (2004) and

Teyssandier & Le Poncin-Lafitte (2008). It follows from these works that the deflection
vector is given by

λi = −c∂Tr

∂xi
o

[
1 − c∂Tr

∂x0
o

]−1

− Ni, (7.1)

where Tr is the so-called reception time transfer function giving the travel time of a
photon as a function of the spatial position of the emitter xe , the instant of reception x0

o

and the spatial position xo of the observer, so that x0
o − x0

e can be written as

x0
o − x0

e = cTr (xe , x
0
o ,xo). (7.2)

Moreover, assuming that the reception time transfer function may be expanded as

cTr (xe , x
0
o ,xo) = |xe − xo | + c

∞∑
n=1

GnT (n)
r (xe , x

0
o ,xo), (7.3)

it is shown that each perturbation term T (n)
r (xe , x

0
o ,xo) is given by an integral over the

null geodesic of Minkowski space-time having −N as spatial direction and arriving at
(x0

o ,xo), that is the curve defined by the parametric equations

z−(ζ) = (x0
o − ζ|xe − xo |, xo + ζ|xe − xo |N). (7.4)
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One thus recovers the well-known expression for the first-order term T (1)
r :

cT (1)
r (xe , x

0
o ,xo) =

1
2
|xe − xo |

∫ 1

0

[
g00

(1) + 2Nig0i
(1) + NiNjgij

(1)

]
z−(ζ )

dζ. (7.5)

The higher-order terms T (n)
r are very complicated. We shall content ourselves here with

giving the expression of cT (2) for a stationary gravitational field. In this case indeed, the
quantities T (n)

r do not depend on the instant of reception tr . Then

cT (2)(xe ,xo)=
1
2
|xe − xo |

∫ 1

0

{[
g00

(2) + 2Nig0i
(2) + NiNjgij

(2)

]
z−(ζ )

+ 2
[
g0i

(1) + Njgij
(1)

]
z−(ζ )

c∂T (1)

∂xi
(z−(ζ),xo)

+ ηij

[
c∂T (1)

∂xi

c∂T (1)

∂xj

]
(z−(ζ ),xo )

}
dζ, (7.6)

where z−(ζ) = xo + ζ|xe − xo |N .

8. Application to a static spherically symmetric metric
Let us consider the family of static, spherically symmetric metrics written in the form

ds2 =
(

1 − 2GM

c2r
+ 2β

G2M 2

c4r2 + ...

) (
dx0)2−

(
1 + 2γ

GM

c2r
+

3
2
δ
G2M 2

c4r2 + · · ·
)

δij dxidxj ,

(8.1)
where β and γ are the usual post-Newtonian parameters and δ is a supplementry post-
post-Newtonian parameter (γ = β = δ = 1 in general relativity). It follows from
Eqs. (7.5) and (7.6) that (see Teyssandier & Le Poncin-Lafitte 2008)

T (xe ,xo)=
|xe − xo |

c
+ (γ + 1)

GM

c3 ln
[
|xe | + |xo | + |xe − xo |
|xe | + |xo | − |xe − xo |

]
+

G2M 2

c5

|xe − xo |
|xe ||xo |

[
κ

arccos(ne .no)√
1 − (ne .no)2

− (1 + γ)2

1 + ne .no

]
+ O(c−7), (8.2)

where

ne =
xe

|xe |
, no =

xo

|xo |
, κ =

1
4
(8 − 4β + 8γ + 3δ). (8.3)

Equation (8.2) generalizes a result given in Brumberg (1987) for general relativity
(κ = 15/4).

Substituting for T from Eq. (8.2) into Eqs. (7.1) yields the deflection vector at point
xo . Let P be the foot of the perpendicular drawn from origin O to the straight line
parallel to N passing through xo . Putting

b(0) = |xP |, p =
xP

b(0)
, (8.4)

and then noting that the zeroth-order impact parameter b(0) = ro sin αo , where αo is the
angle between −no and N , we get in the case of a source located at infinity:

λ=
GM

c2b(0)

{[
(γ + 1) sin αo +

GM

c2b(0)
(1 + cos αo)

[
2κ sin2 αo

2
− (γ + 1)2

]]
N

+
[
(γ + 1)(1 + cos αo) +

GM

c2b(0)

[
κ

(
π − αo +

1
2

sin 2αo

)
− C(2)

]]
p

}
, (8.5)
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where

C(2) = (γ + 1)2 (1 + cos αo)2

sinαo
. (8.6)

The contribution due to the second-order term C(2) may compare with first-order
contributions when αo becomes sufficiently small. Indeed, this term yields a deflection of
16.1 μas for a light ray grazing Jupiter and observed at a distance of 6 AU (for γ = 1).
It is exactly the result obtained in Zschocke & Klioner (2009) by a different calculation.

9. Some concluding remarks
The first-order approximation set out in Sections 5 and 6 is generally sufficient for space

astrometric missions like Gaia or SIM. However, the special case of light rays grazing the
surface of a giant planet and some highly precise tests of general relativity in foreseeable
future will require calculations within the post-linear regime. The method presented in
Sections 7 and 8 is able to vie with the integration of geodesic equations in the treatment
of these problems. This procedure directly yields the deflection vector for a family of
parametrized post-post-Newtonian spherically symmetric metrics.

A more radical improvement of the modelizations will require to treat the propagation
of light in dynamical extensions of the IAU2000 metric including all the possible c−4

terms (see, e.g., Minazzoli & Chauvineau 2009 and Refs. therein). In the longer term, it
will probably become necessary to take into account the cosmological background, as it
is already outlined in Klioner & Soffel (2004).
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