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Abstract. If K is a countable amenable group acting freely and ergodically on a
probability space (T, fj.), and G is an arbitrary countable amenable group, we
construct an injection of the space of unitary representations of G into the space of
unitary 1 -cocyles for K on (F, n); this injection preserves intertwining operators. We
apply this to show that for many of the standard non-type-I amenable groups H,
the representation theory of H contains that of every countable amenable group.

1. Introduction and conventions
Throughout, G denotes a locally compact second countable group, and $fn, n =
1, 2 , . . . , oo, a separable Hilbert space of dimension n. The space Repn (G) of
continuous unitary representations of G on #fn is endowed with the standard Borel
structure generated by the functions

7TERepn (G)-»<TT(S)£ TJ) for seG and £,r\e%n.

Rep(G) = Un Rep* (G) is given the usual Borel structure as a disjoint union of
Borel spaces. Rep (G) denotes the category with objects Rep (G) and

Horn (a, a') = {T: Tis a bounded operator from ^Ka to dlCa' with

TO-(S) = <T'{S)T forallseG}.
Similarly, one may consider categories Fac (G) and Irr (G) consisting of factor
or irreducible representations.

The main purpose of the paper is to show that for a number of standard non-type-
I countable amenable groups H, and for every countable amenable group G,
Rep (G) is equivalent to a full subcategory of Rep (H), and that this is charac-
teristic of amenable groups—see theorem 4 and subsequent remarks. The proof
depends on a description of the representations of certain semidirect products
H =N xaK in terms of certain measures on N (we assume N is abelian) and
cocycles for the dual action of K on N; this description is certainly well known,
but as I am unaware of an exposition adapted to the present needs, the relevant
material is given in § 3.
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In addition we need to consider cohomology spaces of actions of groups on
measure spaces as categories; this may be accomplished as follows. Let (F, /u.) be
a standard measure space, and let the discrete group K act on F (on the right) to
leave p. quasi-invariant. If Uffln) denotes the unitary group of %?„, with the standard
Borel structure generated by the weak topology,

denotes the space of measurable maps y eF-»w(y)eU(2if,,) satisfying

u(y,k)u{y • k, k') = u(y, kk') /*-a.e. in y for all k, k'eK,

where we identify two such maps if they agree ft- a.e. in y for each k. We let

and for u, u'eZ\TxK, U), with u :TxK-+W and u':TxK^T, set

Hom^ (u, u') = {bounded measurable functions y -* T(y), with
T{y):%->3e' and T(y)u(y, k) = u'(y, k)T(y • k) a.e.}

where we again identify maps which agree /x-a.e. If TeHomM (u, u') and Se
Hom^ (u\ u") the pointwise product ST is in HomM (M, «"), so that Z],{YxK, U)
may be viewed as a category which is denoted Z^(rx^r, [/).

Note that Z^iFxK, U) depends only on the class of measure /A; furthermore,
by the results of [3], Z^iTxK, U) depends only on the isomorphism class of the
measured groupoid (TxK, n). In particular if K (respectively K') acts freely on
(r, ft) (respectively (P, /u.')) and K on (I\ /A) is orbit equivalent, (see [4]), with K'
on (F, /a'), we may identify Z\{YxK, U) with Z\-(T'xK', U). It is precisely this
freedom, coupled with the existence of many different presentations of the same
measured groupoid, which allows us to replicate Rep (G) within Z^iTxK, U)
whenever G and K are countable amenable and (I\ /i.) is an ergodic /C-space with
K acting freely and non-transitively—see § 2.

2. A construction of cocyles
Fix an amenable, countable group K and a free, ergodic action of K on a standard
measure space (F,n) with JU.(F) = 1; we suppose this action to be non-transitive
and hence not of type I, [4]. For any other countable amenable group G, let (Z, m)
be an ergodic free G space of type Hi, (for example, the Bernoulli shift based on
G), and let

(Y»=fl(Z,m).
- 0 0

We let G act on Y via the diagonal action, and let Z act via the shift, obtaining
an action of Z x G with Z acting ergodically. Thus K x Z x G acts ergodically on
(F x Y, /i x v), with K x Z acting ergodically.

Define, for each unitary representation {or, X) of G, a map

Vtr:(rxY)x(KxZxG)^U(%) by «„((?, y), (fc, n, g)) = <r(g).

https://doi.org/10.1017/S014338570000184X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000184X


Construction of unitary cocycles 131

PROPOSITION 1. With the notation above
(i) Vc,eZlxA(rxY)x(KxZxG),U(%)).
(ii) There is a natural linear isomorphism between HomG (cr, cr') and

Hom^, (vm tv).
Proof, (i) Is trivial.
(ii) If T: %a -*• %„• is bounded and Ta(g) = <r'(g)T for all geG, the constant map
(y,y)-*T clearly lies in Hom,,^ (vm tv)-

Conversely, if (y, y)-*T(y, y) is a bounded measurable operator field satisfying

T(y, y)iv((y, y), (k, n, g)) = vA(y, y), (*, n, g))T((y, y) • (k, n, g))
JU, x j/-a.e. for all (k, n, g) e K x Z x G, then, taking g=e and using the ergodicity
of K x Z, we see 7\y, y) is a constant T fix u-a.e. Evidently T € HomG (cr, a') as
required. •

COROLLARY 2. There is a functor w from Rep G onto a full subcategory of
Z^ (F x K, U) which is a linear isomorphism on HomG (a, a') for all a, a' e Rep G.

Proof. By [4], the actions of K on (I\/x) and of KxZxG on ( rx r , / tX i / ) are
orbit equivalent, so the resulting measured groupoids are isomorphic [3]. Since the
cohomology categories involved depend only on the underlying groupoid, these
are equivalent via a functor / which is a linear isomorphism on the relevant sets
of morphisms; the desired functor is now given by w =f ° v, where v is as constructed
in proposition 1. •

Note also that for a € Rep G, w provides a (normal) algebra isomorphism between
the von Neumann algebras HomG (cr, cr) = a(G)' and Hom^ ((HV, W^).

3. Representations of some semi-direct products
Let N and K be countable groups with N abelian and K amenable, and let
a : K -* Aut N be a homomorphism such that the dual action

a : k e K -* Aut N, &k(y) = y°<Xk

for y e F = N and k e K, is free, i.e. dk (y) = y for some y ̂  1 implies k = e—one
can take N =n"<x> ^2 and K = Z acting by translation. Let H =N xaK, the semi-
direct product, with product (n, k)(n', k') = (nak(n'), kk'). We write y • k =ak~

l(y)
for convenience.

Let {rr, 3€} be a unitary representation of H on a separable space #f, and let

M Jr
be the central decomposition of the restriction of IT to N. It is well known that (*.„
is quasi-invariant for the dual action of K on F, and ergodic whenever IT is a factor
representation. In addition, if u7r(k) = ir{0,k), there are, see [5], Borel fields of
unitaries un(y, k):3€y.k -+Xy with

(1) «w(fc)f~(y-»p(y, *)«„(?, *)£(y*)) where fe*r, f~f(y) in the
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decomposition and

(2) uAy,k)uAy •k,k') = uAy,kk') /u^-a.e. in y for each fc, k'eK;
(3) Ad MW(T, fc) ° TTy.k = TT,, jii^-a.e. in y for each k eK, where iry = y l ^

Thus (y, fe)-»M7r(y, fc) defines an element u* E Z ^ F X A T , U). Conversely each pair
(tx, u), where pi is a quasi-invariant measure for K on F and weZ^FxAT, U),
defines a representation of H.

PROPOSITION 3. Let TT, Tr'eFac (H). Then if HomH (TT, TT')J*{0}, /u.,, is equivalent
to /xw' and there is a natural linear bijection between HornH (v, IT') and
Hom^ («„, £/„•). Conversely if /u, is quasi-invariant for X on F and u,u'e
Zp(rxK, U) there is a linear bijection between Horn,, (u, u') and HomH (IT, IT'),
where v, TT' are the representations determined by (/x, u) and (/x, M') respectively.

Proof. Let TT, TT' € Fac (H) with HomH (v, n') # {0}. From [1, 5.2] we may suppose
77 is a subrepresentation of TT' and hence that ixn is dominated (in the sense of
absolute continuity) by y.^. Since both these measures are ergodic for K we conclude
their equivalence.

If T e HomH (TT, TT') and T = J® Ty dp Ay) with Ty:%y^> Ty in the obvious nota-
tion, the map y-*Ty provides the desired element of HomM7r (um u^). The final
assertion is routine. d

The restriction to factor representations in the first part of the proposition may be
removed if one permits an 'intertwining' relation between cocycles uwe
Z^(rx-K, U) and Mw-eZ^.(rx/f, U) for measures /u.T and /u.̂  which are not
necessarily equivalent but which dominate a common measure /x; we leave the
details to the interested reader.

4. Comparison of representation theories
THEOREM 4. Let G be a countable amenable group, and let H = N xa K be as in
§ 3, with the dual action of K on T = N being not smooth. Then there is a functor
F:Rep (G)->Rep (H) which is onto a full subcategory and which gives a linear
isomorphism of HomG (o", a-') with HomH (F(a), F(cr')) for all cr, a' E Rep G.

Proof. Choose a measure n on F which is quasi-invariant and ergodic under K,
and not of type I, [2]. For ere Rep (G), let wveZl(TxK, U) be as provided by
corollary 2, and let F(a) be the representation of H determined by the pair (ix, wa).
By corollary 2 and proposition 3, F determines a functor with the desired
properties. •

COROLLARY 5. Let G be a solvable locally compact second countable group, and
let H be as in theorem 4. Then the conclusions of theorem 4 hold for G and H.
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Proof. G has a dense amenable countable subgroup Go; if Fo: Rep (G0)-»Rep (H)
is as provided by theorem 4,

F(o-) = Fo(o-\Go) for <T e Rep G
has the desired properties. •

Remarks. (1) Theorem 4 characterizes countable amenable groups among discrete
groups in the sense that if G is a countable group and F:Rep (G)-»Rep (H)
is a functor as in theorem 4, the commutant of the left regular representation A G

of G is ismorphic to F(A°)' and hence hyperfinite; thus G is amenable.
(2) The restriction that K acts on F in such a way that y • k = y for some y ^ 1

implies fc = e is stronger than necessary and has been assumed for ease of exposition
only - all that is necessary is that F carries a measure fj. quasi-invariant and ergodic
for K and such that the action of K on (F, /u,) is free in the measure-theoretic sense.

(3) The functor F constructed in theorem 4 has many pleasant properties -
indeed if Rep (G), Rep (H) are given their usual standard Borel structures, the
map

a e Rep (G) -+F(<r) e Rep (H)

is Borel. The crux of the matter is an examination of the proof of Krieger's Theorem
[4] and verification that all choices made be made in a Borel manner. We omit the
gory details. In addition one may verify by routine arguments that F preserves
direct integrals of representations.
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